Math 571 Analytic Number Theory I, Spring 2025, Solutions 5

1. Let $\pi_2(X)$ denote the number of of prime numbers $p \leq X$ for which p+2 is also prime and let $D = \sqrt{X}$ and $P = \prod_{p \leq D} p$. Define a_n to be 0 unless (n(n+2), P) = 1 in which case take $a_n = 1$, and define $Z = \sum_{n \leq N} a_n$. Prove that $\pi_2(X) \leq Z + \sqrt{X}$.

If p is counted by $\pi_2(X)$, then either $p \leq \sqrt{X}$ or p(p+2) has no common factor with P.

2. Prove that if ω is the multiplicative function with $\omega(2) = 1$, $\omega(p) = 2$ when 2 $and <math>\omega(p^k) = 0$ otherwise, then $\pi_2(X) \ll \frac{X}{S(D)} + R$ where $S(D) = \sum_{q \leq Q} \mu(q)^2 \prod_{p \mid q} \frac{\omega(p)}{p - \omega(p)}$ and $R = \sum_{q \leq D} \sum_{r \leq D} \mu(q)^2 \mu(r)^2 \omega([q, r]).$

Clearly the \overline{n} counted by n are odd and omit the two residue classes 0 and -2 modulo p for each odd prime $p \leq Q$. The bound then follows from Selberg's theorem.

3. Prove that S(D) = T(D) + T(D/2) where

$$T(Q) = \sum_{\substack{q \le Q \\ q \text{ odd}}} \mu(q)^2 \prod_{p|q} \frac{2}{p-2}$$

The terms in S(D) with q odd contribute T(D). Those with q even contribute T(D/2).

4. Prove that if p > 2, then 2/(p-2) = ∑[∞]_{k=1} 2^k/p^k and that if g is the multiplicative function with g(p^k) = 2^k, then T(Q) ≥ ∑_{q≤Q} g(q)/q. Let s(q) = ∏_{p|q} p, the squarefree kernel of q. Then T(Q) = ∑_{s≤Q} µ(s)² ∏_{p|s} (∑[∞]_{k=1} 2^k/p^k) = ∑_{s odd} µ(s)² ∑_{s(q)=s} q g(q)/q = ∑_{q odd} g(q)/q. Clearly every odd q ≤ Q occurs.
5. Prove that g(q) ≥ d(q) and that T(Q) ≥ ∑_{q≤Q} d(q)/q.

For every $k \in \mathbb{N}$ we have $2^k \ge k+1$.

6. Prove that if $Q \ge 2$, then $\sum_{\substack{q \le Q \\ q \text{ odd}}} \frac{d(q)}{q} \gg (\log R)^2$ and hence that if $X \ge 2$, then $\pi_2(X) \ll \frac{X}{(\log X)^2}$.

The sum in question is $\sum_{\substack{mn \leq Q \\ mn \text{ odd}}} \frac{1}{mn} \geq \left(\sum_{\substack{m \leq \sqrt{Q} \\ m \text{ odd}}} \frac{1}{m}\right)^2$ and for large Q, $\sum_{\substack{m \leq \sqrt{Q} \\ m \text{ odd}}} \frac{1}{m} = \frac{1}{2}\log Q + O(1)$. Also $R \leq \left(\sum_{q \leq D} d(q)\right)^2 \ll D^2 \log^2 D$. Take $D = X^{1/2} (\log X)^{-2}$ in question 2.

7. (Brun 1919) Let \mathcal{P}_2 denote the set of primes p for which p+2 is also prime. Prove that $\sum_{p \in \mathcal{P}_2} \frac{1}{p}$ converges.

We have
$$\sum_{\substack{p \le X \\ p \in \mathcal{P}_2}} \frac{1}{p} \ll \sum_{k \le 2 \log 2X} \sum_{\substack{2^{k-1} and by Q6 this is $\ll \sum_{k \le 2 \log 2X} \frac{1}{k^2} \ll 1$.$$