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1. Given k, q ∈ N, let ρ(q;n) denote the number of solutions of xk ≡ n

(mod q) and define S(q, a) =

q∑
x=1

e(axk/q). (i) Prove that if (n, q) = 1,

then ρ(q;n) =

q∑
x=1

1

ϕ(q)

∑
χ (mod q)

χ(n)χ(x)k (ii) Deduce that, if (n, q) =

1, ρ(q;n) =
∑

χ (mod q)

χk=χ0

χ(n). (iii) Given a prime number p, let A denote

the set of characters χ modulo p such that χk = χ0 but χ ̸= χ0. Prove

that if p ∤ a, then S(p, a) =
∑
χ∈A

χ(a)τ(χ). Let g be a primitive root

modulo p. Prove that every character modulo p can be defined by

χh(g
y) = e

(
hy
p−1

)
. (v) Prove that card(A) = (k, p− 1)− 1 and deduce

that |S(p, a)| ≤
(
(k, p− 1)− 1

)
p

1
2 .

(i) By the orthogonality of the characters modulo q, the inner sum
will be 0 unless xk ≡ n (mod q) and (n, q) = 1, in which case it is ϕ(q).
(ii) After interchanging the order in (i) we observe that

∑q
x=1 χ

k(x) = 0
unless the character χk is the principal character, in which case it is
ϕ(q). (iii) By definition of S and ρ, S(p, 1) = 1+

∑p−1
n=1 e(an/p)ρ(p;n).

By (ii) this is 1 +
∑

χ (mod q)

χk=χ0

∑p
n=1 e(an/p)χ(n) =

∑p
n=1 e(an/p) +∑

χ∈A
∑p

n=1 e(an/p)χ(n), and the first sum sums to 0. When χ ̸= χ0,

since p is prime χ will be primitive so then sum over n is χ(a)τ(χ). (iv)
The given construction gives ϕ(p) multiplicative functions of period p
so must give an isomorphism. By (iv), for χk to be equal to χ0 we must
has p− 1|hk, i.e. p−1

(p−1,k)
|h and so there are only (p− 1.k) possibilities,

and one will be the principal character.

2. Here is a proof of a slightly weaker result avoiding characters. (i)
With the same notation, prove that if 1 ≤ y ≤ p − 1, then S(p, a) =
S(p, ayk). (ii) Prove that if p ∤ n, then there is an m with 1 ≤ m ≤ p−1
such that ρ(p;n) = card{y : 1 ≤ y ≤ p − 1, gyk ≡ gm} and that
ρ(p;n) ≤ (k, p − 1). (iii) Prove that if p ∤ a, then (p − 1)|S(p, a)|2 =∑p−1

z=1 ρ(p; z)|S(p, az)|2 ≤ (k, p − 1)
∑p−1

t=1 |S(p, t)|2. (iv) Prove that∑p
t=1 |S(p, t)|2 =

∑p
x=1 pρ(p;x

k) ≤ p(p − 1)(k, p − 1) + p, (v) Deduce

that |S(p, a)| ≤
(
(k, p− 1)((k, p− 1)− 1)

)1/2
p1/2.

(i) Simply observe that xy runs through a complete set of residue
as x does. (ii) Immediate by substitution x = gy, n = gm. Then ρ is

1



2

the number of solutions of yk ≡ m (mod p − 1). (iii) Sum over y ̸≡ 0
and sort according as yk ≡ z. (iv) By orthogonality of the additive
characters we are counting solutions of xk ≡ yk with weight p and for
a given x the number of such is ρ(p;xk) and this is 1 when x = p
and ≤ (k, p − 1) otherwise. (v) By (iii) and (iv) (p − 1)|S(p, a)|2 ≤
(k, p − 1)

(
p(p − 1)(k, p − 1) − p(p − 1)

)
. It ought to be possible to

tighten this up to give 1(v).

3. (Mordell c1930) (i) Let Nk(p) denote the number of solutions in
x1, . . . , xk, y1, . . . , yk of the simultaneous congruences

x1 + · · ·xk ≡ y1 + · · · yk (mod p)

x2 + · · ·x2 ≡ y2 + · · · y2k (mod p)

...

xk
1 + · · ·xk

k ≡ yk1 + · · · ykk (mod p)

Prove that if k < p, then Nk(p) ≤ k!pk.
In fact it can be shown that the y are a permutation of the x.

Let σj(x) denote the elementary symmetric polynomial of degree j in

x1, . . . , xk and let sj(x) =
∑k

r=1 x
j
r. Then Newton’s identities state

that jσj(x) =
∑j

r=1(−1)r−1σj−r(x)sr(x) valid for k ≥ j ≥ 1 and

0 =
∑j

r=j−k(−1)r−1σj−r(x)sr(x) valid for j > k ≥ 1. The system of

congruences tells that sr(x) ≡ sr(y) (mod p) for 1 ≤ r ≤ k and hence
likewise the σr(x) and σr(y). Thus for the polynomial P (x;u) = (x−
u1) . . . (x−uk), for any solution of the system one has P (x;x) ≡ P (x;y)
(mod p). It then follows that yk ≡ xj for some j and then by induc-
tion that the y are a permutation of the x modulo p. (ii) Let f(x) =
a1x + · · · + akx

k and S(p; f) = S(p; a) =
∑p

x=1 e
(
f(x)/p

)
. Show that∑p

a1
. . .

∑p
ak
|S(p; a)|2k = pkNk(p) (iii) Show that if p ∤ y and z ∈ Z,

then S(p; a) = S(p;b) where bk = aky
k and bk−1 = (kakz + ak−1)y

k−1

and hence that p p−1
(k,p−1)

|S(p; a)|2k ≤ k!p2k. (iv) Prove Mordel’s theorem

that if f is a polynomial with integer coefficients of degree k modulo
p, then |S(p; f)| ≤ kp1−1/k.

(ii) This follows by writing each term as a 2k-iterated sum and apply-
ing orthogonality. (iii) Replace the summation variable x in S(p; f) by
xy+z. Then the leading term becomes aky

k and the coefficient of xk−1

is aky
k−1z+ak−1y

k−1, and this gives (p−1)/(k, p−1) different possible
bk modulo p and for each such y there are p different possible choices for
z, and hence for bk. Thus we cover at least p(p− 1)/(k, p− 1) different

choices for a. (iv) It follows that S(f ; p)| ≤ (2k.k!)
1
2k p1/2 ≤ kp1−1/k.

One only needs to check that for k ≥ 3 one has k−1(2k.k!)
1
2k ≤ 1.


