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® As | mentioned earlier, Gauss had suggested that

i(x) = /200 I:’go‘a

should be a good approximation

m(x) = Zl

p<x

and we saw a table of values out to 1022 which
illustrated this.
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The first progress of any kind towards Gauss'
conjecture was by Riemann in 1859, when he gave an
amazing formula for 7(x) and made a far reaching
conjecture.

To describe what he discovered in as simple terms as
possible | will use the function

P(x) =Y A(n)

which we introduced in connection with Chebyshev's
results.

Another actor in this drama is Riemann’s zeta
function, defined initially for Jts > 1 by

o0

((s)=> n"

In fact this had first been studied by Euler.
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theorem n
E zZ .
n=0

® This series only exists when |z| < 1.
® However it converges to

1

11—z

in this open disc.
® This latter expression exists for all z £ 1.
® Moreover this is differentiable when z # 1.

® Thus this latter expression gives an “analytic
continuation” to C\ {1}.
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It turns out in the same way that ((s) has an analytic
continuation to C\ {1}.

The variant for 1)(x) of the formula that Riemann
discovered is

_ xP 1 oy _ ¢'(0)
P(x) = x — ?—Elog(l—x )—C(O).

p

Here the sum is over the zeros p of ((s) with

0 < Rp < 1, the “non-trivial zeros”.

The formula holds for all x > 2 which are not the
power of a prime.

When x = p* for some p and k the left hand side has
to be replaced by

1
U(x) — 5 logp.
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Riemann computed the first few zeros p and found
that they each had Rp = 1.

The assertion that Rp = % for all the non-trivial p is
now known as the Riemann Hypothesis (RH).

The computations have been extended considerably.
Platt and Trudgian (2020) have shown that there are
12,363, 153,437, 138 zeros p with

0 < Sp < 3,000, 175,332, 800

and they all have Rp = 1.

We now know that for any T > 2 the total number
N(T) of p with 0 < Sp < T is approximately

T T
N(T) = — log — log T
(T) . 0g2m+0(0g )

and that at least 40% of them have Rp = %
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Y(x) — x < x¥ for all x > 2

is equivalent to the RH,
® and that this in turn is equivalent to

m(x) — li(x) < x’.
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theorem '/T(X) ~ I|(X),

so establishing Gauss’ assertion.
® More precisely de la Vallée Poussin showed that

m(x) — li(x) < xexp (—C@)

for some constant c.
® A proof of this is usually given in Math 568.
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heerem Korobov and I. M. Vinogradov (1958)

m(x) — li(x) < xexp (_(C(Iog X35 )

log log x)1/5

® and the best value for ¢ that we have is ¢ = 0.2098
due to Kevin Ford (2002).
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One can make similar assertions for

L(six) = Y @

where x is a primitive character modulo g,

and these functions all have analytic continuations to
C when g > 1 and are differentiable everywhere, even
at s =1.

The values of L(1;x) play an important rdle in
algebraic number theory.

Also there is a Riemann Hypothesis for each one
(GRH)

and essentially all of the techniques that have been
developed for treating ((s) can be ported over to

L(s; x)-
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The L(s; x) were introduced by Dirichlet to establish
that if (g,a) = 1, then there are infinitely many primes
in the residue class a modulo g.

An explicit version of this is given by using a basic
property of characters.

Let
v(xiga)= Y An)
n=a n(%q);d q)
and
Y(xix) = > An)x(n)
Then :
LN s
¢(X1 q? a) - ¢(q) X( )¢( 'X)
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P(x; x) < x’

holds for all x > 2.

® Here the current state of play is the Siegel-Walfisz
theorem (1936) which states that there is a positive
constant ¢ such that if A is any fixed positive number,
x> 2, g < (logx)* and x is any non-principal
character modulo g, then

U(x; x) <a xexp <—C\/@> :
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Now GRH holds for L(s; x) when x # xo if and only if
for every 6 > %

P(x; x) < x’
holds for all x > 2.
Here the current state of play is the Siegel-Walfisz
theorem (1936) which states that there is a positive
constant ¢ such that if A is any fixed positive number,
x> 2, g < (logx)* and x is any non-principal
character modulo g, then

U(x; x) <a xexp <—C\/@> :

Applied to ¥(x; g, a) this gives, under the same
hypothesis on ¢, A, x, g that when (g,a) =1,

W(x: q,a) — @ < xexp (—C\/@) .

In other words, with some constraint on g we have the
analogue of de la Vallée Poussin’s theorem.
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In 1965 Bombieri and A. I. Vinogradov showed, in
some sense, that GRH holds on average, and this is
good enough to be used as a replacement for GRH in
many applications, and has been behind much of the
remarkable progress in analytic number theory in
recent years.

Equally remarkably we now have proofs of
Bombieri-Vinogradov which are elementary apart from
the input of the Siegel-Walfisz theorem.
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