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• I want now to give an overview of the current state of
play with regard to the distribution of primes.

• The bulk of the results I describe are usually proved in
detail in Math 568.

• Although we will use some of these results we will not
need to be familiar with the techniques for establishing
them.

• As I mentioned earlier, Gauss had suggested that

li(x) =

∫ ∞

2

dα

logα

should be a good approximation

π(x) =
∑
p≤x

1

and we saw a table of values out to 1022 which
illustrated this.
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• The first progress of any kind towards Gauss’
conjecture was by Riemann in 1859, when he gave an
amazing formula for π(x) and made a far reaching
conjecture.

• To describe what he discovered in as simple terms as
possible I will use the function

ψ(x) =
∑
n≤x

Λ(n)

which we introduced in connection with Chebyshev’s
results.

• Another actor in this drama is Riemann’s zeta
function, defined initially for ℜs > 1 by

ζ(s) =
∞∑
n=1

n−s .

• In fact this had first been studied by Euler.
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• The function ζ(s) can be continued to the whole
complex plane.

• If you are not familiar with this concept let me
illustrate it by the example

∞∑
n=0

zn.

• This series only exists when |z | < 1.
• However it converges to

1

1− z

in this open disc.
• This latter expression exists for all z ̸= 1.
• Moreover this is differentiable when z ̸= 1.
• Thus this latter expression gives an “analytic
continuation” to C \ {1}.



Math 571
Chapter 3 The
Prime Number

Theorem

Robert C.
Vaughan

The prime
number
theorem

• The function ζ(s) can be continued to the whole
complex plane.

• If you are not familiar with this concept let me
illustrate it by the example

∞∑
n=0

zn.

• This series only exists when |z | < 1.
• However it converges to

1

1− z

in this open disc.
• This latter expression exists for all z ̸= 1.
• Moreover this is differentiable when z ̸= 1.
• Thus this latter expression gives an “analytic
continuation” to C \ {1}.



Math 571
Chapter 3 The
Prime Number

Theorem

Robert C.
Vaughan

The prime
number
theorem

• The function ζ(s) can be continued to the whole
complex plane.

• If you are not familiar with this concept let me
illustrate it by the example

∞∑
n=0

zn.

• This series only exists when |z | < 1.

• However it converges to

1

1− z

in this open disc.
• This latter expression exists for all z ̸= 1.
• Moreover this is differentiable when z ̸= 1.
• Thus this latter expression gives an “analytic
continuation” to C \ {1}.



Math 571
Chapter 3 The
Prime Number

Theorem

Robert C.
Vaughan

The prime
number
theorem

• The function ζ(s) can be continued to the whole
complex plane.

• If you are not familiar with this concept let me
illustrate it by the example

∞∑
n=0

zn.

• This series only exists when |z | < 1.
• However it converges to

1

1− z

in this open disc.

• This latter expression exists for all z ̸= 1.
• Moreover this is differentiable when z ̸= 1.
• Thus this latter expression gives an “analytic
continuation” to C \ {1}.



Math 571
Chapter 3 The
Prime Number

Theorem

Robert C.
Vaughan

The prime
number
theorem

• The function ζ(s) can be continued to the whole
complex plane.

• If you are not familiar with this concept let me
illustrate it by the example

∞∑
n=0

zn.

• This series only exists when |z | < 1.
• However it converges to

1

1− z

in this open disc.
• This latter expression exists for all z ̸= 1.

• Moreover this is differentiable when z ̸= 1.
• Thus this latter expression gives an “analytic
continuation” to C \ {1}.



Math 571
Chapter 3 The
Prime Number

Theorem

Robert C.
Vaughan

The prime
number
theorem

• The function ζ(s) can be continued to the whole
complex plane.

• If you are not familiar with this concept let me
illustrate it by the example

∞∑
n=0

zn.

• This series only exists when |z | < 1.
• However it converges to

1

1− z

in this open disc.
• This latter expression exists for all z ̸= 1.
• Moreover this is differentiable when z ̸= 1.

• Thus this latter expression gives an “analytic
continuation” to C \ {1}.



Math 571
Chapter 3 The
Prime Number

Theorem

Robert C.
Vaughan

The prime
number
theorem

• The function ζ(s) can be continued to the whole
complex plane.

• If you are not familiar with this concept let me
illustrate it by the example

∞∑
n=0

zn.

• This series only exists when |z | < 1.
• However it converges to

1

1− z

in this open disc.
• This latter expression exists for all z ̸= 1.
• Moreover this is differentiable when z ̸= 1.
• Thus this latter expression gives an “analytic
continuation” to C \ {1}.



Math 571
Chapter 3 The
Prime Number

Theorem

Robert C.
Vaughan

The prime
number
theorem

• It turns out in the same way that ζ(s) has an analytic
continuation to C \ {1}.

• The variant for ψ(x) of the formula that Riemann
discovered is

ψ(x) = x −
∑
ρ

xρ

ρ
− 1

2
log(1− x−2)− ζ ′(0)

ζ(0)
.

• Here the sum is over the zeros ρ of ζ(s) with
0 < ℜρ < 1, the “non-trivial zeros”.

• The formula holds for all x ≥ 2 which are not the
power of a prime.

• When x = pk for some p and k the left hand side has
to be replaced by

ψ(x)− 1

2
log p.
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• Riemann computed the first few zeros ρ and found
that they each had ℜρ = 1

2
.

• The assertion that ℜρ = 1
2
for all the non-trivial ρ is

now known as the Riemann Hypothesis (RH).

• The computations have been extended considerably.
Platt and Trudgian (2020) have shown that there are
12, 363, 153, 437, 138 zeros ρ with

0 < ℑρ ≤ 3, 000, 175, 332, 800

and they all have ℜρ = 1
2
.

• We now know that for any T > 2 the total number
N(T ) of ρ with 0 < ℑρ ≤ T is approximately

N(T ) =
T

2π
log

T

2πe
+ O(logT )

and that at least 40% of them have ℜρ = 1
2
.
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• We also know that the assertion that for every θ > 1
2

ψ(x)− x ≪ xθ for all x ≥ 2

is equivalent to the RH,

• and that this in turn is equivalent to

π(x)− li(x) ≪ xθ.
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• In 1896 Hadamard and de la Vallée Poussin proved
that

π(x) ∼ li(x),

so establishing Gauss’ assertion.

• More precisely de la Vallée Poussin showed that

π(x)− li(x) ≪ x exp
(
−c

√
log x

)
for some constant c .

• A proof of this is usually given in Math 568.
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• The strongest result we now can prove is due to
Korobov and I. M. Vinogradov (1958)

π(x)− li(x) ≪ x exp

(
− c(log x)3/5

(log log x)1/5

)

• and the best value for c that we have is c = 0.2098
due to Kevin Ford (2002).
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• One can make similar assertions for

L(s;χ) =
∞∑
n=1

χ(n)

ns

where χ is a primitive character modulo q,

• and these functions all have analytic continuations to
C when q > 1 and are differentiable everywhere, even
at s = 1.

• The values of L(1;χ) play an important rôle in
algebraic number theory.

• Also there is a Riemann Hypothesis for each one
(GRH)

• and essentially all of the techniques that have been
developed for treating ζ(s) can be ported over to
L(s;χ).
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• The L(s;χ) were introduced by Dirichlet to establish
that if (q, a) = 1, then there are infinitely many primes
in the residue class a modulo q.

• An explicit version of this is given by using a basic
property of characters.

• Let
ψ(x ; q, a) =

∑
n≤x

n≡a (mod q)

Λ(n)

and
ψ(x ;χ) =

∑
n≤x

Λ(n)χ(n).

• Then

ψ(x ; q, a) =
1

ϕ(q)

∑
χ (mod q)

χ(a)ψ(x ;χ).
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• Now GRH holds for L(s;χ) when χ ̸= χ0 if and only if
for every θ > 1

2

ψ(x ;χ) ≪ xθ

holds for all x ≥ 2.

• Here the current state of play is the Siegel-Walfisz
theorem (1936) which states that there is a positive
constant c such that if A is any fixed positive number,
x ≥ 2, q ≤ (log x)A and χ is any non-principal
character modulo q, then

ψ(x ;χ) ≪A x exp
(
−c

√
log x

)
.

• Applied to ψ(x ; q, a) this gives, under the same
hypothesis on c , A, x , q that when (q, a) = 1,

ψ(x ; q, a)− x

ϕ(q)
≪A x exp

(
−c

√
log x

)
.

• In other words, with some constraint on q we have the
analogue of de la Vallée Poussin’s theorem.
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hypothesis on c , A, x , q that when (q, a) = 1,

ψ(x ; q, a)− x

ϕ(q)
≪A x exp

(
−c

√
log x

)
.

• In other words, with some constraint on q we have the
analogue of de la Vallée Poussin’s theorem.
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• In 1965 Bombieri and A. I. Vinogradov showed, in
some sense, that GRH holds on average, and this is
good enough to be used as a replacement for GRH in
many applications, and has been behind much of the
remarkable progress in analytic number theory in
recent years.

• Equally remarkably we now have proofs of
Bombieri-Vinogradov which are elementary apart from
the input of the Siegel-Walfisz theorem.
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