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• The key extra ingredient which gave rise to the B-VMVT
was the large sieve.

• This had been invented by Linnik [1941,1942] in work on
the least quadratic non–residue n2(p) modulo a prime p.

• For those not familiar with the concept, given an odd
prime p we say that n ̸≡ 0 (mod p) is a quadratic residue,
QR, modulo p when x2 ≡ n (mod p) is soluble and a
quadratic non-residue, QNR, when it is insoluble. I usually
leave the 0 residue class unclassified, although some might
call it a QR.

• It is not hard to show that the number of QR equals the
number of QNR equals p−1

2 .

• The Legendre symbol is defined by

(
n

p

)
L

=


1 n QR,

−1 n QNR,

0 n ≡ 0 (mod p).

• This is a character modulo p.
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• Gauss had solved the big unsolved problem of the 18th
century by showing that if p and q are odd primes, then(

q

p

)
L

(
p

q

)
L

= (−1)
(p−1)(q−1)

4 .

• Let n2(p) denote the least positive quadratic non-residue
modulo p.

• It is very easy to show that

n2(p) ≤
1

2
+

√
p − 3

4
.

• Note that the Wikipedia article on quadratic residues is
less than enlightening on this!
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• I. M. Vinogradov, 1918, had conjectured that for any fixed
ε > 0 we have

n2(p) ≪ε p
ε

and showed that

n2(p) ≪ p
1

2
√
e (log p)2.

• Burgess 1957 improved this to

n2(p) ≪ p
1

4
√
e (log p)2.

• Ankeny 1951 showed that on GRH

n2(p) ≪ (log p)2.
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• Linnik was able to prove a number of theorems about the
frequency with which n2(p) gets unusually large.

• Perhaps the most striking of these results says that given
any fixed δ > 0, if E (X ) is the number of primes p ≤ X
such that n2(p) > pδ, then

E (X ) ≪δ log logX .

• So far in exploring sieves we have applied a sieve in which
we remove one (primes in an a.p., or the refined version of
the twin prime conjecture), or two residue classes
(Goldbach and original twin primes) or k , with k fixed (the
prime k-tuple conjecture).

• Now we want to remove a large number of residue classes,
(p − 1)/2, for each prime p!
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• Consider a set A = {an : M + 1 ≤ n ≤ M + N} of
complex numbers an with the property that for each prime
p the support A of an lies in h(p) = p − ρ(p) residue
classes modulo p, so that just as in the Selberg sieve we
can suppose that ρ(p) residue classes have been removed
modulo p.

• We may certainly suppose that h(p) ≥ 1 always, since if
there is a prime with h(p) = p, then we will have removed
everything.

• We might think of the an as being the characteristic
function of a set which has had ρ(p) residue classes
removed for each p.

• Let

Z (q, h) =
M+N∑

n=M+1
n≡h (mod q)

an

and Z = Z (0, 1).
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• Let

Z (q, h) =
M+N∑

m=M+1
m≡h (mod q)

an

and Z = Z (0, 1).

• We might hope that for each prime p the support of an is
fairly uniformly distributed into the h(p) residue classes.

• Let R(p) be the set of h(p) residue classes modulo p
which contain the support of the an and consider the
“variance”

V (p) =
∑

r∈R(p)

∣∣∣∣Z (p, r)− Z

h(p)

∣∣∣∣2 .
• Let

S(α) =
M+N∑

n=M+1

ane(nα).
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• Let

S(α) =
M+N∑

n=M+1

ane(nα).

• The additive characters e(an/q) modulo q satisfy the
orthogonality relationship

q∑
a=1

e(am/q)e(−an/q) =

{
q m ≡ n (mod q),

0 m ̸≡ n (mod q).

• Thus

q∑
a=1

|S(a/q)|2 =
M+N∑

m=M+1

M+N∑
n=M+1

n≡m (mod q)

qaman

= q

q∑
a=1

Z (q, a)Z (q, a) = q

q∑
a=1

|Z (q, a)|2

• For the time being consider the special case q = p.
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• Since Z (p, a) = 0 unless a ∈ R(p) we have

p∑
a=1

|S(a/p)|2 = p

p∑
a∈R(p)

|Z (p, a)|2.

• We defined

V (p)

=
∑

a∈R(p)

∣∣∣∣Z (p, a)− Z

h(p)

∣∣∣∣2
=

∑
a∈R(p)

(
|Z (p, a)|2 − 2ℜZ (p, a)Z/h(p) + |Z |2/h(p)2

)
=

∑
a∈R(p)

|Z (p, a)|2 − p|Z |2/h(p).

• Thus pV (p) + |Z |2 p − h(p)

h(p)
=

p−1∑
a=1

|S(a/p)|2.
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• Suppose we can obtain an non-trivial upper bound for the
right hand side, such as∑

p∈P

p−1∑
a=1

|S(a/p)|2 ≤ Y
M+N∑

n=M+1

|an|2.

• We know from the Cauchy-Schwarz inequality that such
bounds exist and indeed this sum could be written in
terms of a Hermitian matrix, so Y could be taken to be its
largest eigenvalue.

• Suppose further that an is the characteristic function of an
interesting set. Then Z = |Z | =

∑M+N
n=M+1 |an|2 so we have

|Z | ≤ Y /
∑
p∈P

p − h(p)

h(p)
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p − h(p)

h(p)
=

ρ(p)

p − ρ(p)
=

f (p)

1− f (p)
= g(p)

in the notation we used for the Selberg sieve. That looks
familiar!

• We just proved that

|Z | ≤ Y∑
p∈P g(p)

.

• Now there is no restraint on g and no remainder term Rd

to worry about.
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• Suppose that for each odd prime p ≤ Q we remove the
quadratic non-residues. Then the number of residue
classes remaining is h(p) = p − p−1

2 = p+1
2 .

• Thus g(p) = p−h(p)
h(p) = p−1

p+1 and so by the prime number
theorem ∑

p≤Q

g(p) ∼ Q

logQ
.

• We shall see that it is possible to take Y ≪ N + Q2, and
then the optimal choice for Q is about N1/2 and so
Z ≪ N1/2 logN.

• Amazingly this is close to best possible, since the perfect
squares cannot be sieved out!
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• Thus any non-trivial value for Y (N,Q) for which∑
q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣S (a

q

)∣∣∣∣2 ≤ Y (N,Q)
M+N∑

n=M+1

|an|2

holds for any complex numbers an, has become known as
the “The Large Sieve”.

• More generally one can ask for values of Y0(N, δ) such
that whenever x1, . . . , xR are R real numbers with
∥xr − xs∥ ≥ δ whenever r ̸= s we have

R∑
r=1

|S(xr )|2 ≤ Y0(N, δ)
M+N∑

n=M+1

|an|2

for any complex numbers an. Such inequalities are called
“The Large Sieve” now also.

• By the way, ∥α∥ is the metric on T = R/Z, that is

∥α∥ = min
n∈Z

|α− n|.
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• The first modern version of the large sieve is Roth [1965],

Y (N,Q) ≪ N + Q2 logQ.

• Bombieri [1965] then obtained Y (N,Q) = N + CQ2.

• Gallagher [1967] gave a quite short proof that
Y (N,Q) = πN + Q2 is permissible.

• Then there was a lot of work improving the constants.

• Finally Montgomery and Vaughan [1973,1974], with an
added wrinkle by Paul Cohen [1977], and Selberg [1991,
but known by him before 1977] gave the bound

Y0(N, δ) = N − 1 + δ−1.

• Bombieri and Davenport had shown [1968] that this is
best possible even for Y (N,Q).

• For an overall account of this see Montgomery [1978].
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• Recall the bound, when |an| = 1 or 0,

|Z | ≤ Y (N,Q)∑
p≤Q g(p)

which we proved earlier.

• The most general form of this (Montgomery [1968] and
Montgomery & RCV [1973]) is

|Z | ≤ Y (N,Q)∑
q≤Q µ(q)2

∏
p|q

g(p)
p−g(p)

.

• In some sense this is the dual of the Selberg sieve as
applied to an interval.

• At this stage it is useful to observe that if
(a, q) = (b, r) = 1, q ≤ Q, r ≤ Q and a/q ̸= b/r , then
Q−2 ≤ 1/(qr) ≤ |ar − bq|/(qr) = |a/q − b/r | and so one
can take

Y (N,Q) = Y0(N,Q−2).
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• In arithmetical applications it is important to have as
precise a bound for Y (N,Q) as possible, and we may
return to this later.

• Our immediate objective is to obtain bounds which are
useful in “analytic” applications, and then the we don’t
mind losing out by something relatively small, such as a
power of a logarithm.

• One of the most fruitful ideas is that
R∑

r=1

|S(xr )|2

=
M+N∑

m=M+1

M+N∑
n=M+1

aman

R∑
r=1

e
(
xr (m − n)

)
= aHa∗

where H = MM∗ and M is the N × R matrix
M =

(
e(xrm)

)
.

• Thus H is a Hermitian matrix, and we are interested in its
largest eigenvalue.



Math 571
Chapter 5 The
Large Sieve

Robert C.
Vaughan

Some History

The Large
Sieve

Variants of the
Large Sieve

• In arithmetical applications it is important to have as
precise a bound for Y (N,Q) as possible, and we may
return to this later.

• Our immediate objective is to obtain bounds which are
useful in “analytic” applications, and then the we don’t
mind losing out by something relatively small, such as a
power of a logarithm.

• One of the most fruitful ideas is that
R∑

r=1

|S(xr )|2

=
M+N∑

m=M+1

M+N∑
n=M+1

aman

R∑
r=1

e
(
xr (m − n)

)
= aHa∗

where H = MM∗ and M is the N × R matrix
M =

(
e(xrm)

)
.

• Thus H is a Hermitian matrix, and we are interested in its
largest eigenvalue.



Math 571
Chapter 5 The
Large Sieve

Robert C.
Vaughan

Some History

The Large
Sieve

Variants of the
Large Sieve

• In arithmetical applications it is important to have as
precise a bound for Y (N,Q) as possible, and we may
return to this later.

• Our immediate objective is to obtain bounds which are
useful in “analytic” applications, and then the we don’t
mind losing out by something relatively small, such as a
power of a logarithm.

• One of the most fruitful ideas is that
R∑

r=1

|S(xr )|2

=
M+N∑

m=M+1

M+N∑
n=M+1

aman

R∑
r=1

e
(
xr (m − n)

)
= aHa∗

where H = MM∗ and M is the N × R matrix
M =

(
e(xrm)

)
.

• Thus H is a Hermitian matrix, and we are interested in its
largest eigenvalue.
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• To start with we state a lemma from linear algebra.

Lemma 1 (Duality Lemma)

Suppose that cnr , n = 1, . . . ,N,r = 1, . . . ,R are complex
numbers and λ is a real number such that for all complex
numbers zr we have

N∑
n=1

∣∣∣∣∣
R∑

r=1

cnrzr

∣∣∣∣∣
2

≤ λ

R∑
r=1

|zr |2.

Then
R∑

r=1

∣∣∣∣∣
N∑

n=1

cnrwn

∣∣∣∣∣
2

≤ λ

N∑
n=1

|wn|2

holds for all complex numbers wn.
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• The proof uses the second basic principle of ANT!

Proof.

LHS =
N∑

m=1

wm

R∑
r=1

cmr

N∑
n=1

cnrwn =
N∑

m=1

wm

R∑
r=1

cmrz r

where zr =
N∑

n=1

cnrwn. Hence, by Cauchy’s inequality,

LHS2 ≤

(
N∑

m=1

|wm|2
)

N∑
m=1

∣∣∣∣∣
R∑

r=1

cmrz r

∣∣∣∣∣
2

.

On hypothesis this is

≤
N∑

m=1

|wm|2λ
R∑

r=1

|zr |2 = (LHS)λ
N∑

m=1

|wm|2.
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• By the way I. M. Vinogradov makes repeated use of the
Duality Lemma in many special cases in his work on
exponential sums, but always obtained directly via the
Cauchy-Schwarz inequality and without, apparently, being
aware that it was a special case of a general theorem!



Math 571
Chapter 5 The
Large Sieve

Robert C.
Vaughan

Some History

The Large
Sieve

Variants of the
Large Sieve

• Below is a theorem which has a very simple proof.

Theorem 2 (Large Sieve Inequality 0)

Suppose that 0 < δ ≤ 1
2 and the xr , r = 1 . . . ,R satisfy

∥xr − xs∥ ≥ δ whenever r ̸= s. Then

R∑
r=1

|S(xr )|2 ≤ Y0(N, δ)
M+N∑

n=M+1

|an|2

holds with Y0(N, δ) = N +
1

δ
log

3

δ
.

• By the Duality Lemma it suffices to bound

M+N∑
n=M+1

∣∣∣∣∣
R∑

r=1

bre(nxr )

∣∣∣∣∣
2

=

R∑
r=1

R∑
s=1

brbs

M+N∑
n=M+1

e
(
n(xr − xs)

)
.
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• We have
R∑

r=1

R∑
s=1

brbs

M+N∑
n=M+1

e
(
n(xr − xs)

)
.

• The diagonal terms r = s contribute N
R∑

r=1

|br |2 and when

r ̸= s the sum over n gives

e
(
(M + N + 1)(xr − xs)

)
− e
(
(M + 1)(xr − xs)

)
e(xr − xs)− 1

= e
(
(M + 1/2 + N/2)(xr − xs)

)sin (πN(xr − xs)
)

sinπ(xr − xs)

• Thus we obtain the upper bound.

N
R∑

r=1

|br |2 +
R∑

r=1

R∑
s=1
s ̸=r

|brbs |
| sinπ(xr − xs)|

.
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•

N
R∑

r=1

|br |2 +
R∑

r=1

R∑
s=1
s ̸=r

|brbs |
| sinπ(xr − xs)|

.

• Now |brbs | ≤ (|br |2 + |bs |2)/2, and | sinπx | ≥ 2∥x∥.
• Thus, by symmetry, we get the upper bound

R∑
r=1

|br |2

N +
R∑

s=1
s ̸=r

1

2∥xr − xs∥

 .

• Note also that since we can suppose, by adding integers to
each xr , that

min
r

xr + (R − 1)δ ≤ max
r

xr and max
r

xr + δ ≤ 1 + min
r

xr

and so
Rδ ≤ 1.
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• We have the upper bound

R∑
r=1

|br |2

N +
R∑

s=1
s ̸=r

1

2∥xr − xs∥

 .

• Consider, given r , the sum over s. The function ∥x∥ has
period 1, so we can add integers to the xs so that
xr − 1

2 ≤ xs ≤ xr +
1
2 . Since the xr are δ apart, the two

closest to xr are no closer that δ, the next two closest are
no closer than 2δ and so on. Thus

R∑
s=1
s ̸=r

1

2∥xr − xs∥
≤ 2

R−1∑
k=1

1

2kδ
.

• We could use Euler’s estimate, but crudely we have

R−1∑
k=1

1

k
≤ 1 +

∫ R

1

dx

x
= 1 + logR ≤ log 3/δ

This establishes the theorem.
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• Let me give an overview of the various improvements.

• Go back to the start of the above proof. The non-diagonal
terms in the formula we obtained can be rewritten as

R∑
r=1

R∑
s=1
s ̸=r

brbs
e
(
(M + N + 1/2)(xr − xs)

)
2i sin

(
π(xr − xs)

)
−

R∑
r=1

R∑
s=1
s ̸=r

brbs
e
(
(M + 1/2)(xr − xs)

)
2i sin

(
π(xr − xs)

) .

• If we write

cr = e
(
(M + N + 1/2)xr

)
, dr = e

(
(M + 1/2)xr

)
,

then this can be written more succinctly as

R∑
r=1

R∑
s=1
s ̸=r

crcs

2i sin
(
π(xr − xs)

) − R∑
r=1

R∑
s=1
s ̸=r

drd s

2i sin
(
π(xr − xs)

)
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• The sum
R∑

r=1

R∑
s=1
s ̸=r

crcs

2i sin
(
π(xr − xs)

)
looks like a generalization of that occurring in Hilbert’s
inequality ∣∣∣∣∣∣∣

R∑
r=1

R∑
s=1
s ̸=r

aras
r − s

∣∣∣∣∣∣∣ < π

R∑
r=1

|ar |2.

• There is a very slick proof of this using∫ 1

0

(
x − 1

2

)
e(xh)dx =

{
1

2πih (h ∈ Z \ {0})
0 (h = 0).

• Then use |x − 1/2| < 1/2 and apply Parseval to

R∑
r=1

R∑
s=1
s ̸=r

aras
2πi(r − s)

=

∫ 1

0

∣∣∣∣∣
R∑

r=1

are(rx)

∣∣∣∣∣
2(

x − 1

2

)
dx .
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• That proof does not generalise easily, but there is another
proof due to Schur which does generalise with a little bit
of work.

• However there is an alternative method which has far
reaching generalisations.

• The reason for the log in the previous result is because the
characteristic function of [M + 1,M + N] has jump
discontinuities.

• The solution is to majorise it by a smooth upper bound.

• Thus we replace our dual form by

∑
n

f (n)

∣∣∣∣∣
R∑

r=1

bre(nxr )

∣∣∣∣∣
2

.

• Selberg found a very sophisticated way of doing this.
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• A quite simple way to do this is to consider

f (x) = max

(
0, 2

N − |x − N0 −M|
N

)
,

where N0 = ⌈N/2⌉.

• When x ∈ [M + 1,M + N] we have
−N/2 ≤ 1− N0 ≤ |x − N0 −M| ≤ N/2. Multiplying out
the sum over n becomes a Fejér kernel∑

n

f (n)e
(
n(xr − xs)

)
=

2

N
e
(
(N0 −M)(xr − xs)

) N∑
h=−N

(N − |h|)e
(
h(xr − xs)

)

=
2

N
e
(
(N0 −M)(xr − xs)

)
)

∣∣∣∣∣∣
N−1∑
j=0

e
(
j(xr − xs)

)∣∣∣∣∣∣
2

= 2e
(
(N0 −M)(xr − xs)

)
)
sin2 πN(xr − xs)

N sin2 π(xr − xs)
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• To amplify, ∣∣∣∣∣∣
N−1∑
j=0

e(jα)

∣∣∣∣∣∣
2

=
∑
k

∑
j1,j2

j2−j1=k

e(kα)

and given k the number of solutions of j2 − j1 = k with
0 ≤ j1, j2 ≤ N − 1 is the number of j with 0 ≤ j ≤ N − 1
and 0 ≤ j + k ≤ N − 1, and one can check that this
number is max(0,N − |k |).
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• We have established that∑
n

f (n)e
(
n(xr − xs)

)
= 2e

(
(N0 −M)(xr − xs)

)
)
sin2 πN(xr − xs)

N sin2 π(xr − xs)
.

• and this satisfies

≪ min

(
N,

1

N∥xr − xs∥2

)
• Thus we find that

M+N∑
n=M+1

∣∣∣∣∣
R∑

r=1

bre(nxr )

∣∣∣∣∣
2

≪
R∑

r=1

|br |2
R∑

s=1

min

(
N,

1

N∥xr − xs∥2

)
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• We have the bound
R∑

r=1

|br |2
R∑

s=1

min

(
N,

1

N∥xr − xs∥2

)
.

• By the spacing hypothesis for the xr it follows that this is

≪
R∑

r=1

|br |2
(
N +

∞∑
k=1

min

(
N,

1

N(kδ)2

))
.

• If Nδ > 1, then the inner sum is ≪ N(1 + N−2δ−2) ≪ N,
and if Nδ ≤ 1, then it is

≪
∑

k≤N−1δ−1

N +
∑

k>N−1δ−1

1

N(kδ)2
≪ (N + δ−1).

• Thus in every case we have the bound ≪ N + 1
δ .

• Note: Describe Bombieri and Selberg proofs.
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• We have established

Theorem 3 (A Large Sieve Inequality 1)

The inequality

R∑
r=1

|S(xr )|2 ≤ Y0(N, δ)
M+N∑

n=M+1

|an|2

holds with

Y0(N, δ) ≪ N +
1

δ

and ∑
q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣S (a

q

)∣∣∣∣2 ≤ Y (N,Q)
M+N∑

n=M+1

|an|2

holds with
Y (N,Q) ≪ N + Q2.
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• The expression

∑
q≤Q

q∑
a=1

(a,q)=1

∣∣∣∣S (a

q

)∣∣∣∣2

tells us something about polynomials formed from additive
characters e(a ∗ /q).

• It would be very interesting to have a similar result for
Dirichlet characters, i.e. multiplicative characters.
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• We have

Theorem 4 (A Large Sieve for Characters)

Suppose that

S(χ) =
M+N∑

n=M+1

anχ(n).

Then

∑
q≤Q

q

ϕ(q)

∑∗

χ mod q

|S(χ)|2 ≤ Y (N,Q)
M+N∑

n=M+1

|an|2

holds with
Y (N,Q) ≪ N + Q2.

• Here
∑∗

χ (mod q)

indicates a sum over the primitive characters

modulo q.
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• We transfer the problem from multiplicative characters to
additive ones, and for this we use the Gauss sum.

• Recall Theorem 2.8. If χ is a primitive, then

χ(n)τ(χ) =

q∑
a=1

χ(a)e(an/q).

and |τ(χ)| = √
q.

• Thus

M+N∑
n=M+1

anχ(n) =
1

τ(χ)

q∑
a=1

χ(a)
M+N∑

n=M+1

ane(an/q).

• Hence ∑∗

χ mod q

|S(χ)|2 = 1

q

∑∗

χ mod q

∣∣∣∣∣
q∑

a=1

χ(a)S(a/q)

∣∣∣∣∣
2

≤ 1

q

∑
χ mod q

∣∣∣∣∣
q∑

a=1

χ(a)S(a/q)

∣∣∣∣∣
2
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q

∑
χ mod q
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q∑

a=1

χ(a)S(a/q)

∣∣∣∣∣
2

• and by Parseval’s identity this is

ϕ(q)

q

q∑
a=1

(a,q)=1

|S(a/q)|2.

• Thus
q

ϕ(q)

∑∗

χ mod q

|S(χ)|2 ≤
q∑

a=1
(a,q)=1

|S(a/q)|2

and the theorem follows from the previous one.
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• Two variants of the large sieve that are useful in
applications.

• In practice one does not have the square of a Dirichlet
polynomial |S(χ)|2 arising naturally in a problem.

• However one can arrange to have a product of two
different such polynomials.

Lemma 5

Suppose that a1, . . . , aM , b1, . . . , bN are complex numbers.
Then

∑
q≤Q

q

ϕ(q)

∑
χ

∗
∣∣∣∣∣

M∑
m=1

N∑
n=1

ambnχ(mn)

∣∣∣∣∣
≪

√√√√(M + Q2)(N + Q2)
M∑

m=1

|am|2
N∑

n=1

|bn|2.

• Proof: Cauchy-Schwarz.
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• However one can arrange to have a product of two
different such polynomials.

Lemma 5

Suppose that a1, . . . , aM , b1, . . . , bN are complex numbers.
Then

∑
q≤Q

q

ϕ(q)

∑
χ

∗
∣∣∣∣∣

M∑
m=1

N∑
n=1

ambnχ(mn)

∣∣∣∣∣
≪

√√√√(M + Q2)(N + Q2)
M∑

m=1

|am|2
N∑

n=1

|bn|2.

• Proof: Cauchy-Schwarz.
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• To illustrate what can happen with a simple special case,
recall the Dirichlet divisor problem∑

n≤X

d(n).

• There we wrote d(n) as the number of ordered pairs l ,m
with lm = n, so that the sum is the number of such
ordered pairs with lm ≤ X .

• That is, given an l we are counting the m with m ≤ X/l ,
so we could rearrange the sum as∑

l≤X

∑
m≤X/l

1.

• So there is an interaction in our sums - the end point in
the inner sum depends on l .

• Dirichlet minimised the effect by a trick, but the
dependence remains.
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• Another example is a formula for the von Mangoldt
function.

• Recall log = 1 ∗ Λ, and Λ = µ ∗ log.
• Thus we are interested in expressions of the kind∑

n≤x

Λ(n)χ(n) =
∑
l≤x

∑
m≤x/l

1(l)χ(l) log(m)
(
χ(m)

)
.

The interdependence of l and m is a nuisance.
• Classically this is solved by two observations. Firstly

ζ(s) =
∞∑
k=1

k−s ,

ζ(s)−1 =
∞∑
l=1

µ(l)l−s ,
∞∑

m=1

(logm)m−s = −ζ ′(s)

so that formally

∞∑
n=1

Λ(n)n−s = −ζ(s)−1ζ ′(s).
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• Firstly
∞∑
n=1

Λ(n)n−s = −ζ(s)−1ζ ′(s).

• Secondly

1

2πi

∫ c+i∞

c−i∞

y s

s
ds =


0 (0 < y < 1),
1
2 (y = 1),

1 (1 < y).

• Thus ∑′

n≤x

Λ(n) =
∑
lm≤x

µ(l)(logm)

=
1

2πi

∫ c+i∞

c−i∞

(
−ζ ′

ζ
(s)

)
x s

s
ds.

• Notice how the condition lm ≤ x has been separated out.



Math 571
Chapter 5 The
Large Sieve

Robert C.
Vaughan

Some History

The Large
Sieve

Variants of the
Large Sieve

• Firstly
∞∑
n=1

Λ(n)n−s = −ζ(s)−1ζ ′(s).

• Secondly

1

2πi

∫ c+i∞

c−i∞

y s

s
ds =


0 (0 < y < 1),
1
2 (y = 1),

1 (1 < y).

• Thus ∑′

n≤x

Λ(n) =
∑
lm≤x

µ(l)(logm)

=
1

2πi

∫ c+i∞

c−i∞

(
−ζ ′

ζ
(s)

)
x s

s
ds.

• Notice how the condition lm ≤ x has been separated out.



Math 571
Chapter 5 The
Large Sieve

Robert C.
Vaughan

Some History

The Large
Sieve

Variants of the
Large Sieve

• Firstly
∞∑
n=1

Λ(n)n−s = −ζ(s)−1ζ ′(s).

• Secondly

1

2πi

∫ c+i∞

c−i∞

y s

s
ds =


0 (0 < y < 1),
1
2 (y = 1),

1 (1 < y).

• Thus ∑′

n≤x

Λ(n) =
∑
lm≤x

µ(l)(logm)

=
1

2πi

∫ c+i∞

c−i∞

(
−ζ ′

ζ
(s)

)
x s

s
ds.

• Notice how the condition lm ≤ x has been separated out.



Math 571
Chapter 5 The
Large Sieve

Robert C.
Vaughan

Some History

The Large
Sieve

Variants of the
Large Sieve

• Firstly
∞∑
n=1

Λ(n)n−s = −ζ(s)−1ζ ′(s).

• Secondly

1

2πi

∫ c+i∞

c−i∞

y s

s
ds =


0 (0 < y < 1),
1
2 (y = 1),

1 (1 < y).

• Thus ∑′

n≤x

Λ(n) =
∑
lm≤x

µ(l)(logm)

=
1

2πi

∫ c+i∞

c−i∞

(
−ζ ′

ζ
(s)

)
x s

s
ds.

• Notice how the condition lm ≤ x has been separated out.



Math 571
Chapter 5 The
Large Sieve

Robert C.
Vaughan

Some History

The Large
Sieve

Variants of the
Large Sieve

• We can use this idea to deal with more general series

• Then one can write formally

∑
l

al
∑

m≤x/l

bm =
1

2πi

∫ c+i∞

c−i∞

∑
l

al
l s

∑
m

bm
ms

x s

s
ds.

• Note that this “factoring out” of the x would enable one
to choose different x for each character χ, which is useful.

• Rather than develop this, I am going to use a real variable
variant. By the way there are other alternatives, for
example by Rademacher-Menchov functions, or Walsh
functions.
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• Here is the ultimate form of the large sieve for characters

Theorem 6

Suppose that X ≥ 2, and the am and bn are complex numbers.
Then

∑
q≤Q

q

ϕ(q)

∑∗

χmod q

sup
Y≤X

∣∣∣∣∣∣∣
M∑

m=1

N∑
n=1

mn≤Y

ambnχ(mn)

∣∣∣∣∣∣∣
≪ (logXMN)

√√√√(M + Q2)(N + Q2)
M∑

m=1

|am|2
N∑

n=1

|bn|2.
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• The first step in the proof is the observation that for some
positive constant C ,∫ ∞

−∞
e iβα

sin(γα)

Cα
dα =

{
1 0 ≤ β < γ,

0 0 ≤ γ < β.
(1)

• It turns out that we can take C =

∫ ∞

−∞

sinα

α
dα.

• That C exists and C > 0 is trivial from∫ ∞

−∞

sinα

α
dα = 2

∞∑
n=1

(−1)n−1

∫ π

0

sinα

π(n − 1) + α
.dα

The terms oscillate in sign and the integrals form a
decreasing sequence tending to 0, so Leibnitz’ test applies.

• Pairing α and −α in (1) shows that the integral is real.

• Also cosβα sin γα = 1
2(sin((γ + β)α) + sin((γ − β)α))

and changing variables gives 1 when 0 ≤ β < γ and 0
when β > γ.
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• We have ∫ ∞

−∞
e iβα

sin(γα)

Cα
dα =

{
1 0 ≤ β < γ,

0 0 ≤ γ < β.

• By integration by parts, provided that Z > 0 and A > 0,
one has ∫ ∞

A

sinZα

α
dα ≪ 1

ZA
.

• Thus, on taking Z = |γ ± β| and using
cosβα sin γα = 1

2(sin((γ + β)α) + sin((γ − β)α)) we have{
1 0 ≤ β < γ,

0 0 ≤ γ < β.

}
=

∫ A

−A
e iβα

sin γα

Cα
dα+O

(
1

A|γ − β|

)
.
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}
=

∫ A

−A
e iβα

sin γα

Cα
dα+O

(
1

A|γ − β|

)
.

• Now we specialise γ = log
(
⌊Y ⌋+ 1

2

)
, β = logmn so that{

1 mn ≤ Y ,

0 mn > Y

}
=

∫ A

−A
(mn)iα

sin γα

Cα
dα

+ O

(
1

A
∣∣log (⌊Y ⌋+ 1

2

)
− logmn

∣∣
)
.

• Moreover min
m,n

∣∣∣∣log(⌊Y ⌋+ 1

2

)
− logmn

∣∣∣∣ =
min

(
log

⌊Y ⌋+ 1
2

⌊Y ⌋
, log

⌊Y ⌋+ 1

⌊Y ⌋+ 1
2

)
≫ 1

Y
.
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(mn)iα

sin γα

Cα
dα

+ O

(
1

A
∣∣log (⌊Y ⌋+ 1

2

)
− logmn

∣∣
)
.

• Moreover min
m,n

∣∣∣∣log(⌊Y ⌋+ 1

2

)
− logmn

∣∣∣∣ =
min

(
log

⌊Y ⌋+ 1
2

⌊Y ⌋
, log

⌊Y ⌋+ 1

⌊Y ⌋+ 1
2

)
≫ 1

Y
.
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• We choose A = XMN. Then, by Cauchy-Schwarz

X

A

M∑
m=1

N∑
n=1

|ambn| ≪
1

MN
(MN)

1
2

(
M∑

m=1

|am|2
N∑

n=1

|bn|2
) 1

2

.

• Summing over
∑
q≤Q

q

ϕ(q)

∑
χ∗

∗
1 ≪

∑
q≤Q

q gives

≪ 1

(MN)1/2

(
(M + Q2)(N + Q2)

M∑
m=1

|am|2
N∑

n=1

|bn|2
) 1

2
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• Thus we can concentrate on the integral in

sup
Y≤X

∣∣∣∣∣∣∣
M∑

m=1
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n=1

mn≤Y

ambnχ(mn)

∣∣∣∣∣∣∣≪
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−A

∣∣∣∣∣
M∑

m=1
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n=1
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iαχ(mn)

∣∣∣∣∣min

(
logX ,

1

|α|

)
dα

+
X

A

M∑
m=1

N∑
n=1

|ambn|.

• Summing the integral over
∑
q≤Q

q

ϕ(q)

∑
χ∗

∗
gives

∫ A

−A
T (α)min

(
logX ,

1

|α|

)
dα

where

T (α) =
∑
q≤Q

q

ϕ(q)

∑
χ∗

∗
∣∣∣∣∣

M∑
m=1

N∑
n=1

amm
iαbnn

iαχ(mn)

∣∣∣∣∣ .
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• Now, by Lemma 5, we have

T (α) =
∑
q≤Q

q

ϕ(q)

∑
χ∗

∗
∣∣∣∣∣

M∑
m=1

N∑
n=1

amm
iαbnn

iαχ(mn)

∣∣∣∣∣
≪

√√√√(M + Q2)(N + Q2)
M∑

m=1

|am|2
N∑

n=1

|bn|2.

• Also ∫ A

−A
min

(
logX ,

1

|α|

)
dα ≪ logXMN.
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• To summarize, we have just proved that if X ≥ 2, and the
am and bn are complex numbers, then

∑
q≤Q

q

ϕ(q)

∑∗

χmod q

sup
Y≤X

∣∣∣∣∣∣∣
M∑

m=1

N∑
n=1

mn≤Y

ambnχ(mn)

∣∣∣∣∣∣∣
≪ (logXMN)

√√√√(M + Q2)(N + Q2)
M∑

m=1

|am|2
N∑

n=1

|bn|2.
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