
MATH 571, ANALYTIC NUMBER THEORY, SPRING 2025, PROBLEMS 6

Due Monday February 24th

Let χ denote a character modulo q and define the Gauss sum by τ(χ) =

q∑
x=1

e(x/q).

1. (i) Prove that if either (a, q) = 1 or q is prime and χ ̸= χ0, then

q∑
x=1

χ(x)e(ax/q) = χ(a)τ(χ).

(ii) Prove that if the cx are arbitrary complex numbers, then
1

q

q∑
a=1

∣∣∣∣∣
q∑

x=1

cxe(ax/q)

∣∣∣∣∣
2

=

q∑
x=1

|cx|2.

(Compare Homework 1, question 2(ii).)
(iii) Prove that |τ(χ)| ≤ q1/2, and that equality occurs when q is prime and χ ̸= χ0.

2. Suppose that M,N ∈ N and χ is a non-principal character modulo p.

(i) Prove that

M+N∑
a=M+1

e(ax/p) =
e(Nx/p)− 1

e(x/p)− 1
e
(
(M + 1)x/p

)
.

(ii) Prove that τ(χ)
∑

M<a≤M+N

χ(a) =

p−1∑
x=1

χ(x)
e(Nx/p)− 1

e(x/p)− 1
e
(
(M + 1)x/p

)
.

(iii) Prove that

p−1∑
x=1

1

sin(πx/p)
=

2

π
p log p + O(p) and that
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∑

M<a≤M+N

χ(a)

∣∣∣∣∣∣ ≤ 2

π
p1/2 log p +

O(p1/2).
This is the Pólya-Vinogradov inequality discovered by them independently in 1919. The above

is Schur’s [1919] proof, and was discovered independently by Vinogradov [1920]. Burgess in his
Ph.D. thesis in 1959 showed that this bound can be replaced by εN whenever N ≫ p1/4+ε.

3. Given an odd prime p let n(p) denote the least quadratic non-residue modulo p, i.e the smallest
positive n such that x2 ≡ n (mod p) is insoluble.
(i) Prove that n(p) is prime.
(ii) Prove that there is an r with 1 ≤ r < n(p) such that n(p)|p+ r, and show that (p+ r)/n(p)

is a quadratic non-residue modulo p. Deduce that n(p) ≤ 1
2 +

√
p− 3/4.

4. Let χ denote the Legendre symbol modulo p, the non-principal character χ modulo p with
χ2 = χ0. It has the property that 1 + χ(n) is the number of solutions of x2 = n (mod p).
(i) Suppose that Q is an integer with n(p) < Q < n(p)2. Prove that if a ≤ Q and χ(a) = −1,
then a is divisible by exactly one prime p′ with n(p) ≤ p′ < Q and that χ(p′) = −1. Deduce that∑

a≤Q χ(a) ≥ Q−
∑

n(p)≤p′≤Q 2⌊Q/p′⌋ and that the right hand side is Q−2Q log logQ
log n(p)+O

(
Q

logQ

)
.

(Merten’s theorem is useful here.)

(ii) Let Q = p1/2(log p)2 and assume that n(p) > Q1/2. Prove that n(p) ≪ p
1

2
√

e (log p)
2√
e (and

note this is also true when n(p) ≤ Q1/2).

Vinogradov discovered this argument. Burgess obtained n(p) ≪ p
1

4
√

e
+ε

. Vinogradov had
conjectured that n(p) ≪ pε. Ankeny [1952] proved that on the assumption of the RH for L(s;χ)
one has n(p) ≪ (log p)2. Perhaps n(p) ≪ log p is true. There is a probabilistic argument which
suggests this. Linnik [1941] has shown that the number N(X) of primes p ≤ X such that
n(p) ≫ pδ satisfies N(X) ≪δ log logX.


