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The Sieve of Eratosthenes c200BC

a b c d

1 2 3 4a 5 6a 7 8a 9b
10a | 11 | 12a | 13 | 14a | 15b | 16a | 17 | 18a | 19
20a | 21b | 22a | 23 | 24a | 25c | 26a | 27b | 28a | 29a
30a| 31 | 32a|33b|34a | 35c | 36a | 37 | 38a | 39b
40a | 41 | 42a | 43 | 44a | 45b | 46a | 47 | 48a | 49d
50a | 51b | 52a | 53 | 54a | b5c | 56a | 57b | 58a | 59
60a | 61 | 62a | 63b | 64a | 65c | 66a | 67 | 68a | 69b
70a | 71 | 72a| 73 | 74a | 75b | 76a | 77d | 78a | 79
80a | 81b | 82a | 83 | 84a | 85c | 86a | 87b | 88a | 89
90a | 91d | 92a | 93b | 94a | 95¢c | 96a | 97 | 98a | 99b
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The Sieve of Eratosthenes c200BC

a b c d
1 2 3 4a 5 6a 7 8a 9
10a | 11 | 12a | 13 | 14a | 15b | 16a | 17 | 18a | 19
20a | 21b | 22a | 23 | 24a | 25c | 26a | 27b | 28a | 29a
30a | 31 |32a|33b|34a | 3bc | 36a | 37 | 38a | 39b
40a | 41 | 42a | 43 | 44a | 45b | 46a | 47 | 48a | 49d
50a | 51b | 52a | 53 | 54a | 55c | 56a | 57b | 58a | 59
60a | 61 | 62a | 63b | 64a | 65c | 66a | 67 | 68a | 69b
70a | 71 | 72a| 73 | 74a | 75b | 76a | 77d | 78a | 79
80a | 81b | 82a | 83 | 84a | 85c | 86a | 87b | 88a | 89
90a | 91d | 92a | 93b | 94a | 95¢c | 96a | 97 | 98a | 99b

After 1, 2, 3, 5, 7, the numbers remaining are

11,13,17,19,23, 31, 37,41, 43, 47, 53,
59,61, 67,71,73,79, 83,89, 97.

and are precisely the primes in the range (7,100].
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FirARR R, a b c d
el @ 1 2 3 4a 5 6a 7 8a 9
Vaughan 10a | 11 | 12a | 13 | 14a | 15b | 16a | 17 | 18a | 19
Tiie sieve of 20a | 21b | 22a | 23 | 24a | 25c | 26a | 27b | 28a | 29a

Eratosthenes

30a| 31 | 32a|33b|34a | 35¢c | 36a| 37 | 38a| 3%
40a | 41 | 42a| 43 | 442 | 45b | 46a | 47 | 48a | 49d
50a | 51b | 52a | 53 | 54a | 55c | 56a | 57b | 58a | 59
60a | 61 | 62a | 63b | 64a | 65c | 66a | 67 | 68a | 69b
70a | 71 | 72a| 73 | 74a | 75b | 76a | 77d | 78a | 79
80a | 81b | 82a | 83 | 84a | 85c | 86a | 87b | 88a | 89
90a | 91d | 92a | 93b | 94a | 95¢c | 96a | 97 | 98a | 99b
After 1, 2, 3, 5, 7, the numbers remaining are

o e 11,13,17,19,23, 31,37, 41, 43, 47,53,
S 59,61,67,71,73,79, 83,89, 97.
and are precisely the primes in the range (7,100]. Also we find

that
7(100) = 25.
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Can we use this to prove the prime number theorem?
We can formalise this as

7(x) — m(v/x) + 1 =card{n < x : Ap|n, p < /x}.
Another way to write this is
7(x) — m(v/x) +1=card{n < x: (n, P) =1}

where

P=pPx)=[] p

p<V/x

Sylvester noticed that this can be realised as a form of the
inclusion-exclusion principle. For example, given two
statements Q(n) and R(n) about integers n in some finite
set \V, the number of n for which both Q(n) and R(n) are
false is equal to the cardinality of A" minus the number of
n for which Q(n) is true, minus the number for which
R(n) is true plus the number for which both Q(n) and
R(n) are true.
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EE and consider

H (1 - Up(”)) =
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1- Z np(n) + Z Np1p2(N)

p<v/x p1<p2<y/x
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® Here is a way of setting this in our situation, and this
easily generalises to general statements about sets.

® et
(n) 1 when d|n,
n)=
1 0 whendf{n.

and consider

H (1 - Up(”)) =
p<V/x
1I- Z np(n) + Z Np1p2(N)

p<v/x p1<p2<y/x

LRREA G LD DR W (O Bty

p1<P2<..<pr<y/x
® We also have

card{n < x: Zpln,p < v} = 3 [ (1 —mp())

n<x p<y/x
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® This starts to look combinatorially very complicated.

® Here is an alternative way of expressing the same thing.
Recall that

1 when m=1,
> u(d) =
i 0 when m > 1.

® Then
1 when (n,P) =1,
> wd) = (. P)

dimP) 0 when (n, P) > 1.
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This starts to look combinatorially very complicated.

Here is an alternative way of expressing the same thing.
Recall that

0 when m > 1.

1 when m=1,
> u(d) = {
dlm

Then
1 when (n,P) =1,
Z id) = {O when En P; >1
d|(n,P) ’ ’
Thus
card{n < x:Apln,p < Vx}=>_ > p(d)
n<xd|(n,P)
=> u(d) na(n)
d|P n<x

-3

d|P



® Thus we have

m(x) = w(Vx) +1= Y u(d) [ ] -

d|P
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Thus we have

7(x) = 7 (VX) +1=Yuld) | 5] -

d|P

Suppose we approximate |x/d| by x/d. The error
introduced in each term is less than 1. We obtain



Math 571
Chapter 4 The

Selberg Sieve ° Thus we haVe
Robert C.
Vaughan X
- 1= d H .
m(x) = m(Vx) +1= ) u(d) |
d|P
Exclosion ® Suppose we approximate |x/d| by x/d. The error

introduced in each term is less than 1. We obtain

w(x)—w(ﬁ)ﬂwzﬂ(j)zx 1T (1_;>

d|P pP<V/x
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Thus we have

7(x) = 7 (VX) +1=Yuld) | 5] -

d|P

Suppose we approximate |x/d| by x/d. The error
introduced in each term is less than 1. We obtain

7o)~ w(v3) + 1 3 D ]

d|P

and by Merten's theorem this is

~

2xe~ B

log x

p</x

(

1
1- =
p

)



® \We would have

2Xe—B
7T(X) - 71'(\/)_() +1~ Iogx .

(o B =
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Oh, wait a minute, 2e B # 1, so this would contradict the
prime number theorem.
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® \We would have

Robert C.
Vaughan
2xe™ B
m(x) —m(vx)+ 1= :
log x
Inclusion -
Exclusion ® Oh, wait a minute, 2e78 £ 1, so this would contradict the

prime number theorem.

® The problem is that the number of terms in
X
3]
> uld) |5
d|P

that is, the number of choices for d, is huge,

o7 (v/x)

and we cannot afford an error as large as 1 in each term.



® A French mathematician, Merlin, found a clever way of

truncating the terms to give upper and lower bounds.

«Or «Fr o«

it
.
it
v
[y

DA



Math 571
Chapter 4 The
Selberg Sieve

Robert C.

Vaughan ® A French mathematician, Merlin, found a clever way of
truncating the terms to give upper and lower bounds.
® Basically
. X X X
> G <X @ gl < 3 @ |g]
d|p d|p d|P
w(d)<2k-1 w(d)<2k

® However he was killed in WWI before he could develop the
idea and it was taken up and developed by Brun.
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A French mathematician, Merlin, found a clever way of
truncating the terms to give upper and lower bounds.

Basically
> i) suali) = ¥ ol
d|P d|P d|P

w(d)<2k-1 w(d)<2k

However he was killed in WWI before he could develop the
idea and it was taken up and developed by Brun.

The method became combinatorially very complicated and
very few people understood it. Perhaps really only Paul
Erdos.



® So far | have just described things in relation to the prime

number theorem, but sieve theory is very adaptable.
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® So far | have just described things in relation to the prime
number theorem, but sieve theory is very adaptable.
e Consider the twin prime problem.

3,5:5,7:11,13:17,19: 29, 31: ... 101, 103: 107, 109; . . .

It looks as though there are infinitely many primes p for
which p + 2 is prime, but no proof is known.
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3,5:5,7:11,13:17,19: 29, 31: ... 101, 103: 107, 109; . . .

It looks as though there are infinitely many primes p for
which p + 2 is prime, but no proof is known.

Merlin and ® One way of counting them is to consider

Brun

card{\/x < p < x: p+ 2 prime}

= card{n < x: (n(n +2), P(\/;()) =1}
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So far | have just described things in relation to the prime
number theorem, but sieve theory is very adaptable.
Consider the twin prime problem.

3,5:5,7:11,13:17,19: 29, 31: ... 101, 103: 107, 109; . . .

It looks as though there are infinitely many primes p for
which p + 2 is prime, but no proof is known.
One way of counting them is to consider

card{\/x < p < x: p+ 2 prime}
= card{n < x: (n(n+2), P(v/x)) = 1}.
Another famous question is the Goldbach binary problem,

to show that every even number N > 2 is the sum of two
primes.
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So far | have just described things in relation to the prime
number theorem, but sieve theory is very adaptable.
Consider the twin prime problem.

It looks as though there are infinitely many primes p for
which p + 2 is prime, but no proof is known.
One way of counting them is to consider

card{\/x < p < x: p+ 2 prime}
= card{n < x: (n(n +2), P(\/;()) =1}

Another famous question is the Goldbach binary problem,
to show that every even number N > 2 is the sum of two
primes.

This can be set up by considering

card{V'N < py,p> : p1 + p» = N}
=card{l<n<N—1:(n(N-n),P(VN)) =1}.
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® Yet another open problem concerns the frequency with
which n? 4 1 is prime, and this could be set up by looking
at
Merlin and

Brun

card{v/x < n < x : n* + 1 prime}
=card{n < x: (n* +1,P(x)) = 1}.

® In view of the great generality of the concepts | want to
set up some notation.
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Notation Ad = f(d)X + Rd7

where

feM,

the set M of multiplicative functions.
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prime p.
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Chapter 4 The

Selberg Sieve a . Z — R+,
Robert C.
Vaughan A = a(n) < oo,

Ag = Z a(dn),

and suppose that
Notation Ad = f(d)X + Rd7

where

feM,

the set M of multiplicative functions.

® |t is also convenient to assume that 0 < f(p) < 1 for each
prime p.

® We define

S(A,P)= > a(n).

(nP)=1
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e A, = f(d)X + Ry.
® |n principle we suppose that X is “large” and Ry is
“small” compared with f(d)X when d is relatively small.

e Example 1 Let a(n) =1 when Y <n<Y + X and
a(n) = 0 otherwise. Then

X
Ad:g+Rd, ‘Rd|§1.

This corresponds to counting primes in an interval.
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Ag = f(d)X + Ry.
In principle we suppose that X is “large” and Ry is
“small” compared with f(d)X when d is relatively small.
Example 1 Let a(n) =1 when Y <n<Y + X and
a(n) = 0 otherwise. Then

X

Ad:g+Rd, ‘Rd|§1.

This corresponds to counting primes in an interval.
Example 2 If P = Hpgﬁp, and a is as in Example 1,
then

(X +Y)—a(Y) < a(VX)+ S(A P).
This is a formalisation of the sieve of
Erathosthenes—Legendre.
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Notation

Ag = f(d)X + Ry.
In principle we suppose that X is “large” and Ry is
“small” compared with f(d)X when d is relatively small.
Example 1 Let a(n) =1 when Y <n<Y + X and
a(n) = 0 otherwise. Then

X

Ad:E‘FRd, ‘Rd|§1.

This corresponds to counting primes in an interval.

Example 2 If P = Hpgﬁp, and a is as in Example 1,
then

(X +Y)—a(Y) < a(VX)+ S(A P).
This is a formalisation of the sieve of
Erathosthenes—Legendre.

Any method which deduces estimates for S(A, P) is called
a sieve.
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® QOther examples.

e Example 3 (Primes in arithmetic progression) Suppose
that (gq,r) =1 and a(n) =1 wheny <n<x+y and
n=r (mod q). Since we already have (n, q) =1 we can

suppose
P=P,=]]r

p<z

plq
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Notation

® QOther examples.

e Example 3 (Primes in arithmetic progression) Suppose
that (gq,r) =1 and a(n) =1 wheny <n<x+y and
n=r (mod q). Since we already have (n, q) =1 we can

suppose
P=P,=]]r
p<z

plq

® Then for d|P we have by the Chinese remainder theorem

Ay = ng +0(1)

and we can take X = x/q and f(d) =1/d.
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Notation
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p+2 prime
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Notation

e Example 4 (Twin primes) Let a(n) = 1 when
n = m(m + 2) for some m < X and a(n) = 0 otherwise
and P as before. Then

m(X) = Y 1<7(VX)+S(AP).
p<X
p+2 prime
® |t is easily verified that Ay = f(d)X + Ry holds with

f(d) = p(d)/d, pe M, p(2) =1, p(p) =2 (p > 2), and
with |Ry| < p(d).
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e Example 5 (Goldbach binary problem) Let X be an
even positive integer and let

a(n) = card{m: n=m(X —m),m < X}

and P as before.



Math 571
Chapter 4 The
Selberg Sieve

Robert C.
Vaughan

Notation

e Example 5 (Goldbach binary problem) Let X be an
even positive integer and let

a(n) = card{m: n=m(X —m),m < X}

and P as before.
® Then

card{p < X : X — p prime} < 2n(V'X) + S(A, P).

Again it is easily verified that Ay = f(d)X + Ry holds
with f(d) = p(d)/d, p € M, p(p) =1 when p|X,
p(p) =2 when pt X, and with |R4| < p(d) once more.



G e Example 5 (Goldbach binary problem) Let X be an
apter e .. .
Selberg Sieve even positive integer and let

Robert C.

Vaughan a(n) = card{m n= m(X - m)? m < X}

and P as before.
® Then

card{p < X : X — p prime} < 2n(V'X) + S(A, P).

Notation

Again it is easily verified that Ay = f(d)X + Ry holds
with f(d) = p(d)/d, p € M, p(p) =1 when p|X,
p(p) =2 when pt X, and with |R4| < p(d) once more.

® Example 6 Let a(n) = 1 when n = m? + 1 for some
m < X and P =]],.x. Then

card{m < X : m> + 1 prime} < 7(VX) + S(A, P).

Also Ag = f(d)X + R4 holds with f(d) = p(d)/d with
p € M and p(2) =1, p(p) =2 when p=1 (mod 4) and
p(p) = 0 otherwise, and |Ry| < p(d).
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® A more sophisticated version of Example 4 is

e Example 7 (twin primes revisited) Let a(n) = 1 when
n—2is a prime p <Y and 0 otherwise and let
P =1l,< v p- Then

S 1<a(VY)+S(AP).
p<Y
p+2 prime
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Notation

® A more sophisticated version of Example 4 is

e Example 7 (twin primes revisited) Let a(n) = 1 when
n—2is a prime p <Y and 0 otherwise and let

P =1l,< v p- Then

> 1<x(VY)+S(AP).
p<Y
p+2 prime
e Now Ay = m(Y;d,—2) and we have
Ag = f(d)X + Ry

where f(d) = 0 when d is even and f(d) = ﬁ when d is
odd, and where now

Y
X_Ii(Y)_/2 d

log t

and where Ry is relatively small (<« Y27 on GRH).
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® |t is perhaps worth remarking that although in all the
cases considered so far one gets a multiplicative function f
this is not always the case.
® Romanov proved [1934] that a positive proportion of
positive integers can be written as the sum of a prime and
a power of 2.
liminfx *card{n < x:n=p+2K} >0

X—00
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Notation

® |t is perhaps worth remarking that although in all the

cases considered so far one gets a multiplicative function f
this is not always the case.
Romanov proved [1934] that a positive proportion of
positive integers can be written as the sum of a prime and
a power of 2.

liminfx *card{n < x:n=p+2K} >0

X—00
The underlying problem with this is that the ordy(gq), the
order of 2 mod g is not a multiplicative function of q. For
example if 2 is a primitive root modulo p; and p; (both
odd), then ords(p;) = p; — 1, but
orda(p1p2) = lem(p1 — 1,p2 — 1) < (p1 — 1)(p2 — 1)/2.
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Modern sieve theory attempts to overcome the problem of
having too many choices for d|P by seeking functions Afdt

such that
PRV SITCIES PPV
dlm dlm dlm

but the support for the Aj is restricted.
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® Modern sieve theory attempts to overcome the problem of
having too many choices for d|P by seeking functions Afdt

such that
PRV SITCIES PPV
dlm dlm dlm

but the support for the Aj is restricted.

® \We will not be concerned with lower bound sieves, where
the theory is more delicate.
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The Selberg

sieve

Modern sieve theory attempts to overcome the problem of
having too many choices for d|P by seeking functions Afdt

such that
PORTED SICIED BN
dlm dlm dlm

but the support for the )\j is restricted.

We will not be concerned with lower bound sieves, where
the theory is more delicate.

Selberg introduced a very simple and elegant upper bound
sieve which is very effective in many situations, and also
has the merit of great flexibility. It has also lead to some
recent sensational developments.



® |et

A =1
and suppose that the Ay € R are otherwise at our
disposal. Then

2
dould)< [ D Ad

dlm dlm
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® |et
=1

and suppose that the A\; € R are otherwise at our
disposal. Then

2

dou(d) < DA
dlm dlm

® |n order to retain some structure we suppose that the
support D of the Ay is a divisor closed set of squarefree
numbers.
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Robert C.
Vaughan ° Let

A =1
and suppose that the A\; € R are otherwise at our

disposal. Then

2

The Selberg Z :U'(d) < Z Ad
dlm dlm

sieve

® |n order to retain some structure we suppose that the
support D of the Ay is a divisor closed set of squarefree
numbers.

® Thus for each d € D, u(d) # 0 and if g|d, then g € D.




e Example 8 We often suppose in applications that
D ={d|P:d < D} where P=]],.,p for some Z.
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Math 571 e Example 8 We often suppose in applications that

Chapter 4.The
Selberg Sieve D — {d‘P : d S D} Where P = HPSZ p for some Z
PR ® We recall that
aughan

S(A,P) = Z a(n) and \; = 1.

(nP)=1

® Thus
2

The Selberg S(A,P) <> a(n Z)\d

sieve

n

_ZZ)\dAZ (m[d, €])
_XZZ)\dAf[d e]) + R

where

R=> " AadeRe
d e



[ ] ThuS
S(A.P)< XD D Aadef([d.e]) + R
d e
where

i ; Z AdAeRd.e]-

<O «Fr «=)H»

«=»
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Robert C. 5(A7 P) SXZZ)\dAef([d, e])+R
Vaughan d e
where

R=D_D AdreRigal.
d e

e Example 9 Consider Example 1, a(n) = 1 iff
ne (Y,Y + X] with D as in Example 8. Then

The Selberg

sieve 2
IR| < (ZMI) < D?|A|%.

d
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Csh7gter ;The ° ThUS
elberg Sieve
Robert C. 5(A7 P) SXZZ)\dAef([d, e])+R
Vaughan d e
where

R = Z Z AdAeR(d q)-
d e

e Example 9 Consider Example 1, a(n) = 1 iff
ne (Y,Y + X] with D as in Example 8. Then

2
IRl < (Z/\dl) < D?| |5
d
® The interesting part is the main term XF where

e F= ; S AaAef(d; e).

The Selberg

sieve
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The Selberg

sieve

Thus
S(AP) < XD D XaAcf([d e]) + R
d e
where
R=Y "> XiAeRigq
d e
Example 9 Consider Example 1, a(n) = 1 iff

ne (Y,Y + X] with D as in Example 8. Then

2
IRl < (Z/\dl) < D?| |5
d
The interesting part is the main term XF where

F = ; > Aadef([d ).

We want to minimise this subject to the condition A; = 1.



L We haVe

7T Zd:z)\d)\ef([d’ e])

<O < Fr <=

«=»

Q>



® \We have

F= Zd: > Aadef([d, e]).

® \We want to minimise this subject to the condition A\; = 1.
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The Selberg

sieve

® \We have

F= Xd: D " XaAef([d, €]).

® \We want to minimise this subject to the condition A\; = 1.

® |t is helpful to view F as a quadratic form in the A.
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The Selberg

sieve

We have

F= zd: D " XaAef([d, €]).

We want to minimise this subject to the condition A; = 1.
It is helpful to view F as a quadratic form in the A.

Our first objective is to diagonalise
F =Y Xadef([d, €]),
d e

and this can be done quite easily.
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The Selberg

sieve

We have

F= zd: D " XaAef([d, €]).

We want to minimise this subject to the condition A; = 1.
It is helpful to view F as a quadratic form in the A.

Our first objective is to diagonalise
F =Y Xadef([d, €]),
d e

and this can be done quite easily.

It is also useful to assume that D is such that f(d) # 0
when d € D.



o We haVe

7T Zdzz)‘d)\ef([d’ e])

<O < Fr <=

«=»
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The Selberg

sieve

® \We have

F= zd: > Xaref([d. e]).

® Write (d,e) = m, d = gqm, e = rm, so that (q,r) = 1.
Since f € M and grm is squarefree we have
f([d,e]) = f(grm) = f(gm)f(rm)/f(m) and

F=Yfm)™> " Y AgmAamf (gm)f(rm).

7 (qn=1
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The Selberg

sieve

® \We have

F= Zd: > Xaref([d. e]).

® Write (d,e) = m, d = gqm, e = rm, so that (q,r) = 1.
Since f € M and grm is squarefree we have
f([d,e]) = f(grm) = f(gm)f(rm)/f(m) and

F=> fm)™) " > AgmAmf(gm)f(rm).
m 7 (q,rr)=1

® Now we use the Mobius function to remove the condition
(g,r)=1.



® \We have

F= Z f m)—l Z Z Aqurmf(qm)f(rm)
(q,r) 1
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Robert C.
Vaughan
g F=YFm Y S Aamdf(qm)F(rm)
m q r
(qu):]-
® Thus

sieve m !

The Selber F = Z f(m)il Z (/) Z Adimf (dIm)
: d

p
Example 6

The Prime k-tuples

conjecture
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Selberg Sieve [ ) We haVe
Robert C.
Vaughan
g F = E f(m)_l E E )\qm/\rmf(qm)f(rm)‘
m q i
(q,r)=1
® Thus

The Selberg

sieve

2
F=Y f(m™Y ul) (Z Ad’mf(d’m)> '
/ d

m

® Now we collect together the terms with /m = n and
observe that by multiplicativity we have

1-1(p)
fp)

S F(m)u(r) =
I,m

Im=n

pln



o We haVe

2 - ul)—H

Imn

f(p).

f

«O> 4 Fr «=Er =)
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The Selberg

sieve

® \We have

> fm) () =
I,m

Im=n

oin f(p)

® Denoting this expression by g(n)~! we have

F=) gn™ (Z )\dnf(dn)>
n d

where

_ f(p)
g(n) = Hl_f(p)

1-f(p)

2
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Chapter 4 The
Selberg Sieve b We haVe

T/Ztﬁeg:af.' 1_7,6(,))

> fm) () =
I,m

Im=n

s f(p)

® Denoting this expression by g(n)~! we have

The Selberg F= Z g(n)il <Z )\dnf(dn)>
n d

sieve

where

f(p)
g(n) = Hl_f(p)

® Let
wn=Y_Aanf(dn) (neD).
d

2



e \We have

7= Zg(n 1,2

n»

Wn = ZAdnf(dn) (n . D)
d

<O < Fr <=

«=»

Q>



Math 571 ® \We have
Chapter 4 The

Selberg Sieve ‘F — E g(n)_lw%,
n

Robert C.
Vaughan

wn=Y_Adnf(dn) (n€D)
d

® There is a bijection between the A and the w. We could
view the transformation from the one to the other as
being by an upper triangular matrix, which is obviously
invertible.

The Selberg

sieve
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Selberg Sieve ‘F E g (/Jn s
Robert C.
Vaughan

wn=Y_Adnf(dn) (n€D)
d

® There is a bijection between the A and the w. We could
view the transformation from the one to the other as
being by an upper triangular matrix, which is obviously

invertible.

The Selberg
sieve

® There is a standard number theoretic way of expressing
the inversion. Consider

anmu sz\d,7 (dnm)u(n)




Math 571
Chapter 4 The
Selberg Sieve

Robert C.
Vaughan

The Selberg
sieve

We have

F = Zg tu?,
wn=Y_Adnf(dn) (n€D)
d

There is a bijection between the A and the w. We could
view the transformation from the one to the other as
being by an upper triangular matrix, which is obviously
invertible.

There is a standard number theoretic way of expressing
the inversion. Consider

Z Wnm(n Z Z Adnf (dnm)u(n)

Collecting together the terms with nd = g this becomes,

for m € D,
qumf(qm > w(n) = Amf(m).

nlq
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The Selberg

sieve

® Hence
f(p)
s =117
2
F=> gn™ (Z )\d,,f(dn)>
n d
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Chapter 4 The

Selberg Sieve [} HenCe f( )
Robert C. p
Robert € g( n) = - v 7

1-f
IP|In (p)

2
F=> gn™ (Z )\d,,f(dn)>
n d

wn=Y_Aanf(dn) (n€D)

The Selberg

sieve

d
Amf(m) = womp(n) (m € D)
n
® Thus we are seeking to minimise

F = Zg(n)—lwi under anu(n) — )\1 =1.
n n




® Thus we are seeking to minimise

F = Zg(n)_lw,z, under anﬂ(”) =)\ =1
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The Selberg
sieve

® Thus we are seeking to minimise

]:Zg

w under Z wpi(n

® let§ =1/, pg(n). Then F =

w,,—@
Z( u

neD

(n)>2 v

wn—Q
Z( u

neD

n 2
DO 4205 o) -

=X\ =1

6> g(n)
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The Selberg
sieve

® Thus we are seeking to minimise

F = Zg w under an,u

® let§ =1/, pg(n). Then F =

neD

- Lamtite (n)>2 o

neD

® Obviously F >0

Wnp — n 2
Z( n Q:UJ ( )) _}_292&}"“(”)_

=M =1

6> g(n)
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The Selberg
sieve

Thus we are seeking to minimise

F = Zg w under an,u

Let 0 =1/, cpg(n). Then F =

w,,—@ n))?
Z( u ())

neD

wp — Ou(n)g(n))?
_y M<>g<))

= g(n)

Obviously F > 6

and the choice

+ 20 anu(n) -

wn = Opu(n)g(n)

gives

Z Wn,u(

n)=1and F=4.

=M =1

6> g(n)



® We have just shown that the minimum of F is 6 and the
minimum is attained when

wp = Op(n)g(n)
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The Selberg

sieve

® \We have just shown that the minimum of F is 6 and the
minimum is attained when

wn = Ou(n)g(n)

® \We can now invert the transform to deduce the minimising
Am



vl Loy ® \We have just shown that the minimum of F is # and the

Selberg Sieve minimum is attained when

Robert C.
Vaughan

wn = 6(n)g(n)

® \We can now invert the transform to deduce the minimising
Am

® Recall that

The Selberg )\mf(m) - Zan/,L(n) (ITI < D)

sieve




vl Loy We have just shown that the minimum of F is 6 and the

Selberg Sieve minimum is attained when

Robert C.

Vaughan
wn = Op(n)g(n)
® \We can now invert the transform to deduce the minimising
Am
® Recall that
The Selberg )\mf(m) - anmu(n) (ITI c D)
sieve n
[ ]

Thus the minimising A\, are given by

0
Am = % Zn:g(m”)ﬂ(m")/i(")




® We have A\, = Gﬂ(m)gé g Z .

anD

«O> 4 Fr «=Er =)
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® You might not think there is any reason to care about the

actual values of the \,,, since the minimum seems to be
the crucial thing.

The Selberg
sieve

The twin prim

problem
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Selberg Sieve i We haVe )\m = eﬂ(m)i-grn; zn: g(n)
s o

® You might not think there is any reason to care about the

actual values of the \,,, since the minimum seems to be
the crucial thing.

® However the A\, also occur in the error term.

The Selberg

sieve

The twin prim
problem

Example 6
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SR e Wehave = u(m)ET) Y (o)
nmneD
You might not think there is any reason to care about the
actual values of the \,,, since the minimum seems to be

the crucial thing.

Robert C.
Vaughan

However the Am also occur in the error term.

erte Hl—f H1+g Zg
plm

The Selberg
sieve
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The Selberg
sieve

g(m)
We have A\, = Ou(m)=—= n).
m=0um S > (o)
nmeD
You might not think there is any reason to care about the
actual values of the \,,, since the minimum seems to be

the crucial thing.

However the Am also occur in the error term.

erte Hl—f H1+g Zg
plm

Thus

Aml <0 g(d) > &(n)
d|m nd%D
(n,m/d)=1

0> %

dim
(k, m) d
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The Selberg

sieve

® \We have (
m

A= Ou(m) &) S (1)
nmneD

Theorem 1 (Selberg)

Suppose that a: Z — R*, Ay = >, a(dn) and that
Ag=f(d)X + Ry where f e M and0 < f(p) < 1. Let PN

be squarefree and D be a divisor closed subset of the divisors of
P. Then

S(A,P) < S 20 pg( 7T D> XareRide

deD ecD
where g(n) = [1,, 1f(f()p) Moreover

M| < 1.



® Armed with Selberg's theorem we revisit the various
examples.
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® Armed with Selberg's theorem we revisit the various
examples.

e Example 10 Primes in arithmetic progressions
Following example 3, when (g,r) =1

m(x+yiq.r)—7(yiq,r) < 7(vVX)+ S(A P)

where a(n) =1 wheny <n<x+y, n=r (mod q) and
a(n) = 0 otherwise, X = x/q, P = Pq =] . /x P,
pla

Ag =%+ Ry, |Rq| < 1.
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® Armed with Selberg's theorem we revisit the various
examples.

e Example 10 Primes in arithmetic progressions
Following example 3, when (g,r) =1

m(x+yiq.r)—7(yiq,r) < 7(vVX)+ S(A P)

where a(n) =1 wheny <n<x+y, n=r (mod q) and
a(n) = 0 otherwise, X = x/q, P = Pq =] . /x P,
pla

Ag =%+ Ry, |Rq| < 1.

® Thus f(d) = 1/d. Let D = {d|P: d < D} with D < v'X.
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Armed with Selberg’s theorem we revisit the various
examples.

Example 10 Primes in arithmetic progressions
Following example 3, when (g,r) =1

w(x+yiq,r) = w(y; q,r) < 7(VX) + S(A, P)
where a(n) =1 wheny <n<x+y, n=r (mod q) and
a(n) = 0 otherwise, X = x/q, P = Pq =] . /x P,

pla

Ag =%+ Ry, |Rq| < 1.
Thus f(d) =1/d. Let D ={d|P:d < D} with D < VX,
Then, for d € D,

g(d)=]] e _ 1

g L=/ old)
(d)?

g(d) = s
6%1:7 dSD(th;q)l o(d)

and |)\d’ < 1.



e Example 10 continued

m(x +y) — 7(y) < 7(VX) + S(A, P)
S(A, P) < X

+ D?
d 2

a<D 403
(d,q)=1
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e Example 10 continued

m(x +y) — n(y) < 7(VX) + S(A, P)

® \We need a lower bound for

pu(d)?
2 5@
(d,q)=1




2
® \We need a lower bound for Z #(d) .
= )

(d,q)=1
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® \We need a lower bound for g A )
Robert C. ¢(d)
Vaughan d<D

(d,q)=1
® First we remove the condition (d,q) = 1. We have

ok H<”p> e )2

plq
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p(d)?
® \We need a lower bound for Z
Robert C.

Vaughan dSD ¢(d)
(d,q)=1
® First we remove the condition (d,q) = 1. We have

o H0550) -2

plq
® Thus
q M
o(q Z Z ( ) Z )
gD d<D m<D/d
( ,q)=1 (d,q)=1 mlq
_ )




® Now we need a lower bound for

p(n)? 5~ ) P
= ¢>(n)_,§J n p|np—1'
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u p(n P
Robert C. Z ) n—1

Vaughan n<D n<D n p

® Here we have for the general term, when n is squarefree,

1
*H Z =2
pln \J= 0 s(m’r)lzn

where s(m) is the squarefree kernel of m, s( Hp

Primes in an
arithmetic
progression

The
conjecture
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Robert C. 7_ 1 .
Vaughan n<D n<D n 1%

® Here we have for the general term, when n is squarefree,

1
*H Z =2
pln \J= 0 (m’r)lzn

where s(m) is the squarefree kernel of m, s(m) = Hp.

® Thus, by Euler,




Math 571 ® Now we need a lower bound for
Chapter 4 The

Selberg Sieve N /vL n) p
Robert C. _ 1 .
Vaughan n<D n<D n p

Here we have for the general term, when n is squarefree,

1
*H Z =2
pln \J= 0 (m’r)lzn

where s(m) is the squarefree kernel of m, s(m) = Hp.

Thus, by Euler,

® Hence we just showed that Z

d<D
(d,q)=1



® \We just showed the very neat upper bound

m(x+yiqr)—m(y;qr) < W+W(M)+D2.
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® We just showed the very neat upper bound

+m(v/x/q) + D*.

m(x+yiq,r)—n(y:q, )—¢( )IogD

® When x > e2q, a close to optimal choice for D is

_ _Vx/a
log \/x/q
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Selberg Sieve ® We just showed the very neat upper bound
Robert C.
Vaughan X 2
T(x+yiq,r)—n(yiq,r) < m(v/x/q) + D
#(q)logD

® When x > e2q, a close to optimal choice for D is

_ _Vx/a
log \/x/q

® and this leads to

Theorem 2 (Brun-Titchmarsh)

Primes in an

e Suppose that (q,r) = 1 and y > e?q. Then

Eramic 2x x loglog %
e m(x+y,q,r)—7m(y;q,r) < —— + 0 —— 9.
ek yig ) =m0 = gy log % (cb(q) |og2§>



e \We have

| —m\y.a,r 2
m(x+y;q,r)—7(y;q, )S¢(q)

x loglog %
. ++0 21 |

(o B =
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arithmetic
progression

® \We have

( - ) 3% Xloglog§
m(x+y;q,r)—n(y;q,r) < +
¢(q)log ¢(q)log” %

® The Generalised Riemann Hypothesis gives nothing when
x < ¢(q)v/x, so this is a really useful result.
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Robert C.
Vaughan q
2y x log log £
7T(X+y;q7 ) (y q,r )— +O ; '
o(@)logs "~ \ 6(q)log” £

® The Generalised Riemann Hypothesis gives nothing when
x < ¢(q)v/x, so this is a really useful result.

® The best general result we know is, for (g, r) =1,

2x

m(x+yiq,r)—7w(yiq.r) < o(a)log

(Montgomery & RCV 1972).
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We have

2% x log log %
7-‘—(X"i_y;Qa ) (y q,r )— d)( )|og3+o<¢(q)|og2%)

The Generalised Riemann Hypothesis gives nothing when
x < ¢(q)v/x, so this is a really useful result.

The best general result we know is, for (g, r) =1,

m(x+yiq,r)—7(y;q,r) < o fi;g

(Montgomery & RCV 1972).

If one could prove this with the 2 replaced by any smaller
constant, then one could establish something very
profound about zeros of L-functions, namely that Siegel
zeros do not exist.



G ® When g = 1, the optimising choice of A, in the proof of
apter e

Selberg Sieve the Brun—Titchmarsh theorem is

Robert C. 2
au, an &
Vaueh anD/m ¢(("))

o -1  (n,m)=1
A = mmo(m)
n=D ¢(n)

Primes in an
arithmetic
progression

The twin prim
problem
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® When g = 1, the optimising choice of A, in the proof of

the Brun—Titchmarsh theorem is

2
anD/m %
_ m)=1
Am = p(m)me(m) 1%-
ano o(n)

® The sum in the denominator is asymptotically log D and,

at least when m is not too close to D, the sum in the

numerator ought to be asymptotically

o(m)m~log(D/m).




R ® When g = 1, the optimising choice of A, in the proof of
apter e

Selberg Sieve the Brun—Titchmarsh theorem is

Robert C. 2
Vaughan

(n)
Z n<D/m :‘;(7”)

Am = p(m)me(m) =t =M=
22n<D "4(n)
® The sum in the denominator is asymptotically log D and,
at least when m is not too close to D, the sum in the
numerator ought to be asymptotically
o(m)m " log(D/m).
® Thus A, should be close to

log D/m

Ao = i)
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When g = 1, the optimising choice of A, in the proof of
the Brun—Titchmarsh theorem is

2
anD/m %

(n,m)=1

BEEU VS —

ano ‘;((r:,))
The sum in the denominator is asymptotically log D and,
at least when m is not too close to D, the sum in the
numerator ought to be asymptotically
o(m)m " log(D/m).
Thus A, should be close to

)\m = :U'(m)m¢(m)_1

. log D/m
Am = M(m)w-

Indeed A}, can be used instead of the optimal choice,
although there is more work involved in the analysis to
push things through.
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When g = 1, the optimising choice of A, in the proof of
the Brun—Titchmarsh theorem is
2
anD/m %

(n,m)=1

BEEU VS —

anD ‘;((r:,))
The sum in the denominator is asymptotically log D and,
at least when m is not too close to D, the sum in the
numerator ought to be asymptotically
o(m)m " log(D/m).
Thus A, should be close to

)\m = :U'(m)m¢(m)_1

. log D/m
Am = M(m)w-

Indeed A}, can be used instead of the optimal choice,
although there is more work involved in the analysis to
push things through.

Later, we will see situations where the optimal choice is
not known but a choice of this kind. is still effective.



® | et me turn now to the twin prime problem, which we
looked at in Example 4.
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Let me turn now to the twin prime problem, which we
looked at in Example 4.

Now we have

m(X) < T(VX) + =———— 7T > o(ld, e

Z"GD g(n deD e€D

where p, f,g € M, f(d) = p(d)/d,
g(p) =f(p)/(p—1f(p)) r(2) =1, p(p) =2 (p > 2),

so that

Thus our first task is to understand

S w25
n<D pln p
p>2



n<D

2
o \W/ 2 _c
e want to understand E w(n) | I "

pln
p>2
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n<D

p>2
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® The general term behaves a bit like d(")
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® The general term behaves a bit like (”)

® The sum Z n) can be dealt with by various methods.

n<x

The twin prime
problem

Example 6

The Prime k-tuples
conjecture
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We want to understand Z p(m? 1] —.
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Chapter 4 The
Selberg Sieve n<D p\n p - 2
Robert C. p>2
Vaughan (n)
® The general term behaves a bit like

The sum Z n) can be dealt with by various methods.

n<x

1 X dt
For one write, with E(t) < /t, Z d(n ( / t2>

n<x

_ n<x / Zn<t

E
:Iogx+27—1+ﬁ
X

+/ <Iogt+27—l+E(t)> ﬁ
1 t t

(I 1
° Thusz ng) +2fylogx+q+0<

)
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® We want to understand ), _p, g(d) where

g(n) = pu(n)*T1 pin %. We know that
p>2

Z d(nn) = %(Iogx)2 +2ylogx 4 ¢ + O(x"1/2),

n<x
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® We want to understand ), _p, g(d) where

g(n) = pu(n)*T1 pin %. We know that
p>2

Z d(nn) = %(Iogx)2 +2ylogx 4 ¢ + O(x"1/2),
n<x

® How to get from one sum to the other. Dirichlet
convolution!
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convolution!
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We want to understand . g(d) where

g(n) = pu(n)*T1 pin ﬁ. We know that
p>2

Z d(nn) = %(Iogx)2 +2ylogx 4 ¢ + O(x"1/2),

n<x
How to get from one sum to the other. Dirichlet
convolution!
We want to find a function h so that Ng = d * h.

Recall that d = 1% 1 and 1% pn = e. Hence h = (Ng) * u2
where we have written pp = p * p.



® Recall that d =1%1 and 1% pu = e. Hence h = (Ng) * u2
where we have written pp = p * p.
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Selberg Sieve where we have written pp = p * p.

Robert C. ° We f|nd that H2, h & M and

Vaughan

pa(p) = =2,p2(p?) = 1, u(p*) =0 (k> 2),
h(2) = 0,h(4) = —3,h(8) =2,h(p*) =0 (k > 3)

and for p > 2,

3p+2
h(p) = ——, h(p?) = —
(p) p_2,@) b2

hp®) = pz_"z h(p*) = O(k > 3).
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Robert C. ° We f|nd that H2, h & M and

Vaughan

pa(p) = =2,p2(p?) = 1, u(p*) =0 (k> 2),
h(2) = 0,h(4) = —3,h(8) =2,h(p*) =0 (k > 3)
and for p > 2,

3p+2
h(p) = ——, h(p?) = —
(p) p_2,@) b2

hp®) = pz_"z h(p*) = O(k > 3).

® \We have
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® Recall that d =1%1and 1% u = e. Hence h = (Ng) * u2
where we have written pp = p * p.
e We find that up, h € M and
pa(p) = =2,p2(p?) = 1, u(p*) =0 (k> 2),
h(2) = 0,h(4) = =3,h(8) = 2,h(p*) =0 (k >3)
and for p > 2,

3p+2
h(p) = ——, h(p?) = —
(p) p_2,@) b2

hp®) = 2P h(p¥) = O(k > 3).

p—2
® \We have J A
o- g e
m|n
® Thus

n<D <D m<D/I



[ ] ThuS

h(/ .
Yam=3 " 5

I<D

m<D/I
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® Now we substitute in our approximation
1
5 (log D/1)? + 2ylog(D/1) + c1 + O(I1*2D~1/2)

for the inner sum.
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® Now we substitute in our approximation
1
5 (log D/1)? + 2ylog(D/1) + c1 + O(I1*2D~1/2)

for the inner sum.

® |t turns out that the various sums over | which occur are
nicely convergent and we obtain

Zg( IogD th(/ O(log D).

n<D I=1
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n<D I<D m<D/I

Now we substitute in our approximation
1
5 (log D/1)? + 2ylog(D/1) + c1 + O(I1*2D~1/2)

for the inner sum.

It turns out that the various sums over | which occur are
nicely convergent and we obtain

Zg( IogDQZh(/ O(log D).

n<D I=1

The infinite sum here is

1(-5%)- (-2 n ()

5 p(p
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>_n<p 8(n) - (log D)2 + O(x(log D)%)

C2_2pl;[2<1_1)>

where

The twin prime
problem
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Vaughan ZnSD g(n) (|og D)2
where

G=2]] (1 -

p>2
® and so
2C2X
ma(x) < o D)2 + 7(vx)

I

d,e<D

+ O(x(log D)™3)

),

p([d, e]) + O(x(log D)3

).
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X 2Cx _
Vosghan S ncp&(n) (|og2D)2 +0lx(log D))
where
G =2 .
=211 (-5
® and so
mal) < (2C§)z (V)
. + Y u(dPu(ePplld.e]) + Olx(log D) ).
ari d,e<D

e We know that p(m) < d(m) and it is easily seen that
d([d, e]) < d(d)d(e) and so the sum here is

< (Dlog D).



® \We have

09 < (g

+ O(Vx + (D log D)* + x(log D))

«O> 4 Fr «=Er =)

Q>



Math 571
[}
Chapter 4 The We haVe
Selberg Sieve

2Cx _
Fobere C ma(x) < m + O(v/x + (Dlog D)* + x(log D)~3).

 Let D = x'/?(log x)~3. Then we have

8 x x log log x
)= (g + O (s )

¢ Hardy and Littlewood (1923) conjectured that

C2X

200~ {iog 2
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We have
2Cx

(log D)? + O(v/x + (Dlog D)? + x(log D)~3).

ma(x) <
Let D = x'/2(log x)~3. Then we have

8 x x log log x
)= (g + O (s )

Hardy and Littlewood (1923) conjectured that

C2X

200~ {iog 2

The constant
G=2]] (1 1 >
2= T (p—1)2
oty (p—1)

is known as the twin prime constant.



Math 571 ® Selberg's theorem applied to Example 6 gives

X iaWX)+ Y pllde))

Selberg Sieve
S N
D

Robert C. Q(X)

Vaughan

where Q(X) = card{m < X : m? 4 1 prime},
p(p) =1+ x1(p). g(p) = p(p)/ (P — £(P)).




Math 571 ® Selberg's theorem applied to Example 6 gives

X iaWX)+ Y pllde))

Selberg Sieve
Robert C. Q(X) S
D

Vaughan

where Q(X) = card{m < X : m? 4 1 prime},
p(p) =1+ x1(p), &(p) = p(p)/ (P — p(p)).
® A somewhat more complex analysis to the previous ones,

gives
Zg(n) = Cllog D+ 0(1)
neD
where
a="11 (1 N x1(P) )
4 p(p—1—xi(p))

The Prime k-tuples p
conjecture

T ~ plp)—1
_4H<1 p(p—p(p))>'



® \We have

2 &(n) =Gt log D+ 0(1)
neD
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® Thus
21 X
Q(X) < =222 + 0(X(log log X)(log X)~2).

log X

® Bateman and Horn (1962) (cf Hardy & Littlewoood 1923)
have conjectured that

GX

QX) ~ log X

Example 6

The Prime k-tuples
conjectur.
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We have
> g(n) = Ctlog D+ O(1)

neD
Thus

2G:X
log X

Bateman and Horn (1962) (cf Hardy & Littlewoood 1923)
have conjectured that

QR(X) <

+ O(X(log log X)(log X)~2).

GX

QX) ~ log X

The exponent of log x in these results is often called the
Dimension of the sieve. An alternative definition is given

by
: 1 g(p)
lim g .
D— loglog D =D p
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Example 6

We have
> g(n) = Ctlog D+ O(1)
neD
Thus
2GX
log X
Bateman and Horn (1962) (cf Hardy & Littlewoood 1923)
have conjectured that

QR(X) <

+ O(X(log log X)(log X)~2).

GX

QX) ~ log X

The exponent of log x in these results is often called the
Dimension of the sieve. An alternative definition is given

by
: 1 g(p)
lim g .
D— loglog D =D p

Thus primes in an interval, or n? + 1 have dimension 1.
The twin prime conjecture has dimension 2.
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S of the Distribution, but this does not necessarily depend

on the nature of the sieve, but rather how clever we are.

® Recall that we can set up the Goldbach binary conjecture
by considering (n(N — n), P) = 1 and the analysis is
similar to the twin prime conjecture.

Example 6

The Prime k-tuples
conjecture



Math 571
Chapter 4 The
Selberg Sieve

Robert C.
Vaughan

e |f we choose D =~ X?, then 6 is sometimes called the Level

of the Distribution, but this does not necessarily depend
on the nature of the sieve, but rather how clever we are.

Recall that we can set up the Goldbach binary conjecture
by considering (n(N — n), P) = 1 and the analysis is
similar to the twin prime conjecture.

Thus we obtain that for even N

N p—1
2 —
(log N)= - P —2
p>2
+ O(N(loglog N)(log N)~3)

R(N) < 8GC,

where R(N) is the number of ordered pairs of primes
p1, p2 such that p; + pp = N and G, is the twin prime
conjecture.



® Sometimes we write

p—1
C r-
2Hp 2
pIN
p>2
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t p—1
T/Z?;hai C2 H p— 2
pIN
p>2
1 1
:H<1+_1>H<1—(_1)2> = 6(N).
pIN P pIN P

¢ Hardy and Littlewood (1923) conjectured that

N
R(N) ~ &(N)—
and deduced, on the assumption of GRH, that this holds
for almost all even . Chudakov, Estermann and van der
Corput independently proved this without GRH in 1937 by
using Vinogradov's method.

Example 6
The Prime k-tuples
conjectur
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Sometimes we write

-1
]2
p—2
pIN
p>2

() () o

pIN piN
Hardy and Littlewood (1923) conjectured that

N

R(N) ~ G(N)W
and deduced, on the assumption of GRH, that this holds
for almost all even N. Chudakov, Estermann and van der
Corput independently proved this without GRH in 1937 by
using Vinogradov's method.
Montgomery & RCV (1975) showed that there is a
positive number § such that the number E(X) of even
N < X such that R(N) = 0 satisfies E(X) < X179.



® So here is a clever idea. Suppose we know GRH(!).
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Selberg Sieve ¢ Example 11 Recast Twin Primes. We can consider
Robert C.
Vaughan ma(x) <card{p<x:(p+2,P)=1}+ TF(\/;()

® Thus, for d|P, where now P = H2<p§\/;p
Ag =7(x;d,=2) = f(d)X + Ry
f(d) = 55, X =1i(x), |Rg| < x*/?(log x)2.
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Thus, for d|P, where now P =[[,_,< »xP
Ag=7(x;d,=2) =f(d)X + Ry

F(d) = gigy X =i(x), [Ra| < x*/*(log x)*.
Then g(2) =0, ()—1/(p—2)(p>2),and
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deD n<D
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So here is a clever idea. Suppose we know GRH(!).

Example 11 Recast Twin Primes. We can consider
Robert C.

Vaughan ma(x) <card{p<x:(p+2,P)=1}+ TF(\/;)

Thus, for d|P, where now P =[[,_,< »xP
Ag=7(x;d,=2) =f(d)X + Ry

F(d) = gigy X =i(x), [Ra| < x*/*(log x)*.
Then g(2) =0, ()—1/(p—2)(p>2),and

Zg(d ZH

deD n<D
2tn

The methods we have for approximating such sums give

S g(d) :% TT2=Y ogn + o).

deD p>2 p(p—2)



[ ) ThuS

mo(x) < G li(x)

log D

+ 0(D?x"/*(log x)?)
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® Thus

m(x) < fig(;) + 0(D?%x?(log x)?)

e \Wait a minute, now the sieve has dimension 1!
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C2 |i(X)

<
ma(x) < log D

+ O(szl/z(log x)?)

® Wait a minute, now the sieve has dimension 1!

® But we have to take D smaller, say D = x'/*(log x)~2.
® Hence
4
ma(x) < (|0§2):()2 + O(x(log Iogx)(logx)_3).
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Thus Gl
mo(x) < If)gl(g) + O(szl/z(log x)?)
Wait a minute, now the sieve has dimension 1!

But we have to take D smaller, say D = x/4(log x) 2.

Hence

ma(x) < (I40§2>:()2 + O(x(log Iogx)(logx)_3).

So we nevertheless gained a factor of 2 on GRH.
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Thus
C2 |i(X)

log D

Wait a minute, now the sieve has dimension 1!

Ta(x) < + 0(D*xM?*(log x)?)

But we have to take D smaller, say D = x/4(log x) 2.

Hence

ma(x) < (I40§2>:()2 + O(x(log Iogx)(logx)_3).

So we nevertheless gained a factor of 2 on GRH.

Oh, but wait another minute. In 1965 Bombieri and A. I.
Vinogradov proved that GRH holds on average, and that is
all that we need!!
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® Bombieri's version can be stated: Given any fixed A > 0
there is a B = B(A) such that if Q = x'/2(log x)~B, then

Z max sup |7 (y)

. —A
Rt m(y;q,a) — o) < x(log x)~".
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® Bombieri's version can be stated: Given any fixed A > 0
there is a B = B(A) such that if Q = x'/2(log x)~B, then

Z max sup |7 (y)

. —A
Rt m(y;q,a) — o) < x(log x)~".

® | plan to show you a relatively simple proof that we can
take B(A) = A+ 4.
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® Bombieri's version can be stated: Given any fixed A > 0
there is a B = B(A) such that if Q = x'/2(log x)~B, then

Z max sup |7 (y)

. —A
Rt m(y;q,a) — o) < x(log x)~".

® | plan to show you a relatively simple proof that we can
take B(A) = A+ 4.

® There is one other example which | want to show you.
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Bombieri's version can be stated: Given any fixed A > 0
there is a B = B(A) such that if Q = x'/2(log x)~B, then

Z max sup |7 (y)

. —A
Rt m(y;q,a) — o) < x(log x)~".

| plan to show you a relatively simple proof that we can
take B(A) = A+ 4.

There is one other example which | want to show you.

This is the ultimate generalisation of the twin prime
conjecture, at least for linear polynomials.



Math 571 ® prime k—tuples. Let h = hy, hy, ..., hx be k distinct

Chapter 4 The

Selberg Sieve positive integers and m(X;h) be the number of m < X
fobert € such that the m + h; are simultaneously prime. Let
a(n) =card{m < X :(m+ hy)...(m+ hy) = n}. Then
we have

m(X;h) < 7(VX) + S(A, P).

Example 6
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The Prime k-tuples
conjecture

® prime k—tuples. Let h = hy, hy, ..., hx be k distinct
positive integers and m(X;h) be the number of m < X
such that the m + h; are simultaneously prime. Let
a(n) =card{m < X :(m+ hy)...(m+ hg) = n}. Then
we have

m(X;h) < 7(VX) + S(A, P).

® Now Ay = f(d)X + Ry where f(d) = p(d)/d,
|R4| < p(d) and p(d) is the number of solutions of
(X—I—hl)...(X—l—hk)EO (mod d)
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The Prime k-tuples
conjecture

® prime k—tuples. Let h = hy, hy, ..., hx be k distinct
positive integers and m(X;h) be the number of m < X
such that the m + h; are simultaneously prime. Let
a(n) =card{m < X :(m+ hy)...(m+ hg) = n}. Then
we have

m(X;h) < 7(VX) + S(A, P).

® Now Ay = f(d)X + Ry where f(d) = p(d)/d,
|R4| < p(d) and p(d) is the number of solutions of
(X—I—hl)...(X—l—hk)EO (mod d)

® Then p € M, p(p) < k, and p(p) = k when

ptaA= [ Ih—hil

1<i<j<k
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The Prime k-tuples
conjecture

® prime k—tuples. Let h = hy, hy, ..., hx be k distinct
positive integers and m(X;h) be the number of m < X
such that the m + h; are simultaneously prime. Let
a(n) =card{m < X :(m+ hy)...(m+ hg) = n}. Then
we have

m(X;h) < 7(VX) + S(A, P).

® Now Ay = f(d)X + Ry where f(d) = p(d)/d,
|R4| < p(d) and p(d) is the number of solutions of
(X—I—hl)...(X—l—hk)EO (mod d)

® Then p € M, p(p) < k, and p(p) = k when

ptaA= [ Ih—hil
1<i<j<k

® This is an example of a k—dimensional sieve.
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Example 6

The Prime k-tuples
conjecture

prime k—tuples. Let h = hy, hy, ..., hy be k distinct
positive integers and m(X;h) be the number of m < X
such that the m + h; are simultaneously prime. Let
a(n) =card{m < X :(m+ hy)...(m+ hg) = n}. Then
we have

m(X;h) < 7(VX) + S(A, P).
Now Ag = f(d)X + Ry4 where f(d) = p(d)/d,
|R4| < p(d) and p(d) is the number of solutions of
(X—I—hl)...(X—l—hk)EO (mod d)
Then p € M, p(p) < k, and p(p) = k when

ptaA= [ Ih—hil
1<i<j<k

This is an example of a k—dimensional sieve.

If the h give a complete set of residues modulo p for some
p, then there are not many k-tuples which are
simultaneously prime!
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prime k—tuples. Let h = hy, hy, ..., hy be k distinct
positive integers and m(X;h) be the number of m < X
such that the m + h; are simultaneously prime. Let
a(n) =card{m < X :(m+ hy)...(m+ hg) = n}. Then
we have

m(X;h) < 7(VX) + S(A, P).
Now Ag = f(d)X + Ry4 where f(d) = p(d)/d,
|R4| < p(d) and p(d) is the number of solutions of
(X—I—hl)...(X—l—hk)EO (mod d)
Then p € M, p(p) < k, and p(p) = k when

ptaA= [ Ih—hil
1<i<j<k

This is an example of a k—dimensional sieve.
If the h give a complete set of residues modulo p for some
p, then there are not many k-tuples which are
simultaneously prime!
Thus a natural condition for the existence of many prime
k-tuples is that p(p) < p for all p, i.e f(p) <1



® o(d) is the number of solutions of
(x+h1)...(x+ h) =0 (mod d).

«O> «Fr «=>»

«E)»
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pta= [ In—nil

1<i<j<k

The Prime k-tuples

conjecture
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® p(d) is the number of solutions of
(x+h1)...(x+ hg) =0 (mod d).
® Then p € M, p(p) < k, and p(p) = k when

pta= [ In—nil

1<i<j<k

® Hardy and Littlewood (1923) conjectured that

(log x)k

cor-T1 (1) - 2)

mk(X; h) ~ &(h)

where
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® Although not relevant for the rest of the course | want to
say something briefly about upper and lower sieve
estimates. Hopefully it will give you some idea of where
the mainstream of the subject lies.

® First let me recall some definitions.

® We supposed that a(n) are non-negative real numbers
defined on Z, and defined

Ag=>_a(dn).

n
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Although not relevant for the rest of the course | want to
say something briefly about upper and lower sieve
estimates. Hopefully it will give you some idea of where
the mainstream of the subject lies.

First let me recall some definitions.

We supposed that a(n) are non-negative real numbers
defined on Z, and defined

Ag=>_a(dn).

We then supposed that there is a multiplicative function
f(d) and a positive real number X so that, at least when
d is squarefree, we can write

Ag = f(d)X + Ry

with some expectation that, at least for smaller d, the
f(d)X dominate the Ry, albeit on average.



® \We also defined the “dimension” & of a sieve by

R =

ZpSD f(p)
log log D

D—oo

when the limit exists.
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when the limit exists.

® For the purposes of this exposition | will suppose that
k=1
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We also defined the “dimension” x of a sieve by

Zpgo f(p)

"o log log D

when the limit exists.

For the purposes of this exposition | will suppose that
k=1

Another term which is sometimes used is the “level” 0 of a

sieve. That is a “good” value of # for which we can show
that

S (eIl < X(log X)~°
d<x?®

for some suitably large enough value of B. Hopefully
0 = 1, but this is not always possible.
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We also defined the “dimension” x of a sieve by

Zpgo f(p)

"o log log D

when the limit exists.

For the purposes of this exposition | will suppose that
k=1
Another term which is sometimes used is the “level” 6 of a
sieve. That is a “good” value of # for which we can show
that

S 1(d)?IRa] < X(log X)°

d<Xx?

for some suitably large enough value of B. Hopefully
0 = 1, but this is not always possible.

My comments are very hand-wavy, but they do fit in with
the known facts in lots of interesting examples, as we have
seen.
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® There are two points of view, each of which in the one
dimensional case leads to essentially the same conclusion.

The
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e Within these parameters we are looking for real numbers
)\f such that for every n, or at least for every squarefree n
is a suitable divisor closed set, we have

YA <D u(d) =e(n) <Y AL
din d|n d|n

® There are two points of view, each of which in the one
dimensional case leads to essentially the same conclusion.

® One is to gain insight by looking at the d formed from
exactly k prime divisors and using this to construct
optimal /\di. This can be considered the ultimate version
of Sylvester's inclusion-exclusion principle and the
Brun-Merlin sieve, and was developed independently by
Rosser (c1945 but unpublished) and lwaniec (c1975). It is
also sometimes called the combinatorial sieve.
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Within these parameters we are looking for real numbers
)\f such that for every n, or at least for every squarefree n
is a suitable divisor closed set, we have

YA <D u(d) =e(n) <Y AL
din d|n d|n

There are two points of view, each of which in the one
dimensional case leads to essentially the same conclusion.

One is to gain insight by looking at the d formed from
exactly k prime divisors and using this to construct
optimal /\di. This can be considered the ultimate version
of Sylvester's inclusion-exclusion principle and the
Brun-Merlin sieve, and was developed independently by
Rosser (c1945 but unpublished) and lwaniec (c1975). It is
also sometimes called the combinatorial sieve.

The other is to work backwards iteratively from the
Selberg upper bound, via the Buchstab identity.
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which in general we would expect to be roughly (log D)™*
and so here (log D)~L.

The twin prim
problem

Example 6

The Prime k-tuples

conjecture

Bounds



Math 571
Chapter 4 The

Sl o ® To describe the results in either case we also need to define
Robert C.
Vaughan f(p)
w(D) =[] < -
p<D

which in general we would expect to be roughly (log D)~*,
and so here (log D)~L.

® Then the conclusions are

o_(0(log X)/(log D)) XW(D) + E_ <
S(A, P(D))
< o4 (0(log X)/(log D)) XW (D) + E

for suitable error terms Ex.

Bounds



Math 571
Chapter 4 The

Sl o ® To describe the results in either case we also need to define

Robert C.

)

p<D p

which in general we would expect to be roughly (log D)~*,
and so here (log D)~L.

® Then the conclusions are

o_(0(log X)/(log D)) XW(D) + E_ <
S(A, P(D))
< o4 (0(log X)/(log D)) XW (D) + E

for suitable error terms Ex.

® Here the functions o4 are more complicated versions of
Dickman'’s function p, which occurs on homework 5.

Bounds
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® Here the functions o4 are more complicated versions of
Dickman's function p, which occurs on homework 5.

® They are continuous for u > 0 and differentiable for u > 0,
u # 2, and satisfy

o_(u)=0 (0 < u<?2),
o (u) =2e"u"t (0 <u<?2),
(uos(u)) = ox(u—1) (u>2).
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® Here the functions o4 are more complicated versions of
Dickman's function p, which occurs on homework 5.

® They are continuous for u > 0 and differentiable for u > 0,
u # 2, and satisfy

o_(u)=0 (0 < u<?2),
o (u) =2e"u"t (0 <u<?2),
(uos(u)) = ox(u—1) (u>2).

® See how the definitions in the range 0 < u < 2 fit
Selberg's example.
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® An alternative is to define

n(u) = fuy=1  (0<u<?),
un'(u) = n(u —1) (u>2),
(u=1)¢(w) =—¢u-1) (u>2)

and put

oi(u) =€ <17(u) + 5(“)> .

u
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® An alternative is to define

n(u) = fuy=1  (0<u<?),
un'(u) = n(u —1) (u>2),
(u=1)¢(w) =—¢u-1) (u>2)

and put

u

oi(u) =€ <17(u) + 5(“)> .

® By the way, one can check that {(u + 1) = p(u), the
function that corresponds to ¥(X, Y) in homework 5.
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® An alternative is to define

n(u) = fuy=1  (0<u<?),
un'(u) = n(u —1) (u>2),
(u=1)¢(w) =—¢u-1) (u>2)

and put

oi(u) =€ <17(u) + 5(“)> .

u
® By the way, one can check that {(u + 1) = p(u), the
function that corresponds to ¥(X, Y) in homework 5.

® | et me conclude by observing that the case of dimension
Kk < 1 is largely understood, but in the case K > 1 we have
less precise results.
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