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1. Let k ∈ N. Prove that there are infinitely many n such that µ(n +
1) = µ(n+ 2) = · · · = µ(n+ k).

Let p1, . . . , pk be k different primes. Then by the Chinese Remainder
Theorem there are infinitely many n with n ≡ −j (mod p2j) (1 ≤ j ≤ k)

and so p2j |n+ j and µ(n+ j) = 0.

2. Suppose that the arithmetical function η(n) satisfies
∑

m|n η(m) =

ϕ(n). Show that η(n) is multiplicative and evaluate η(pk).
By the Möbius inversion formula we have η = ϕ ∗ µ, and since both

ϕ and µ are multiplicative so is η by Theorem 1.4. Thus it suffices
to evaluate η(pk) =

∑k
j=0 µ(p

j)ϕ(pk−j). For k ≥ 1 this is µ(1)ϕ(pk) +

µ(p)ϕ(pk−1) and so η(p) = (p − 1) − 1 = p − 2 and, k ≥ 2, η(pk) =
pk−1(p− 1)− pk−2(p− 1) = pk−2(p− 1)2.

3. This question investigates whether there exists an arithmetic func-
tion θ such that θ ∗ θ = µ and θ(1) ≥ 0. (i) Prove that θ exists and is

uniquely determined. (ii) Prove that θ(pk) = (−1)k
(

1
2

k

)
. This is the

coefficient of zk in the Taylor expansion of (1− z)1/2 centred at 0. (iii)
By considering the function θ1(n) =

∏
pk∥n θ(p

k), or otherwise, show
that θ ∈ M.

(i) We can define θ iteratively by θ(1) = 1 and

θ(n) =
1

2

(
µ(n)−

∑
m|n

1<m<n

θ(m)θ(n/m)

)
.

That this determines θ uniquely follows by induction. For suppose that
θ∗ is another solution. Then θ∗(1) = 1 = θ(1) and if θ∗(m) = θ(m) for
m < n, then, by the above formula, θ∗(n) = θ(n). (ii) & (iii) Suppose

that |z| < 1. Then f(z) =
∞∑
k=0

(−1)k
(

1
2

k

)
zk converges absolutely to

(1− z)1/2 and so by rearrangement

∞∑
k=0

µ(pk)zk = 1− z = f(z)2 =
∞∑
k=0

zk
∑
j,k≥0
j+l=k

(−1)j
(

1
2

j

)
(−1)l

(
1
2

l

)
.

1
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Thus, by the identity theorem for power series

µ(pk) =
∑
j,k≥0
j+l=k

(−1)j
(

1
2

j

)
(−1)l

(
1
2

l

)
.

Thus the choice θ(pk) = (−1)j
( 1

2
j

)
and θ multiplicative will satisfy (i)

and so by uniqueness is the only solution.

4. A number n ∈ N is squarefree when it has no repeated prime factors.
For X ∈ R, X ≥ 1 let Q(X) denote the number of squarefree numbers
not exceeding X.

(i) Prove that

Q(X) =
6

π2
X +O

(√
X
)
.

(ii) Prove that if n ∈ N, then

Q(n) ≥ n−
∑
p

⌊
n

p2

⌋
.

(iii) Prove that∑
p

1

p2
<

1

4
+

∞∑
k=1

1

(2k + 1)2
<

1

4
+

∞∑
k=1

1

4k(k + 1)
=

1

2
.

(iv) Prove that Q(n) > n/2 for all n ∈ N.
(v) Prove that every integer n > 1 is a sum of two squarefree num-

bers.
(i) We have Q(x) =

∑
n≤x

∑
m2|n µ(m) =

∑
m≤

√
x µ(m)

⌊
x
m2

⌋
. (ii)

Q(n) = n−N where N is the number of n ≤ N for which there exists

a prime number p with p2|n. Thus N ≤
∑

p

⌊
n
p2

⌋
. (iii) Separate out

the prime p = 2 and use ⌊y⌋ ≤ y. (iv) We have immediately from (ii)
and (iii) that Q(n) > n − n

2
= n

2
. Consider the n − 1 boxes “k” with

1 ≤ k ≤ n− 1. If m ≤ n− 1 and m is squarefree put m in “m” and if
m′ ≤ n− 1 and m′ is squarefree put n−m′ in “n−m′”. We have just
put 2Q(n − 1) > n − 1 objects into n − 1 boxes so one box contains
two objects, i.e. m = n−m′ with both m and m′ squarefree.


