Math 571, Spring 2025, Solutions 8

1. Suppose that α is a real number, $1 < u < \sqrt{X}$, and $S(\alpha) = \sum_{n \leq X} \mu(n)e(\alpha n)$. Prove that $S(\alpha) = S_1 - S_2 + 2S_3$ where $S_1 = \sum_{m \geq u} \sum_{u < n \leq X/m} a_m \mu(n)e(\alpha mn)$, $S_2 = \sum_{m \leq u^2} c_m \sum_{n \leq X/m} e(\alpha mn)$, $S_3 = \sum_{n \leq u} \mu(n)e(\alpha n)$, $a_m = \sum_{m \mid n,m \leq u} \mu(m)$, $c_m = \sum_{k \ell = m, k \leq u, \ell \leq u} \mu(k)\mu(\ell)$.

This is as in the case of Λ but we instead use the identity $\zeta(s)^{-1} = (1 - \zeta(s)F(s))(\zeta(s)^{-1} - F(s)) - F^2\zeta(s) + 2F(s)$ where $F(s) = \sum_{n \leq u} \mu(n)n^{-s}$. The identity theorem for Dirichlet series then gives $\mu(n) = c_1(n) - c_2(n) + c_3(n)$ where

$$c_1(n) = \sum_{\ell m = n, u < \ell, u < m} \sum_{k \mid \ell, k > u} \mu(k) \mu(m),$$

 $c_2(n) = \sum_{k \in m = n, k \leq u, \ell \leq u} \mu(k) \mu(\ell)$ when $n \leq u$ and $c_2(n) = 0$ otherwise, and $c_3(n) = \mu(n)$. Now

$$\sum_{n \le X} c_1(n) e(\alpha n) = \sum_{\ell > u} \sum_{u < m \le X/\ell} a_\ell \mu(m) e(\alpha \ell m) = S_1,$$

 $\sum_{n \le X} c_2(n) e(\alpha n) = \sum_{j \le u^2} c_j \sum_{m \le X/k} e(\alpha j m) = S_2 \text{ and}$ $\sum_{n \le X} c_3(n) e(\alpha n) = S_3.$

2. Suppose that α is a real number, $a \in \mathbb{Z}$, $q \in \mathbb{N}$ with (a,q) = 1 and $|\alpha - a/q| \leq q^{-2}$. Prove that there is a positive constant C such that $S(\alpha) \ll (Xq^{-1/2} + X^{4/5} + X^{1/2}q^{1/2})X^{\varepsilon}$.

There seems to be no easy way to replace the X^{ε} by $(\log X)^C$ in every term. We try to imitate Homework 7. The first difference is that now we only have $|a_m| \leq d(m)$. Since $\sum_{m \leq Y} d(m)^2 \ll Y(\log Y)^3$, by question 2 on Homework 7 we obtain the slightly inflated $S_1 \ll (Xq^{-1/2} + Xu^{-1/2} + X^{1/2}q^{1/2})(\log X)^3$.

Of course $S_3 \ll u$ and we will take $u = X^{2/5}$. Thus we can concentrate on S_2 . We have

$$S_2 \ll \sum_{m \le u^2} d(m) \min\left(\frac{x}{m}, \frac{1}{\|\alpha m\|}\right).$$

By Cauchy's inequality this is

$$\left(\sum_{m \le u^2} \frac{d(m)X}{m}\right)^{1/2} \left(\sum_{\substack{m \le u^2\\1}} \min\left(\frac{x}{m}, \frac{1}{\|\alpha m\|}\right)\right)^{1/2}$$

We can apply the method of homework 7, Question 1 to obtain

$$S_2 \ll \left(X(\log X)^4\right)^{1/2} \left((Xq^{-1} + X^{4/5} + q)\log(2X)\right)^{1/2} \\ \ll (Xq^{-1/2} + X^{9/10} + X^{1/2}q^{1/2})(\log X)^3.$$

This is good enough provided that $q \leq X^{1/5}$ or $q > X^{4/5}$. Thus it remains to deal with the case $X^{1/5} < q \leq X^{4/5}$. Again follow the arguments of homework 7, Question 1 (iii) and (iv). Following (iii), the contribution from m with $1 \leq m \leq q/2$, as $d(m) \ll q^{1/8} \ll X^{1/10} \ll (X/q)^{1/2}$ we obtain the bound

$$\sum_{m \le q/2} d(m) \|\alpha m\|^{-1} \ll (X/q)^{1/2} \sum_{m \le q/2} \|\alpha m\|^{-1} \ll X^{1/2} q^{1/2} \log(2q).$$

In following (iv) we obtain

$$\sum_{hq-q/2 < m \le hq+q/2} d(m) \min\left(\frac{x}{m}, \frac{1}{\|\alpha m\|}\right)$$
$$\ll \sum_{m \in \mathcal{M}(h)} d(m) \frac{X}{hq} + \sum_{j \in \mathcal{J}(h)} d(hq+j) \frac{1}{\|(ja+k)/q\|}$$

where now $1 \leq h \leq u^2/q$ and, for a given h, $\mathcal{J}(h)$ consists of those jwith $-q/2 < j \leq q/2$ for which $||(ja+k)/q|| \geq 2/q$ and $\mathcal{M}(h)$ has at most three elements. In the sum over $\mathcal{M}(h)$ we have $d(m) \ll X^{1/10} \ll q^{1/2}$ and so the sum contributes $\ll Xq^{-1/2}h^{-1}$. Summing over h gives an adequate bound. For the sum over $\mathcal{J}(h)$ there seems to be nothing obviously better than replacing d(hj+j) by $X^{\varepsilon/2}$. Then following on as in homework 7 we obtain for the sum over $\mathcal{J}(h)$ the bound

$$X^{\varepsilon/2} \sum_{h \le u^2/q + 1/2} q \log(2q) \ll X^{4/5+\varepsilon}.$$

Thus we have obtained $S(\alpha) \ll (Xq^{-1/2} + X^{1/2}q^{1/2})(\log X)^3 + X^{\frac{4}{5}+\varepsilon}$.