χ denotes a character modulo q and $\tau(\chi) = \sum_{x=1}^{q} e(x/q)$.

1. (i) Prove that if either (a,q) = 1 or q is prime and $\chi \neq \chi_0$, then $\sum_{x=1}^{q} \chi(x)e(ax/q) = \overline{\chi}(a)\tau(\chi)$.

(ii) Prove that if the c_x are arbitrary complex numbers, then $\frac{1}{q} \sum_{a=1}^{q} \left| \sum_{x=1}^{q} c_x e(ax/q) \right|^2 = \sum_{x=1}^{q} |c_x|^2$.

(iii) Prove that $|\tau(\chi)| \leq q^{1/2}$, and that equality occurs when q is prime and $\chi \neq \chi_0$.

(i) When (q, a) = 1, multiply the LHS by $\chi(a)$ and replace ax by x. If q is prime and (a,q) > 1, so that (a,q) = q the LHS and RHS are both 0. (ii) Multiply out the LHS and observe that $\sum_{a=1}^{q} e(a(x-y)/q)$ is q or 0 according as to whether q|x-y or not. (iii) Take $c_x = \chi(x)$ in (ii). The RHS = $\phi(q)$. The LHS $\geq q^{-1} \sum_{(a,q)=1} |\tau(\chi)|^2$. If q is prime, then the LHS is $q^{-1} \sum_{a=1}^{q-1} |\tau(\chi)|^2 + q^{-1} |\sum_{x=1}^{q} \chi(x)|^2$ and the second expression is 0.

2. Suppose that $M, N \in \mathbb{N}$ and χ is a non-principal character modulo p. (i) Prove that $\sum_{a=M+1}^{M+N} e(ax/p) = \frac{e(Nx/p)-1}{e(x/p)-1} e((M+1)x/p).$

(ii) Prove that
$$\tau(\overline{\chi}) \sum_{M < a \le M+N} \chi(a) = \sum_{x=1}^{p-1} \overline{\chi}(x) \frac{e(Nx/p) - 1}{e(x/p) - 1} e((M+1)x/p).$$

(iii) Prove $\sum_{x=1}^{p-1} \frac{1}{\sin(\pi x/p)} = \frac{2}{\pi} p \log p + O(p)$ and $\left| \sum_{M < a \le M+N} \chi(a) \right| \le \frac{2}{\pi} p^{1/2} \log p + O(p^{1/2}).$

(i) the LHS is the sum of the terms of a g.p. with c.r. e(ax/p). (ii) By 1(i), $\tau(\overline{\chi})\chi(a) = \sum_{x=1}^{p-1} \overline{\chi}(x) e(ax/p)$. Apply (i). (iii) Since χ is non-principal, p is odd. We have two copies of $\sum_{1 \le x < p/2} \frac{1}{\sin(\pi x/p)}$. When $0 < \alpha$ we have $\alpha - \alpha^3/6 < \sin \alpha < \alpha$, so when $\alpha \le \pi/2$, $(\sin \alpha)^{-1} = \alpha^{-1} + O(\alpha)$. Now use Euler's estimate.

3. Given an odd prime p let n(p) denote the least quadratic non-residue modulo p. (i) Prove that n(p) is prime. (ii) Prove that there is an r with $1 \le r < n(p)$ such that n(p)|p+r, and show that (p+r)/n(p) is a quadratic non-residue modulo p. Deduce that $n(p) \le \frac{1}{2} + \sqrt{p-1}$.

(i) Since the Legendre symbol is multiplicative at least one of the prime factors of n(p) has to be a quadratic non-residue. (ii) Since p is a prime differing from n(p) the division algorithm applied to -p gives this at once. p + r has to be a quadratic residue, since r is. Hence $n(p)^2 \le p + r \le p + n(p) - 1$. Now complete the square.

4. Let χ denote the Legendre symbol modulo p and suppose that Q is an integer with $n(p) < Q < n(p)^2$. (i) Prove that if $a \leq Q$ and $\chi(a) = -1$, then a is divisible by exactly one prime p' with $n(p) \leq p' < Q$ and that $\chi(p') = -1$. Deduce that $\sum_{a \leq Q} \chi(a) \geq Q - \sum_{n(p) \leq p' \leq Q} 2\lfloor Q/p' \rfloor$ and that the right hand side is $Q - 2Q \log \frac{\log Q}{\log n(p)} + O(\frac{Q}{\log Q})$. (ii) Let $Q = p^{1/2} (\log p)^2$ and assume that $n(p) > Q^{1/2}$. Prove that $n(p) \ll p^{\frac{1}{2\sqrt{e}}} (\log p)^{\frac{2}{\sqrt{e}}}$ (and this is also true when $n(p) \leq Q^{1/2}$).

(i) At least one of the prime factors of p' of a is a quadratic non-residue. But then $p' \ge n(p)$, so there cannot be two. Thus the sum is Q - 2N where N is the number of $a \le Q$ with a quadratic non-residue prime factor. We have $N \le \sum_{n(p) \le p' \le Q} \lfloor Q/p' \rfloor$. The final estimate follows from Mertens or the prime numbe theorem. (ii) By Pólya-Vinogradov the LHS (i) is $\ll p^{1/2} \log p \ll Q/\log Q$. Thus dividing the estimate given by (i) by 2Q we have $\log \frac{\sqrt{e} \log n(p)}{\log Q} \ll 1/\log p$ and so $\sqrt{e} \log n(p) \le \log Q + O(1)$ whence $n(p) \ll Q^{1/\sqrt{e}}$.