Math 571 Analytic Number Theory, Spring 2025, Solutions 3

1. Let f denote a polynomial with integer coefficients and f(0) = 0 and for $q \in \mathbb{N}$ define $S(q; f) = \sum_{x=1}^{q} e(f(x)/q), W(q; f) = \sum_{\substack{x=1\\(x,q)=1}}^{q} e(f(x)/q).$

(i) Suppose that $q_1, q_2 \in \mathbb{N}$ with $(q_1, q_2) = 1$. Choose r_1, r_2 so that $r_1q_2 \equiv 1 \pmod{q_1}$ and $r_2q_1 \equiv 1 \pmod{q_2}$. Prove that

 $S(q_1q_2; f) = S(q_1; r_1f)S(q_2; r_2f) \& W(q_1q_2; f) = W(q_1; r_1f)W(q_2; r_2f)$ (ii) Ramanujan's sum $c_q(n)$ is W with f(x) = nx. Prove that if $q = p^k$ for some prime p and positive integer k, then $c_q(n) = \sum_{m \mid (q,n)} m\mu(q/m)$.

Deduce that this holds for general q.

(i) Note that $x_1q_2r_1 + x_2q_1r_2$ runs over a complete or reduced set of residues modulo q_1q_2 as x_1 and x_2 do modulo q_1 and q_2 respectively. Thus for $k \ge 1$, $(x_1q_2r_1 + x_2q_1r_2)^k(q_1q_2)^{-1} \equiv q_2^{k-1}r_1^kx_1^kq_1^{-1} + q_1^{k-1}r_2^kx_2^kq_2^{-1} \equiv r_1x_1^kq_1^{-1} + r_2x_2^kq_2^{-1} \pmod{1}$. (ii) The simplest proof of this is to prove it directly as $c_q(n) = \sum_{x=1}^q \sum_{k|(q,x)} \mu(k)e\left(\frac{xn}{q}\right)$

$$= \sum_{k|q} \mu(k) \sum_{y=1}^{q/\kappa} e\left(\frac{ny}{q/k}\right) = \sum_{\substack{k|q \\ q/k|n}} \mu(k) \frac{q}{k} = \sum_{m|(q,n)} m\mu(q/m).$$

The method implied by the question is first to observe in the notation of (i) that $r_j x_j$ runs over a reduced set of residues modulo q_j as x_j does, so in the case f(x) = nx, $W(q_1q_2; f) = W(q_1)W(q_2)$ and W is multiplicative. Moreover, then $W(p^k) = \sum_{\substack{x=1\\p \nmid x}}^{p^k} e(nxp^{-k}) = \sum_{\substack{x=1\\p \nmid x}}^{p^k} e(nxp^{-k}) - \sum_{\substack{x=1\\p \nmid x}}^{p^k} e(nxp^{-k}) = \sum_{\substack{x=1\\p \nmid x}}^{p^k} e(nxp^{-k}) - \sum_{\substack{x=1\\p \nmid x}}^{p^k} e(nxp^{-k}) = \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) - \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) = \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) - \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) = \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) - \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) = \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) - \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) = \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) - \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) = \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) - \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) - \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) = \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) - \sum_{\substack{x=1\\p \mid x}}^{p^k} e(nxp^{-k}) -$

 $\sum_{x=1}^{k} e(nxp^{1-k}) \text{ and one can proceed as above in this special case. Alter$ $natively one can deduce that <math>c_{p^k}(n) = \phi(p^k)\mu(p^k/(p^k,n))/\phi(p^k/(p^k,n))$

and conclude that $c_q(n) = \phi(q)\mu(q/(q,n))/\phi(p'/(p',n))/\phi(p'/(p',n))$

2. By lower and upper bound sifting functions we mean functions $\lambda^{\pm} : \mathbb{N} \to \mathbb{R}$ such that $\sum_{m|n} \lambda_m^- \leq \sum_{m|n} \mu(m) \leq \sum_{m|n} \lambda_m^+$ respectively. (i) Let λ_d^+ be an upper bound sifting function such that $\lambda_d^+ = 0$ for all d > z. Show that for any q, $0 \leq \frac{\varphi(q)}{q} \sum_{\substack{d \\ (d,q)=1}} \frac{\lambda_d^+}{d} \leq \sum_d \frac{\lambda_d^+}{d}$. (ii) Let η_d be real with $\eta_d = 0$ for d > z. Show for any $q, 0 \leq \frac{\varphi(q)}{q} \sum_{\substack{d,e \ (de,q)=1}} \frac{\eta_d \eta_e}{[d,e]} \leq \sum_{d,e} \frac{\eta_d \eta_e}{[d,e]}$. (iii) Let λ_d^- be a lower bound sifting function with $\lambda_d^- = 0$ for d > z. Show for any $q, \frac{\varphi(q)}{q} \sum_{\substack{d \ (d,q)=1}} \frac{\lambda_d^-}{d} \geq \sum_d \frac{\lambda_d^-}{d}$.

(i) We suppose first that $p|q \Rightarrow p \leq z$. Let \mathcal{M} denote the set of positive integers m such that each prime factor p satisfies $p \leq z$ and $p \nmid q$, and put $P = \prod_{p \leq z} p$. Then $\frac{P\phi(q)}{\phi(P)q} = \prod_{p|P,p \nmid q} \frac{p}{p-1} = \sum_{m \in \mathcal{M}} \frac{1}{m}$. Thus $\frac{P\phi(q)}{\phi(P)q} \sum_{(d,q)=1} \lambda_d^+ d^{-1} = \sum_{m \in \mathcal{M}} m^{-1} \sum_{d \in \mathcal{M}} \lambda_d^+ d^{-1} = \sum_{n \in \mathcal{M}} n^{-1} \sum_{d \mid n} \lambda_d^+$. This is ≥ 0 and so the lower inequality is immediate. Moreover $\sum_{n \in \mathcal{M}} n^{-1} \sum_{d \mid n} \lambda_d^+ \leq 0$

 $\sum_{n \in \mathcal{N}} n^{-1} \sum_{d|n} \lambda_d^+ \text{ where } \mathcal{N} \text{ is the set of } m > 0 \text{ such that each prime factor}$

p satisfies $p \leq z$. But this sum is $\sum_{m \in \mathcal{N}} m^{-1} \sum_d \lambda_d^+ d^{-1} = \frac{P}{\phi(P)} \sum_d \frac{\lambda_d^+}{d}$. Primes p > z make the factor $\phi(q)/q$ smaller, but still positive, without changing the sum.

Alternative proof. We have

<u>م</u>ـــ

 $\langle \rangle$

$$\frac{\varphi(q)}{q} \sum_{\substack{d \\ (d,q)=1}} \frac{\lambda_d^+}{d} = \sum_{\substack{d \\ (d,q)=1}} \lambda_d^+ \lim_{X \to \infty} \sum_{\substack{m \le X/d \\ (m,q)=1}} 1/X = \lim_{X \to \infty} X^{-1} \sum_{\substack{n \le X \\ (n,q)=1}} \sum_{d \mid n} \lambda_d^+ d = \lim_{X \to \infty} \sum_d \lambda_d^+ X^{-1} \lfloor X/d \rfloor = \sum_d \lambda_d^+/d.$$

(ii) Note that in the above proof we only used the property $\sum_{d|n} \lambda_d^+ \geq 0$, not the property $\lambda_1 \geq 1$. Now $(\sum_{d|n} \eta_d)^2 \geq 0$ and the LHS is $\sum_{d|n} \sum_{e|n} \eta_d \eta_e = \sum_{m|n} \sum_{d,e,[d,e]=m} \eta_d \eta_e$. Let $\lambda_m^+ = \sum_{d,e,[d,e]=m} \eta_d \eta_e$. Then $\sum_{m|n} \lambda_m^+ \geq 0$ and the support of λ_n^+ is contained in $[1, z^2]$, so we can apply (i) (with z replaced by z^2).

(iii) Either proof of (i) adapts. For example

$$\frac{\phi(q)}{q} \sum_{(d,q)=1} \lambda_d^- d^{-1} = \sum_{(d,q)=1} \lambda_d^- \lim_{X \to \infty} \sum_{m \le X/d, (m,q)=1} X^{-1}$$
$$= \lim_{X \to \infty} X^{-1} \sum_{n \le X, (n,q)=1} \sum_{d|n} \lambda_d^- \ge \sum_{n \le X} \sum_{d|n} \lambda_d^-,$$

etc.