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1. Let k € N. Prove that there are infinitely many n such that pu(n +
D=pun+2)=--=pn-+k).

Let py,...,px be k different primes. Then by the Chinese Remainder
Theorem there are infinitely many n withn = —j (mod p?) (1 < j < k)
and so pi|n + j and pu(n + j) = 0.

2. Suppose that the arithmetical function n(n) satisfies -, n(m) =

#(n). Show that n(n) is multiplicative and evaluate n(p*).
By the Mobius inversion formula we have n = ¢ * p, and since both
¢ and p are multiplicative so is n by Theorem 1.4. Thus it suffices

to evaluate n(p*) = Z?:o w(p)p(pF=7). For k > 1 this is u(1)d(p*) +
u(p)o(p*') and so n(p) = (p—1) =1 = p—2and, k > 2, n(p*) =

3. This question investigates whether there exists an arithmetic func-

tion @ such that 6 x 0 = p and 6(1) > 0. (i) Prove that 6 exists and is
1

uniquely determined. (ii) Prove that 0(p*) = (1) (2) This is the

coefficient of z* in the Taylor expansion of (1 — 2)/2 centred at 0. (iii)
By considering the function 61(n) = [, O(p*), or otherwise, show
that 0 € M.

(i) We can define 6 iteratively by 6(1) = 1 and

0n) = %(u(n) -3 9<m>e<n/m>>.

mln
1<m<n

That this determines 6 uniquely follows by induction. For suppose that
0* is another solution. Then 0*(1) = 1 = 6(1) and if *(m) = 6(m) for
m < n, then, by the above formula, 0*(n) = 6(n). (ii) & (iii) Suppose

o0

1
that |z| < 1. Then f(z) = Z(—l)k (Z) 2* converges absolutely to
k=0

(1 — 2)¥/2 and so by rearrangement
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Thus, by the identity theorem for power series

1 1
) = X (2w (G).
k>0 J
jHi=k
Thus the choice 0(p*) = (—1)! (%) and 6 multiplicative will satisfy (i)
and so by uniqueness is the only solution.

4. A number n € N is squarefree when it has no repeated prime factors.
For X € R, X > 1 let Q(X) denote the number of squarefree numbers
not exceeding X.

(i) Prove that

6
QX) = X +0 (VX).
(ii) Prove that if n € N, then
n
Q(n) Zn—z {—QJ :
5 LP
(iii) Prove that

1 1 & 1 I — 1 1
— < - — < - —_— =
Xp:p2<4+;(2k+1)2 4+;4k(k+1) >

(iv) Prove that Q(n) > n/2 for all n € N.

(v) Prove that every integer n > 1 is a sum of two squarefree num-
bers.

(1) We have Q(z) = 3,0, o stlm) = X,c s alm) | 2. (i)
Q(n) =n— N where N is the number of n < N for which there exists

a prime number p with p?[n. Thus N < >° L%J (iii) Separate out

the prime p = 2 and use |y] < y. (iv) We have immediately from (ii)
and (iii) that Q(n) > n — 5 = 5. Consider the n — 1 boxes “k” with
1<k<n-—1 If m <n—1andm is squarefree put m in “m” and if
m' < n —1and m’ is squarefree put n —m’ in “n —m'”. We have just
put 2Q(n — 1) > n — 1 objects into n — 1 boxes so one box contains
two objects, i.e. m = n —m’ with both m and m’ squarefree.



