Math 571 Analytic Number Theory, Solutions 4

1. Given $k, q \in \mathbb{N}$, let $\rho(q; n)$ denote the number of solutions of $x^k \equiv n$ (mod q) and define $S(q, a) = \sum_{x=1}^{q} e(ax^k/q)$. (i) Prove that if (n, q) = 1,

then
$$\rho(q;n) = \sum_{x=1}^{q} \frac{1}{\phi(q)} \sum_{\chi \pmod{q}} \overline{\chi}(n)\chi(x)^{k}$$
 (ii) Deduce that, if $(n,q) =$

1, $\rho(q; n) = \sum_{\substack{\chi \pmod{q} \\ \chi^k = \chi_0}} \chi(n)$. (iii) Given a prime number p, let \mathcal{A} denote

the set of characters χ modulo p such that $\chi^k = \chi_0$ but $\chi \neq \chi_0$. Prove that if $p \nmid a$, then $S(p, a) = \sum_{\chi \in \mathcal{A}} \overline{\chi}(a)\tau(\chi)$. Let g be a primitive root modulo p. Prove that every character modulo p can be defined by

 $\chi_h(g^y) = e\left(\frac{hy}{p-1}\right)$. (v) Prove that $\operatorname{card}(\mathcal{A}) = (k, p-1) - 1$ and deduce that $|S(p, a)| \leq ((k, p-1) - 1)p^{\frac{1}{2}}$.

(i) By the orthogonality of the characters modulo q, the inner sum will be 0 unless $x^k \equiv n \pmod{q}$ and (n,q) = 1, in which case it is $\phi(q)$. (ii) After interchanging the order in (i) we observe that $\sum_{x=1}^{q} \chi^k(x) = 0$ unless the character χ^k is the principal character, in which case it is $\phi(q)$. (iii) By definition of S and ρ , $S(p,1) = 1 + \sum_{n=1}^{p-1} e(an/p)\rho(p;n)$. By (ii) this is $1 + \sum_{\chi \pmod{q}} \sum_{n=1}^{p} e(an/p)\chi(n) = \sum_{n=1}^{p} e(an/p) + \sum_{\chi^k = \chi_0} \sum_{n=1}^{p} e(an/p)\chi(n)$, and the first sum sums to 0. When $\chi \neq \chi_0$, since p is prime χ will be primitive so then sum over n is $\overline{\chi}(a)\tau(\chi)$. (iv) The given construction gives $\phi(p)$ multiplicative functions of period p so must give an isomorphism. By (iv), for χ^k to be equal to χ_0 we must has p - 1|hk, i.e. $\frac{p-1}{(p-1,k)}|h$ and so there are only (p-1.k) possibilities, and one will be the principal character.

2. Here is a proof of a slightly weaker result avoiding characters. (i) With the same notation, prove that if $1 \leq y \leq p-1$, then $S(p,a) = S(p,ay^k)$. (ii) Prove that if $p \nmid n$, then there is an m with $1 \leq m \leq p-1$ such that $\rho(p;n) = \operatorname{card}\{y : 1 \leq y \leq p-1, g^{yk} \equiv g^m\}$ and that $\rho(p;n) \leq (k,p-1)$. (iii) Prove that if $p \nmid a$, then $(p-1)|S(p,a)|^2 = \sum_{z=1}^{p-1} \rho(p;z)|S(p,az)|^2 \leq (k,p-1)\sum_{t=1}^{p-1} |S(p,t)|^2$. (iv) Prove that $\sum_{t=1}^{p} |S(p,t)|^2 = \sum_{x=1}^{p} p\rho(p;x^k) \leq p(p-1)(k,p-1) + p$, (v) Deduce that $|S(p,a)| \leq ((k,p-1)((k,p-1)-1))^{1/2} p^{1/2}$.

(i) Simply observe that xy runs through a complete set of residue as x does. (ii) Immediate by substitution $x = g^y$, $n = g^m$. Then ρ is the number of solutions of $yk \equiv m \pmod{p-1}$. (iii) Sum over $y \not\equiv 0$ and sort according as $y^k \equiv z$. (iv) By orthogonality of the additive characters we are counting solutions of $x^k \equiv y^k$ with weight p and for a given x the number of such is $\rho(p; x^k)$ and this is 1 when x = pand $\leq (k, p - 1)$ otherwise. (v) By (iii) and (iv) $(p - 1)|S(p, a)|^2 \leq$ (k, p - 1)(p(p - 1)(k, p - 1) - p(p - 1)). It ought to be possible to tighten this up to give 1(v).

3. (Mordell c1930) (i) Let $N_k(p)$ denote the number of solutions in $x_1, \ldots, x_k, y_1, \ldots, y_k$ of the simultaneous congruences

$$x_1 + \cdots x_k \equiv y_1 + \cdots y_k \pmod{p}$$
$$x_2 + \cdots x_2 \equiv y_2 + \cdots y_k^2 \pmod{p}$$
$$\vdots$$
$$x_1^k + \cdots x_k^k \equiv y_1^k + \cdots y_k^k \pmod{p}$$

Prove that if k < p, then $N_k(p) \le k! p^k$.

In fact it can be shown that the **y** are a permutation of the **x**. Let $\sigma_j(\mathbf{x})$ denote the elementary symmetric polynomial of degree j in x_1, \ldots, x_k and let $s_j(\mathbf{x}) = \sum_{r=1}^k x_r^j$. Then Newton's identities state that $j\sigma_j(\mathbf{x}) = \sum_{r=1}^j (-1)^{r-1}\sigma_{j-r}(\mathbf{x})s_r(\mathbf{x})$ valid for $k \ge j \ge 1$ and $0 = \sum_{r=j-k}^j (-1)^{r-1}\sigma_{j-r}(\mathbf{x})s_r(\mathbf{x})$ valid for $j > k \ge 1$. The system of congruences tells that $s_r(\mathbf{x}) \equiv s_r(\mathbf{y}) \pmod{p}$ for $1 \le r \le k$ and hence likewise the $\sigma_r(\mathbf{x})$ and $\sigma_r(\mathbf{y})$. Thus for the polynomial $P(x; \mathbf{u}) = (x - u_1) \ldots (x - u_k)$, for any solution of the system one has $P(x; \mathbf{x}) \equiv P(x; \mathbf{y}) \pmod{p}$. It then follows that $y_k \equiv x_j$ for some j and then by induction that the **y** are a permutation of the **x** modulo p. (ii) Let $f(x) = a_1x + \cdots + a_kx^k$ and $S(p; f) = S(p; \mathbf{a}) = \sum_{x=1}^p e(f(x)/p)$. Show that $\sum_{a_1}^p \ldots \sum_{a_k}^p |S(p; \mathbf{a})|^{2k} = p^k N_k(p)$ (iii) Show that if $p \nmid y$ and $z \in \mathbb{Z}$, then $S(p; \mathbf{a}) = S(p; \mathbf{b})$ where $b_k = a_ky^k$ and $b_{k-1} = (ka_kz + a_{k-1})y^{k-1}$ and hence that $p\frac{p-1}{(k,p-1)}|S(p; \mathbf{a})|^{2k} \le k!p^{2k}$. (iv) Prove Mordel's theorem that if f is a polynomial with integer coefficients of degree k modulo p, then $|S(p; f)| \le kp^{1-1/k}$.

(ii) This follows by writing each term as a 2k-iterated sum and applying orthogonality. (iii) Replace the summation variable x in S(p; f) by xy + z. Then the leading term becomes $a_k y^k$ and the coefficient of x^{k-1} is $a_k y^{k-1}z + a_{k-1}y^{k-1}$, and this gives (p-1)/(k, p-1) different possible b_k modulo p and for each such y there are p different possible choices for z, and hence for b_k . Thus we cover at least p(p-1)/(k, p-1) different choices for **a**. (iv) It follows that $S(f;p)| \leq (2k.k!)^{\frac{1}{2k}}p^{1/2} \leq kp^{1-1/k}$. One only needs to check that for $k \geq 3$ one has $k^{-1}(2k.k!)^{\frac{1}{2k}} \leq 1$.