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Let
A(n) =

∑
p1,p2,p3≤n
p1+p3=2p2

(log p1)(log p2)(log p3).

Since we can write p3 − p2 = p2 = p1 = d the pj are three successive members of the
arithmetic progression p1+xd. In fact we are counting, with weight (log p1)(log p2)(log p3)
all the triples of primes not exceeding n which are in arithmetic progression. Note that we
are allowing d < 0 and d = 0, so each triple with d ̸= 0 is being counted essentially twice.
The terms with d = 0 only contribute π(n). It is this which Green and Tao famously
generalised in 2004 to k primes in a.p. The object of this homework is to show that for
any fixed B ≥ 1 we have

A(n) =
1

2
C2n

2 +OB

(
n2(log n)−B

)
(1)

where C2 is the twin prime constant C2 = 2
∏
p>2

(
1− 1

(p− 1)2

)
. Note that most au-

thors call C ′
2 =

∏
p>2

(
1− 1

(p−1)2

)
the twin prime constant, but then write π2(x) ∼

2C ′
2x(log x)

−2(!).
It is easily deduced from (1) that a(n) = card{p1 < p2 < p3 ≤ n : p1 + p2 = 2p3} ∼

1
4C2n

2(log n)−3.

1. In the notation of Theorem 7.6, show that

∫
m

S(α)2S(−2α)dα ≪ n2(log n)(7−A)/2.

By Schwarz

∫ 1

0

|S(α)S(2α)|dα ≤
(∫ 1

0

|S(α)|2dα
) 1

2
(∫ 1

0

|S(2α)|2dα
) 1

2

=
∑
p≤n

(log p)2 ≪ n log n

and, by HW10, supm |S(α)| ≪ n(log n)(5−A)/2.

2. Show that

∫
M

S(α)2S(−2α)dα = C2J(n) +O
(
n2(log n)1−A)

)
where

J(n) =

∫ (log n)An−1

−(log n)An−1

T (β)2T (−2β)dβ.

It is possible to replace the exponent 1−A by −A, but that requires a lot more work and
this suffices for our purposes. Let S1 = S(α), S2(α) = S(−2α), V1 = µ(q)T (β)/ϕ(q), V2 =
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µ(q/(q, 2))T (−2β)/ϕ(q/(q, 2)). Note that if α = a/q+ β, then 2α = (2a/(q, 2))(q/(q, 2))+
2β. Hence for α ∈ M(q, a) we have Sj = Vj + Ej where Ej ≪ n exp(−c

√
log n) and

S2
1S2 = (V1 + E1)

2(V2 + E2) = V 2
1 V2 + O

(
n3 exp(−c

√
log n)

)
. Integrating over M gives

S
(
(log n)A

)
J(n) +O(n2(log n)−A) where

S(Q) =
∑
q≤Q

µ(q)2µ(q/(q, 2)

ϕ(q)ϕ(q/(q, 2))
.

We also have
∑

q>(log n)A
µ(q)2

ϕ(q)ϕ(q/(q,2)) ≪
∑

q>(log n)A(log q)q
−2 ≪ (log n)1−A, J(n) ≪

n
∫
|β|≤1/2

min(n2, β−2)dβ ≪ n2 and S(∞) = C2.

3. We have a problem in that T (2× 1/2) = n. To get round this, prove that∫ 1/2

−1/2

|T (2β)|2dβ =
1

2

∫ 1

−1

|T (β)|2dβ =

∫ 1/2

−1/2

|T (β)|2dβ = n

and∫
(log n)An−1≤|β|≤1/2

|T (β)2T (−2β)|dβ

≪ n(log n)−A

∫ 1/2

−1/2

|T (β)T (−2β)|dβ ≪ n2(log n)−A.

The first equality is a simple change of variable. The second uses the periodicity of
T . The third is Parseval’s identity. For the last part begin by observing that T (β) ≪
∥β∥−1 ≪ n(log n)−A and then apply Schwarz and the previous equalities.

4. Prove that

∫ 1/2

−1/2

T (β)2T (−2β)dβ = card{n1, n3 ≤ n : 2|n1 + n3} =
1

2
n2 +O(1) and

∫
M

S(α)2S(−2α)dα =
1

2
C2n

2 +O
(
n2(log n)1−A)

)
.

By the orthogonality of the additive characters the integral is the number of solutions
of n1+n3 = 2n2 with nj ≤ n and thus is the number of ordered pairs n1 ≤ n, n3 ≤ n with
n1 + n3 even. This is ∑

n1≤n

∑
n3≤n

1 + (−1)n1+n3

2
=

n2

2
+O(1).

Then, by Q3, J(n) =
∫ 1/2

−1/2
T (β)2T (−2β)dβ + O

(
n2(log n)−A

)
and the last part of the

question follows from Q2.

5. Deduce (1).
We have A(n) =

∫
U
S(α)2S(−2α)dα. Then (1) follows from Q1 and Q4.


