571 Analytic number Theory I, Spring Term 2025, Problems 13

Return by Monday 28th April

This homework is part of the transition from the discrete to the continuous. See $\S5.2$ of HLM.

1. Suppose that $k \in \mathbb{N}$, $\delta_j > 0$ $(1 \le j \le k)$ and Γ is a set of points $\gamma \in \mathbb{R}^k$ with the property that the open sets $\{\beta \in \mathbb{R}^k : \|\beta_j - \gamma_j\| < \delta_j, 0 \le \beta_j < 1\}$ are pairwise disjoint. Let $N_j \in \mathbb{N}$ and for $\mathbf{n} \in \mathcal{N} = \prod_j^k [1, N_j]$ let $a(\mathbf{n})$ be arbitrary complex numbers. Define

$$S(\boldsymbol{\alpha}) = \sum_{\mathbf{n}\in\mathcal{N}} a(\mathbf{n})e(\boldsymbol{\alpha}.\mathbf{n}).$$

Prove that $\sum_{\boldsymbol{\gamma} \in \Gamma} |S(\boldsymbol{\gamma})|^2 \ll \sum_{\mathbf{n} \in \mathcal{N}} |a(\mathbf{n})|^2 \prod_{j=1}^k (N_j + \delta_j^{-1}).$

Hint: Try adapting to k-dimensions one of the proofs of the large sieve inequality.

2. The notation $\boldsymbol{\nu}(x) = \boldsymbol{\nu}_k(x)$ represents the vector (x, x^2, \dots, x^k) . Thus the polynomial $\alpha_1 x + \dots + \alpha_k x^k = \boldsymbol{\alpha} . \boldsymbol{\nu}(x)$. Let

$$f(\boldsymbol{\alpha}; N) = \sum_{n=1}^{N} e(\boldsymbol{\alpha}.\boldsymbol{\nu}(n))$$

and suppose that $1 \leq m \leq N$.

(i) Prove that

$$f(\boldsymbol{\alpha};N) = \sum_{n=1+m}^{N+m} e(\boldsymbol{\alpha}.\boldsymbol{\nu}(n-m)) = \int_0^1 g(\boldsymbol{\alpha},\beta;m) \sum_{y=1+m}^{N+m} e(-y\beta)d\beta.$$

where

$$g(\boldsymbol{\alpha}, \boldsymbol{\beta}; m) = \sum_{n=1}^{2N} e(\boldsymbol{\alpha}.\boldsymbol{\nu}(n-m) + n\boldsymbol{\beta}).$$

(ii) Let $\mathcal{M} \subset (\mathbb{N} \cap [1, N])$ and $M = \operatorname{card}(\mathcal{M})$. Prove that

$$f(\boldsymbol{\alpha}) \ll M^{-1}(\log 2N) \sup_{\beta \in [0,1]} \sum_{m \in \mathcal{M}} |g(\boldsymbol{\alpha}, \beta; m)|$$

3. Define the k-1 dimensional vector $\boldsymbol{\gamma}(m)$ by

$$\boldsymbol{\alpha}.\boldsymbol{\nu}(x-m) = \sum_{j=1}^{k} \alpha_j (-m)^j + \sum_{h=1}^{k-1} x^h \gamma_h(m) + \alpha_k x^k$$

(i) Prove that $\gamma_h(m) = \sum_{j=h}^k \alpha_j {j \choose h} (-m)^{j-h}$.

(ii) Specialise to the case k = 3. Prove that if m, m' are two different elements of \mathcal{M} , then

$$\|3\alpha_3(m-m')\| = \|\gamma_2(m) - \gamma_2(m')\|,$$

$$\|2\alpha_2(m-m')\| \le \|\gamma_1(m) - \gamma_1(m')\| + 2N\|\gamma_2(m) - \gamma_2(m')\|,$$

so that if the $\alpha_2 m$ or α_3 are well spaced modulo 1, so are the γ_1 or the γ_2 and we can make use of question 1. This will happen when α_2 or α_3 are on minor arcs.

(i) Apply the binomial theorem and interchange the order of summation. (ii)