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After 1, 2, 3, 5, 7, the numbers remaining are

11, 13, 17, 19, 23, 31, 37, 41, 43, 47, 53,

59, 61, 67, 71, 73, 79, 83, 89, 97.

and are precisely the primes in the range (7, 100].
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11, 13, 17, 19, 23, 31, 37, 41, 43, 47, 53,

59, 61, 67, 71, 73, 79, 83, 89, 97.

and are precisely the primes in the range (7, 100]. Also we find
that

π(100) = 25.



Math 571
Chapter 4 The
Selberg Sieve

Robert C.
Vaughan

The sieve of
Eratosthenes

Inclusion -
Exclusion

Merlin and
Brun

Notation

The Selberg
sieve

Applications
of Selberg’s
sieve

Primes in an
arithmetic
progression

The twin prime
problem

Example 6

The Prime k-tuples
conjecture

Sieve Upper
and Lower
Bounds

Bounds

• Can we use this to prove the prime number theorem?

• We can formalise this as

π(x)− π(
√
x) + 1 = card{n ≤ x :̸ ∃p|n, p ≤

√
x}.

• Another way to write this is

π(x)− π(
√
x) + 1 = card{n ≤ x : (n,P) = 1}

where
P = P(x) =

∏
p≤

√
x

p.

• Sylvester noticed that this can be realised as a form of the
inclusion-exclusion principle. For example, given two
statements Q(n) and R(n) about integers n in some finite
set N , the number of n for which both Q(n) and R(n) are
false is equal to the cardinality of N minus the number of
n for which Q(n) is true, minus the number for which
R(n) is true plus the number for which both Q(n) and
R(n) are true.
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• Here is a way of setting this in our situation, and this
easily generalises to general statements about sets.

• Let

ηd(n) =

{
1 when d |n,
0 when d ∤ n.

and consider∏
p≤

√
x

(
1− ηp(n)

)
=

1−
∑
p≤

√
x

ηp(n) +
∑

p1<p2≤
√
x

ηp1p2(n)

+ · · ·+ (−1)k
∑

p1<P2<...<pk≤
√
x

ηp1...pk (n) + · · · .

• We also have

card{n ≤ x :̸ ∃p|n, p ≤
√
x} =

∑
n≤x

∏
p≤

√
x

(
1− ηp(n)

)
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• This starts to look combinatorially very complicated.

• Here is an alternative way of expressing the same thing.
Recall that ∑

d |m

µ(d) =

{
1 when m = 1,

0 when m > 1.

• Then ∑
d |(n,P)

µ(d) =

{
1 when (n,P) = 1,

0 when (n,P) > 1.

• Thus

card{n ≤ x :̸ ∃p|n, p ≤
√
x} =

∑
n≤x

∑
d |(n,P)

µ(d)

=
∑
d |P

µ(d)
∑
n≤x

ηd(n)

=
∑
d |P

µ(d)
⌊ x
d

⌋
.
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• Thus we have

π(x)− π(
√
x) + 1 =

∑
d |P

µ(d)
⌊ x
d

⌋
.

• Suppose we approximate ⌊x/d⌋ by x/d . The error
introduced in each term is less than 1. We obtain

•

π(x)− π(
√
x) + 1 ≈ x

∑
d |P

µ(d)

d
= x

∏
p≤

√
x

(
1− 1

p

)

• and by Merten’s theorem this is

∼ 2xe−B

log x
.
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• We would have

π(x)− π(
√
x) + 1 ≈ 2xe−B

log x
.

• Oh, wait a minute, 2e−B ̸= 1, so this would contradict the
prime number theorem.

• The problem is that the number of terms in∑
d |P

µ(d)
⌊ x
d

⌋
,

that is, the number of choices for d , is huge,

2π(
√
x)

and we cannot afford an error as large as 1 in each term.
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• A French mathematician, Merlin, found a clever way of
truncating the terms to give upper and lower bounds.

• Basically∑
d |P

ω(d)≤2k−1

µ(d)
⌊ x
d

⌋
≤
∑
d |P

µ(d)
⌊ x
d

⌋
≤

∑
d |P

ω(d)≤2k

µ(d)
⌊ x
d

⌋
.

• However he was killed in WWI before he could develop the
idea and it was taken up and developed by Brun.

• The method became combinatorially very complicated and
very few people understood it. Perhaps really only Paul
Erdős.
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• A French mathematician, Merlin, found a clever way of
truncating the terms to give upper and lower bounds.

• Basically∑
d |P

ω(d)≤2k−1

µ(d)
⌊ x
d

⌋
≤
∑
d |P

µ(d)
⌊ x
d

⌋
≤

∑
d |P

ω(d)≤2k

µ(d)
⌊ x
d

⌋
.

• However he was killed in WWI before he could develop the
idea and it was taken up and developed by Brun.

• The method became combinatorially very complicated and
very few people understood it. Perhaps really only Paul
Erdős.
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• So far I have just described things in relation to the prime
number theorem, but sieve theory is very adaptable.

• Consider the twin prime problem.

3, 5; 5, 7; 11, 13; 17, 19; 29, 31; . . . ; 101, 103; 107, 109; . . .

It looks as though there are infinitely many primes p for
which p + 2 is prime, but no proof is known.

• One way of counting them is to consider

card{
√
x < p ≤ x : p + 2 prime}

= card{n ≤ x :
(
n(n + 2),P(

√
x)
)
= 1}.

• Another famous question is the Goldbach binary problem,
to show that every even number N > 2 is the sum of two
primes.

• This can be set up by considering

card{
√
N < p1, p2 : p1 + p2 = N}

= card{1 < n < N − 1 :
(
n(N − n),P(

√
N)
)
= 1}.
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• Yet another open problem concerns the frequency with
which n2 + 1 is prime, and this could be set up by looking
at

card{
√
x < n ≤ x : n2 + 1 prime}

= card{n ≤ x :
(
n2 + 1,P(x)

)
= 1}.

• In view of the great generality of the concepts I want to
set up some notation.
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• Let
a : Z → R+,

A =
∑
n

a(n) <∞,

Ad =
∑
n

a(dn),

and suppose that

Ad = f (d)X + Rd ,

where
f ∈ M,

the set M of multiplicative functions.

• It is also convenient to assume that 0 ≤ f (p) < 1 for each
prime p.

• We define
S(A,P) =

∑
n

(n,P)=1

a(n).
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• Ad = f (d)X + Rd .

• In principle we suppose that X is “large” and Rd is
“small” compared with f (d)X when d is relatively small.

• Example 1 Let a(n) = 1 when Y < n ≤ Y + X and
a(n) = 0 otherwise. Then

Ad =
X

d
+ Rd , |Rd | ≤ 1.

This corresponds to counting primes in an interval.

• Example 2 If P =
∏

p≤
√
X p, and a is as in Example 1,

then
π(X + Y )− π(Y ) ≤ π(

√
X ) + S(A,P).

This is a formalisation of the sieve of
Erathosthenes–Legendre.

• Any method which deduces estimates for S(A,P) is called
a sieve.
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• Other examples.

• Example 3 (Primes in arithmetic progression) Suppose
that (q, r) = 1 and a(n) = 1 when y < n ≤ x + y and
n ≡ r (mod q). Since we already have (n, q) = 1 we can
suppose

P = Pq =
∏
p≤z
p∤q

p.

• Then for d |P we have by the Chinese remainder theorem

Ad =
x/q

d
+ O(1)

and we can take X = x/q and f (d) = 1/d .
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• Example 4 (Twin primes) Let a(n) = 1 when
n = m(m + 2) for some m ≤ X and a(n) = 0 otherwise
and P as before. Then

π2(X ) :=
∑
p≤X

p+2 prime

1 ≤ π(
√
X ) + S(A,P).

• It is easily verified that Ad = f (d)X + Rd holds with
f (d) = ρ(d)/d , ρ ∈ M, ρ(2) = 1, ρ(p) = 2 (p > 2), and
with |Rd | ≤ ρ(d).
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• Example 5 (Goldbach binary problem) Let X be an
even positive integer and let

a(n) = card{m : n = m(X −m),m < X}

and P as before.

• Then

card{p < X : X − p prime} ≤ 2π(
√
X ) + S(A,P).

Again it is easily verified that Ad = f (d)X + Rd holds
with f (d) = ρ(d)/d , ρ ∈ M, ρ(p) = 1 when p|X ,
ρ(p) = 2 when p ∤ X , and with |Rd | ≤ ρ(d) once more.

• Example 6 Let a(n) = 1 when n = m2 + 1 for some
m ≤ X and P =

∏
p≤X . Then

card{m ≤ X : m2 + 1 prime} ≤ π(
√
X ) + S(A,P).

Also Ad = f (d)X + Rd holds with f (d) = ρ(d)/d with
ρ ∈ M and ρ(2) = 1, ρ(p) = 2 when p ≡ 1 (mod 4) and
ρ(p) = 0 otherwise, and |Rd | ≤ ρ(d).
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• A more sophisticated version of Example 4 is

• Example 7 (twin primes revisited) Let a(n) = 1 when
n − 2 is a prime p ≤ Y and 0 otherwise and let
P =

∏
p≤

√
Y p. Then∑

p≤Y
p+2 prime

1 ≤ π(
√
Y ) + S(A,P).

• Now Ad = π(Y ; d ,−2) and we have

Ad = f (d)X + Rd

where f (d) = 0 when d is even and f (d) = 1
ϕ(d) when d is

odd, and where now

X = li(Y ) =

∫ Y

2

dt

log t

and where Rd is relatively small (≪ Y
1
2
+ε on GRH).
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• It is perhaps worth remarking that although in all the
cases considered so far one gets a multiplicative function f
this is not always the case.

• Romanov proved [1934] that a positive proportion of
positive integers can be written as the sum of a prime and
a power of 2.

lim inf
x→∞

x−1 card{n ≤ x : n = p + 2k} > 0

• The underlying problem with this is that the ord2(q), the
order of 2 mod q is not a multiplicative function of q. For
example if 2 is a primitive root modulo p1 and p2 (both
odd), then ord2(pj) = pj − 1, but
ord2(p1p2) = lcm(p1 − 1, p2 − 1) ≤ (p1 − 1)(p2 − 1)/2.
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• Modern sieve theory attempts to overcome the problem of
having too many choices for d |P by seeking functions λ±d
such that ∑

d |m

λ−d ≤
∑
d |m

µ(d) ≤
∑
d |m

λ+d

but the support for the λ±d is restricted.

• We will not be concerned with lower bound sieves, where
the theory is more delicate.

• Selberg introduced a very simple and elegant upper bound
sieve which is very effective in many situations, and also
has the merit of great flexibility. It has also lead to some
recent sensational developments.
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• Let
λ1 = 1

and suppose that the λq ∈ R are otherwise at our
disposal. Then

∑
d |m

µ(d) ≤

∑
d |m

λd

2

.

• In order to retain some structure we suppose that the
support D of the λd is a divisor closed set of squarefree
numbers.

• Thus for each d ∈ D, µ(d) ̸= 0 and if q|d , then q ∈ D.
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• Example 8 We often suppose in applications that
D = {d |P : d ≤ D} where P =

∏
p≤Z p for some Z .

• We recall that

S(A,P) =
∑
n

(n,P)=1

a(n) and λ1 = 1.

• Thus

S(A,P) ≤
∑
n

a(n)

∑
d |n

λd

2

=
∑
d

∑
e

λdλe
∑
m

a(m[d , e])

= X
∑
d

∑
e

λdλe f ([d , e]) + R

where
R =

∑
d

∑
e

λdλeR[d ,e].
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• Thus
S(A,P) ≤ X

∑
d

∑
e

λdλe f ([d , e]) + R

where
R =

∑
d

∑
e

λdλeR[d ,e].

• Example 9 Consider Example 1, a(n) = 1 iff
n ∈ (Y ,Y + X ] with D as in Example 8. Then

|R| ≤

(∑
d

|λd |

)2

≤ D2∥λ∥2∞.

• The interesting part is the main term XF where

F =
∑
d

∑
e

λdλe f ([d , e]).

• We want to minimise this subject to the condition λ1 = 1.
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• We have
F =

∑
d

∑
e

λdλe f ([d , e]).

• We want to minimise this subject to the condition λ1 = 1.

• It is helpful to view F as a quadratic form in the λ.

• Our first objective is to diagonalise

F =
∑
d

∑
e

λdλe f ([d , e]),

and this can be done quite easily.

• It is also useful to assume that D is such that f (d) ̸= 0
when d ∈ D.
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• We have
F =

∑
d

∑
e

λdλe f ([d , e]).

• Write (d , e) = m, d = qm, e = rm, so that (q, r) = 1.
Since f ∈ M and qrm is squarefree we have
f ([d , e]) = f (qrm) = f (qm)f (rm)/f (m) and

F =
∑
m

f (m)−1
∑
q

∑
r

(q,r)=1

λqmλrmf (qm)f (rm).

• Now we use the Möbius function to remove the condition
(q, r) = 1.
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1− f (p)

f (p)
.

• Denoting this expression by g(n)−1 we have

F =
∑
n

g(n)−1

(∑
d

λdnf (dn)

)2

.

where

g(n) =
∏
p|n

f (p)

1− f (p)

• Let
ωn =

∑
d

λdnf (dn) (n ∈ D).
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• We have
F =

∑
n

g(n)−1ω2
n,

ωn =
∑
d

λdnf (dn) (n ∈ D)

• There is a bijection between the λ and the ω. We could
view the transformation from the one to the other as
being by an upper triangular matrix, which is obviously
invertible.

• There is a standard number theoretic way of expressing
the inversion. Consider∑

n

ωnmµ(n) =
∑
n

∑
d

λdnf (dnm)µ(n)

• Collecting together the terms with nd = q this becomes,
for m ∈ D, ∑

q

λqmf (qm)
∑
n|q

µ(n) = λmf (m).
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• Hence

g(n) =
∏
p|n

f (p)

1− f (p)

F =
∑
n

g(n)−1

(∑
d

λdnf (dn)

)2

ωn =
∑
d

λdnf (dn) (n ∈ D)

λmf (m) =
∑
n

ωnmµ(n) (m ∈ D)

• Thus we are seeking to minimise

F =
∑
n

g(n)−1ω2
n under

∑
n

ωnµ(n) = λ1 = 1.
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• Thus we are seeking to minimise

F =
∑
n

g(n)−1ω2
n under

∑
n

ωnµ(n) = λ1 = 1.

• Let θ = 1/
∑

n∈D g(n). Then F =

=
∑
n∈D

(ωn − θµ(n)g(n))2

g(n)
+ 2θ

∑
n

ωnµ(n)− θ2
∑
n

g(n)

=
∑
n∈D

(ωn − θµ(n)g(n))2

g(n)
+ θ.

• Obviously F ≥ θ

• and the choice
ωn = θµ(n)g(n)

gives ∑
n

ωnµ(n) = 1 and F = θ.
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• We have just shown that the minimum of F is θ and the
minimum is attained when

ωn = θµ(n)g(n)

• We can now invert the transform to deduce the minimising
λm

• Recall that

λmf (m) =
∑
n

ωnmµ(n) (m ∈ D).

• Thus the minimising λm are given by

λm =
θ

f (m)

∑
n

g(mn)µ(mn)µ(n)

= θµ(m)
g(m)

f (m)

∑
n

nm∈D

g(n).
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• We have λm = θµ(m)
g(m)

f (m)

∑
n

nm∈D

g(n).

• You might not think there is any reason to care about the
actual values of the λm, since the minimum seems to be
the crucial thing.

• However the λm also occur in the error term.

• Write
g(m)

f (m)
=
∏
p|m

1

1− f (p)
=
∏
p|m

(1 + g(p)) =
∑
d |m

g(d).

• Thus

|λm| ≤ θ
∑
d |m

g(d)
∑
n

nd∈D
(n,m/d)=1

g(n)

= θ
∑
d |m

∑
k

(k,m)=d

g(k) = 1.
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1− f (p)
=
∏
p|m

(1 + g(p)) =
∑
d |m

g(d).

• Thus

|λm| ≤ θ
∑
d |m

g(d)
∑
n

nd∈D
(n,m/d)=1

g(n)

= θ
∑
d |m

∑
k

(k,m)=d

g(k) = 1.
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• We have

λm = θµ(m)
g(m)

f (m)

∑
n

nm∈D

g(n)

Theorem 1 (Selberg)

Suppose that a : Z → R+, Ad =
∑

n a(dn) and that
Ad = f (d)X + Rd where f ∈ M and 0 ≤ f (p) < 1. Let P ∈ N
be squarefree and D be a divisor closed subset of the divisors of
P. Then

S(A,P) ≤ X∑
n∈D g(n)

+
∑
d∈D

∑
e∈D

λdλeR[d ,e]

where g(n) =
∏

p|n
f (p)

1−f (p) . Moreover

|λd | ≤ 1.
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• Armed with Selberg’s theorem we revisit the various
examples.

• Example 10 Primes in arithmetic progressions
Following example 3, when (q, r) = 1

π(x + y ; q, r)− π(y ; q, r) ≤ π(
√
X ) + S(A,P)

where a(n) = 1 when y < n ≤ x + y , n ≡ r (mod q) and
a(n) = 0 otherwise, X = x/q, P = Pq =

∏
p≤

√
X

p∤q
p,

Ad = X
d + Rd , |Rd | ≤ 1.

• Thus f (d) = 1/d . Let D = {d |P : d ≤ D} with D ≤
√
X .

• Then, for d ∈ D,

g(d) =
∏
p|d

1/p

1− 1/p
=

1

ϕ(d)

∑
d∈D

g(d) =
∑

d≤D,(d ,q)=1

µ(d)2

ϕ(d)

and |λd | ≤ 1.
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• Example 10 continued

π(x + y)− π(y) ≤ π(
√
X ) + S(A,P)

S(A,P) ≤ X∑
d≤D

(d ,q)=1

µ(d)2

ϕ(d)

+ D2

• We need a lower bound for∑
d≤D

(d ,q)=1

µ(d)2

ϕ(d)
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• We need a lower bound for
∑
d≤D

(d ,q)=1

µ(d)2

ϕ(d)
.

• First we remove the condition (d , q) = 1. We have

q

ϕ(q)
=
∏
p|q

(
1 +

1

p − 1

)
=
∑
m|q

µ(m)2

ϕ(m)

• Thus

q

ϕ(q)

∑
d≤D

(d ,q)=1

µ(d)2

ϕ(d)
≥

∑
d≤D

(d ,q)=1

µ(d)2

ϕ(d)

∑
m≤D/d
m|q

µ(m)2

ϕ(m)

=
∑
n≤D

µ(n)2

ϕ(n)
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• Now we need a lower bound for∑
n≤D

µ(n)2

ϕ(n)
=
∑
n≤D

µ(n)2

n

∏
p|n

p

p − 1
.

• Here we have for the general term, when n is squarefree,

1

n

∏
p|n

 ∞∑
j=0

1

pj

 =
∑
m

s(m)=n

1

m

where s(m) is the squarefree kernel of m, s(m) =
∏
p|m

p.

• Thus, by Euler,∑
n≤D

µ(n)2

ϕ(n)
=

∑
m

s(m)≤D

1

m
≥
∑
m≤D

1

m
≥ logD.

• Hence we just showed that
∑
d≤D

(d ,q)=1

µ(d)2

ϕ(d)
≥ ϕ(q)

q
logD.
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• We just showed the very neat upper bound

π(x + y ; q, r)− π(y ; q, r) ≤ x

ϕ(q) logD
+ π(

√
x/q) + D2.

• When x ≥ e2q, a close to optimal choice for D is

D =

√
x/q

log
√
x/q

• and this leads to

Theorem 2 (Brun-Titchmarsh)

Suppose that (q, r) = 1 and y ≥ e2q. Then

π(x + y ; q, r)− π(y ; q, r) ≤ 2x

ϕ(q) log x
q

+ O

(
x log log x

q

ϕ(q) log2 x
q

)
.
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• We have

π(x+y ; q, r)−π(y ; q, r) ≤ 2x

ϕ(q) log x
q

+O

(
x log log x

q

ϕ(q) log2 x
q

)
.

• The Generalised Riemann Hypothesis gives nothing when
x < ϕ(q)

√
x , so this is a really useful result.

• The best general result we know is, for (q, r) = 1,

π(x + y ; q, r)− π(y ; q, r) ≤ 2x

ϕ(q) log x
q

(Montgomery & RCV 1972).

• If one could prove this with the 2 replaced by any smaller
constant, then one could establish something very
profound about zeros of L-functions, namely that Siegel
zeros do not exist.
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• When q = 1, the optimising choice of λm in the proof of
the Brun–Titchmarsh theorem is

λm = µ(m)mϕ(m)−1

∑
n≤D/m
(n,m)=1

µ(n)2

ϕ(n)∑
n≤D

µ(n)2

ϕ(n)

.

• The sum in the denominator is asymptotically logD and,
at least when m is not too close to D, the sum in the
numerator ought to be asymptotically
ϕ(m)m−1 log(D/m).

• Thus λm should be close to

λ∗m = µ(m)
logD/m

logD
.

• Indeed λ∗m can be used instead of the optimal choice,
although there is more work involved in the analysis to
push things through.

• Later, we will see situations where the optimal choice is
not known but a choice of this kind is still effective.
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• Let me turn now to the twin prime problem, which we
looked at in Example 4.

• Now we have

π2(X ) ≤ π(
√
X ) +

X∑
n∈D g(n)

+
∑
d∈D

∑
e∈D

ρ([d , e])

where ρ, f , g ∈ M, f (d) = ρ(d)/d ,
g(p) = f (p)/(p − f (p)), ρ(2) = 1, ρ(p) = 2 (p > 2),

• so that

g(2) = 1, g(p) =
2

p − 2
(p > 2).

• Thus our first task is to understand∑
n≤D

µ(n)2
∏
p|n
p>2

2

p − 2
.
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• We want to understand
∑
n≤D

µ(n)2
∏
p|n
p>2

2

p − 2
.

• The general term behaves a bit like d(n)
n .

• The sum
∑
n≤x

d(n)

n
can be dealt with by various methods.

• For one write, with E (t) ≪
√
t,
∑
n≤x

d(n)

(
1

x
+

∫ x

n

dt

t2

)

=

∑
n≤x d(n)

x
+

∫ x

1

∑
n≤t d(n)

t2
dt

= log x + 2γ − 1 +
E (x)

x

+

∫ x

1

(
log t + 2γ − 1 +

E (t)

t

)
dt

t
.

• Thus
∑
n≤x

d(n)

n
=

(log x)2

2
+ 2γ log x + c1 + O

(
1√
x

)
.
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• We want to understand
∑

n≤D g(d) where

g(n) = µ(n)2
∏

p|n
p>2

2
p−2 . We know that

∑
n≤x

d(n)

n
=

1

2
(log x)2 + 2γ log x + c1 + O(x−1/2).

• How to get from one sum to the other. Dirichlet
convolution!

• We want to find a function h so that Ng = d ∗ h.
• Recall that d = 1 ∗ 1 and 1 ∗ µ = e. Hence h = (Ng) ∗ µ2
where we have written µ2 = µ ∗ µ.



Math 571
Chapter 4 The
Selberg Sieve

Robert C.
Vaughan

The sieve of
Eratosthenes

Inclusion -
Exclusion

Merlin and
Brun

Notation

The Selberg
sieve

Applications
of Selberg’s
sieve

Primes in an
arithmetic
progression

The twin prime
problem

Example 6

The Prime k-tuples
conjecture

Sieve Upper
and Lower
Bounds

Bounds

• We want to understand
∑

n≤D g(d) where

g(n) = µ(n)2
∏

p|n
p>2

2
p−2 . We know that

∑
n≤x

d(n)

n
=

1

2
(log x)2 + 2γ log x + c1 + O(x−1/2).

• How to get from one sum to the other. Dirichlet
convolution!

• We want to find a function h so that Ng = d ∗ h.
• Recall that d = 1 ∗ 1 and 1 ∗ µ = e. Hence h = (Ng) ∗ µ2
where we have written µ2 = µ ∗ µ.



Math 571
Chapter 4 The
Selberg Sieve

Robert C.
Vaughan

The sieve of
Eratosthenes

Inclusion -
Exclusion

Merlin and
Brun

Notation

The Selberg
sieve

Applications
of Selberg’s
sieve

Primes in an
arithmetic
progression

The twin prime
problem

Example 6

The Prime k-tuples
conjecture

Sieve Upper
and Lower
Bounds

Bounds

• We want to understand
∑

n≤D g(d) where

g(n) = µ(n)2
∏

p|n
p>2

2
p−2 . We know that

∑
n≤x

d(n)

n
=

1

2
(log x)2 + 2γ log x + c1 + O(x−1/2).

• How to get from one sum to the other. Dirichlet
convolution!

• We want to find a function h so that Ng = d ∗ h.

• Recall that d = 1 ∗ 1 and 1 ∗ µ = e. Hence h = (Ng) ∗ µ2
where we have written µ2 = µ ∗ µ.



Math 571
Chapter 4 The
Selberg Sieve

Robert C.
Vaughan

The sieve of
Eratosthenes

Inclusion -
Exclusion

Merlin and
Brun

Notation

The Selberg
sieve

Applications
of Selberg’s
sieve

Primes in an
arithmetic
progression

The twin prime
problem

Example 6

The Prime k-tuples
conjecture

Sieve Upper
and Lower
Bounds

Bounds

• We want to understand
∑

n≤D g(d) where

g(n) = µ(n)2
∏

p|n
p>2

2
p−2 . We know that

∑
n≤x

d(n)

n
=

1

2
(log x)2 + 2γ log x + c1 + O(x−1/2).

• How to get from one sum to the other. Dirichlet
convolution!

• We want to find a function h so that Ng = d ∗ h.
• Recall that d = 1 ∗ 1 and 1 ∗ µ = e. Hence h = (Ng) ∗ µ2
where we have written µ2 = µ ∗ µ.



Math 571
Chapter 4 The
Selberg Sieve

Robert C.
Vaughan

The sieve of
Eratosthenes

Inclusion -
Exclusion

Merlin and
Brun

Notation

The Selberg
sieve

Applications
of Selberg’s
sieve

Primes in an
arithmetic
progression

The twin prime
problem

Example 6

The Prime k-tuples
conjecture

Sieve Upper
and Lower
Bounds

Bounds

• Recall that d = 1 ∗ 1 and 1 ∗ µ = e. Hence h = (Ng) ∗ µ2
where we have written µ2 = µ ∗ µ.

• We find that µ2, h ∈ M and

µ2(p) = −2, µ2(p
2) = 1, µ(pk) = 0 (k > 2),

h(2) = 0, h(4) = −3, h(8) = 2, h(pk) = 0 (k > 3)

and for p > 2,

h(p) =
4

p − 2
, h(p2) = −3p + 2

p − 2
,

h(p3) =
2p

p − 2
, h(pk) = 0(k > 3).

• We have

g(n) =
∑
m|n

d(m)

m
· h(n/m)

n/m

• Thus ∑
n≤D

g(n) =
∑
l≤D

h(l)

l

∑
m≤D/l

d(m)

m
.
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• Thus ∑
n≤D

g(n) =
∑
l≤D

h(l)

l

∑
m≤D/l

d(m)

m
.

• Now we substitute in our approximation

1

2
(logD/l)2 + 2γ log(D/l) + c1 + O(l1/2D−1/2)

for the inner sum.

• It turns out that the various sums over l which occur are
nicely convergent and we obtain∑

n≤D

g(n) =
1

2
(logD)2

∞∑
l=1

h(l)

l
+ O(logD).

• The infinite sum here is

∏
p

1 +
3∑

j=1

h(pj)

pj

 =

(
1− 3

4
+

1

4

)∏
p>2

(
(p − 1)2

p(p − 2)

)
.
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• We have just proved that

x∑
n≤D g(n)

=
2C2x

(logD)2
+ O(x(logD)−3)

where

C2 = 2
∏
p>2

(
1− 1

(p − 1)2

)
.

• and so

π2(x) ≤
2C2x

(logD)2
+ π(

√
x)

+
∑

d ,e≤D

µ(d)2µ(e)2ρ([d , e]) + O(x(logD)−3).

• We know that ρ(m) ≤ d(m) and it is easily seen that
d([d , e]) ≤ d(d)d(e) and so the sum here is

≪ (D logD)2.
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• We have

π2(x) ≤
2C2x

(logD)2
+ O(

√
x + (D logD)2 + x(logD)−3).

• Let D = x1/2(log x)−3. Then we have

π2(x) ≤
8C2x

(log x)2
+ O

(
x log log x

(log x)3

)
.

• Hardy and Littlewood (1923) conjectured that

π2(x) ∼
C2x

(log x)2

• The constant

C2 = 2
∏
p>2

(
1− 1

(p − 1)2

)
is known as the twin prime constant.
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• Selberg’s theorem applied to Example 6 gives

Q(X ) ≤ X∑
n∈D g(n)

+ π(
√
X ) +

∑
d ,e∈D

ρ([d , e])

where Q(X ) = card{m ≤ X : m2 + 1 prime},
ρ(p) = 1 + χ1(p), g(p) = ρ(p)/

(
p − ρ(p)

)
.

• A somewhat more complex analysis to the previous ones,
gives ∑

n∈D
g(n) = C−1

1 logD + O(1)

where

C1 =
π

4

∏
p

(
1 +

χ1(p)

p
(
p − 1− χ1(p)

))

=
π

4

∏
p

(
1− ρ(p)− 1

p
(
p − ρ(p)

)) .
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• We have ∑
n∈D

g(n) = C−1
1 logD + O(1)

• Thus

Q(X ) ≤ 2C1X

logX
+ O

(
X (log logX )(logX )−2

)
.

• Bateman and Horn (1962) (cf Hardy & Littlewoood 1923)
have conjectured that

Q(X ) ∼ C1X

logX
.

• The exponent of log x in these results is often called the
Dimension of the sieve. An alternative definition is given
by

lim
D→∞

1

log logD

∑
p≤D

g(p)

p
.

• Thus primes in an interval, or n2 + 1 have dimension 1.
The twin prime conjecture has dimension 2.
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• If we choose D ≈ X θ, then θ is sometimes called the Level
of the Distribution, but this does not necessarily depend
on the nature of the sieve, but rather how clever we are.

• Recall that we can set up the Goldbach binary conjecture
by considering

(
n(N − n),P

)
= 1 and the analysis is

similar to the twin prime conjecture.

• Thus we obtain that for even N

R(N) ≤ 8C2
N

(logN)2

∏
p|N
p>2

p − 1

p − 2

+ O
(
N(log logN)(logN)−3

)
where R(N) is the number of ordered pairs of primes
p1, p2 such that p1 + p2 = N and C2 is the twin prime
conjecture.
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• Sometimes we write

C2

∏
p|N
p>2

p − 1

p − 2

=
∏
p|N

(
1 +

1

p − 1

)∏
p∤N

(
1− 1

(p − 1)2

)
= S(N).

• Hardy and Littlewood (1923) conjectured that

R(N) ∼ S(N)
N

(logN)2

and deduced, on the assumption of GRH, that this holds
for almost all even N. Chudakov, Estermann and van der
Corput independently proved this without GRH in 1937 by
using Vinogradov’s method.

• Montgomery & RCV (1975) showed that there is a
positive number δ such that the number E (X ) of even
N ≤ X such that R(N) = 0 satisfies E (X ) ≪ X 1−δ.
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• So here is a clever idea. Suppose we know GRH(!).

• Example 11 Recast Twin Primes. We can consider

π2(x) ≤ card{p ≤ x : (p + 2,P) = 1}+ π(
√
x).

• Thus, for d |P, where now P =
∏

2<p≤
√
x p

Ad = π(x ; d ,−2) = f (d)X + Rd

f (d) = 1
ϕ(d) , X = li(x), |Rd | ≪ x1/2(log x)2.

• Then g(2) = 0, g(p) = 1/(p − 2) (p > 2), and∑
d∈D

g(d) =
∑
n≤D
2∤n

µ(n)2∏
p|n(p − 2)

.

• The methods we have for approximating such sums give

∑
d∈D

g(d) =
1

2

∏
p>2

(p − 1)2

p(p − 2)

 logD + O(1).
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π2(x) ≤ card{p ≤ x : (p + 2,P) = 1}+ π(
√
x).

• Thus, for d |P, where now P =
∏

2<p≤
√
x p

Ad = π(x ; d ,−2) = f (d)X + Rd

f (d) = 1
ϕ(d) , X = li(x), |Rd | ≪ x1/2(log x)2.

• Then g(2) = 0, g(p) = 1/(p − 2) (p > 2), and∑
d∈D

g(d) =
∑
n≤D
2∤n

µ(n)2∏
p|n(p − 2)

.

• The methods we have for approximating such sums give

∑
d∈D

g(d) =
1

2

∏
p>2

(p − 1)2

p(p − 2)

 logD + O(1).
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• Thus

π2(x) ≤
C2 li(x)

logD
+ O

(
D2x1/2(log x)2

)

• Wait a minute, now the sieve has dimension 1!

• But we have to take D smaller, say D = x1/4(log x)−2.

• Hence

π2(x) ≤
4C2x

(log x)2
+ O

(
x(log log x)(log x)−3

)
.

• So we nevertheless gained a factor of 2 on GRH.

• Oh, but wait another minute. In 1965 Bombieri and A. I.
Vinogradov proved that GRH holds on average, and that is
all that we need!!
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• Bombieri’s version can be stated: Given any fixed A > 0
there is a B = B(A) such that if Q = x1/2(log x)−B , then∑

q≤Q

max
(a,q)=1

sup
y≤x

∣∣∣∣π(y ; q, a)− li(y)

ϕ(q)

∣∣∣∣≪ x(log x)−A.

• I plan to show you a relatively simple proof that we can
take B(A) = A+ 4.

• There is one other example which I want to show you.

• This is the ultimate generalisation of the twin prime
conjecture, at least for linear polynomials.
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• prime k–tuples. Let h = h1, h2, . . . , hk be k distinct
positive integers and πk(X ;h) be the number of m ≤ X
such that the m + hj are simultaneously prime. Let
a(n) = card{m ≤ X : (m + h1) . . . (m + hk) = n}. Then
we have

πk(X ;h) ≤ π(
√
X ) + S(A,P).

• Now Ad = f (d)X + Rd where f (d) = ρ(d)/d ,
|Rd | ≤ ρ(d) and ρ(d) is the number of solutions of
(x + h1) . . . (x + hk) ≡ 0 (mod d).

• Then ρ ∈ M, ρ(p) ≤ k , and ρ(p) = k when

p ∤ ∆ :=
∏

1≤i<j≤k

|hj − hi |.

• This is an example of a k–dimensional sieve.
• If the h give a complete set of residues modulo p for some
p, then there are not many k-tuples which are
simultaneously prime!

• Thus a natural condition for the existence of many prime
k-tuples is that ρ(p) < p for all p, i.e f (p) < 1.
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• ρ(d) is the number of solutions of
(x + h1) . . . (x + hk) ≡ 0 (mod d).

• Then ρ ∈ M, ρ(p) ≤ k , and ρ(p) = k when

p ∤ ∆ :=
∏

1≤i<j≤k

|hj − hi |.

• Hardy and Littlewood (1923) conjectured that

πk(X ;h) ∼ S(h)
x

(log x)k

where

S(h) =
∏
p

(
1− ρ(p)

p

)(
1− 1

p

)−k

.
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• Although not relevant for the rest of the course I want to
say something briefly about upper and lower sieve
estimates. Hopefully it will give you some idea of where
the mainstream of the subject lies.

• First let me recall some definitions.

• We supposed that a(n) are non-negative real numbers
defined on Z, and defined

Ad =
∑
n

a(dn).

• We then supposed that there is a multiplicative function
f (d) and a positive real number X so that, at least when
d is squarefree, we can write

Ad = f (d)X + Rd

with some expectation that, at least for smaller d , the
f (d)X dominate the Rd , albeit on average.
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the mainstream of the subject lies.

• First let me recall some definitions.

• We supposed that a(n) are non-negative real numbers
defined on Z, and defined

Ad =
∑
n

a(dn).

• We then supposed that there is a multiplicative function
f (d) and a positive real number X so that, at least when
d is squarefree, we can write

Ad = f (d)X + Rd

with some expectation that, at least for smaller d , the
f (d)X dominate the Rd , albeit on average.
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• We also defined the“dimension” κ of a sieve by

κ = lim
D→∞

∑
p≤D f (p)

log logD

when the limit exists.

• For the purposes of this exposition I will suppose that
κ = 1.

• Another term which is sometimes used is the “level” θ of a
sieve. That is a “good” value of θ for which we can show
that ∑

d≤Xθ

µ(d)2|Rd | ≪ X (logX )−B

for some suitably large enough value of B. Hopefully
θ = 1, but this is not always possible.

• My comments are very hand-wavy, but they do fit in with
the known facts in lots of interesting examples, as we have
seen.
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• Within these parameters we are looking for real numbers
λ±d such that for every n, or at least for every squarefree n
is a suitable divisor closed set, we have∑

d |n

λ−d ≤
∑
d |n

µ(d) = e(n) ≤
∑
d |n

λ+d .

• There are two points of view, each of which in the one
dimensional case leads to essentially the same conclusion.

• One is to gain insight by looking at the d formed from
exactly k prime divisors and using this to construct
optimal λ±d . This can be considered the ultimate version
of Sylvester’s inclusion-exclusion principle and the
Brun-Merlin sieve, and was developed independently by
Rosser (c1945 but unpublished) and Iwaniec (c1975). It is
also sometimes called the combinatorial sieve.

• The other is to work backwards iteratively from the
Selberg upper bound, via the Buchstab identity.
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• To describe the results in either case we also need to define

W (D) =
∏
p<D

(
1− f (p)

p

)

which in general we would expect to be roughly (logD)−κ,
and so here (logD)−1.

• Then the conclusions are

σ−
(
θ(logX )/(logD)

)
XW (D) + E− ≤
S
(
A,P(D)

)
≤ σ+

(
θ(logX )/(logD)

)
XW (D) + E+

for suitable error terms E±.

• Here the functions σ± are more complicated versions of
Dickman’s function ρ, which occurs on homework 5.
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• Here the functions σ± are more complicated versions of
Dickman’s function ρ, which occurs on homework 5.

• They are continuous for u > 0 and differentiable for u > 0,
u ̸= 2, and satisfy

σ−(u) = 0 (0 < u ≤ 2),

σ+(u) = 2eγu−1 (0 < u ≤ 2),(
uσ±(u)

)′
= σ∓(u − 1) (u > 2).

• See how the definitions in the range 0 < u ≤ 2 fit
Selberg’s example.
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• An alternative is to define
η(u) = 1

u , ξ(u) = 1 (0 < u ≤ 2),

uη′(u) = η(u − 1) (u > 2),

(u − 1)ξ′(u) = −ξ(u − 1) (u > 2)

and put

σ±(u) = eγ
(
η(u)± ξ(u)

u

)
.

• By the way, one can check that ξ(u + 1) = ρ(u), the
function that corresponds to ψ(X ,Y ) in homework 5.

• Let me conclude by observing that the case of dimension
κ < 1 is largely understood, but in the case κ > 1 we have
less precise results.
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