
Appendix E

Further Topics In Harmonic Analysis

E.1 Quantitative Trigonometric Approximation

Let I = [α, β] be an interval of R with χ
I

its characteristic function, and suppose that
δ > 0 is given. Our object is to construct functions S+(x) and S−(x) such that

Ŝ±(t) = 0 when |t| ≥ δ,

S−(x) ≤ χ
I
(x) ≤ S+(x) for all x,

and such that the integrals

∫

R

S+(x) − χ
I
(x) dx,

∫

R

χ
I
(x) − S−(x) dx

are small. We do not attempt to determine exactly the extreme values of these integrals,
but the functions constructed are elegant and close to optimal. With S+ and S− in hand,
we use the Poisson summation formula to derive corresponding trigonometric polynomials
T± that approximate closely the characteristic function of an arc of T = R/Z. These T±

are useful in a number of connections. We employ them in discussing uniform distribution
(Chapter 16), in deriving the large sieve (Chapter 19), and in determining the mean square
behaviour of Dirichlet polynomials (Chapter 21).

We begin by defining Beurling’s function,

(E.1) B(z) =
( sin πz

π

)2(2

z
+

∞∑

n=0

1

(z − n)2
−

∞∑

n=1

1

(z + n)2

)
,

whose basic properties are as follows.

Theorem E.1 The function B(z) above is an entire function such that:
(a) B(n) = 1 for all integers n ≥ 0, B(n) = −1 for all integers n < 0;
(b) B′(n) = 0 for all integers n 6= 0, B′(0) = 2;
(c) B(x) ≥ sgn(x) for all real x;
(d) B(x) − sgn(x) � min(1, x−2);
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2 Further Topics In Harmonic Analysis

(e) B′(x) � min(1, x−2);
(f) B(z) − sgn(x) � |z|−2e2π|y| where z = x + iy;
(g)

∫ ∞

−∞
B(x) − sgn(x) dx = 1.

An entire function f(z) belongs to the class Eσ of functions of exponential type σ if
for every constant ε > 0 the inequality |f(z)| < exp((σ + ε)|z|) holds for all z with |z|
large. Thus we see that B(x) ∈ E2π. Other examples of functions of exponential type are
provided by observing that if f ∈ L1([−c, c]), then its Fourier transform

f̂(z) =

∫ c

−c

f(u)e−2πizu du

is an entire function of the class E2πc. In the case of B(z), we note that B /∈ L1(R), and
also that there is no f ∈ L1(R) of which B(z) is the Fourier transform (since B(x) 6→ 0
as x → ∞). Nevertheless, the estimate (f) above may be thought of as asserting that

supp B̂ ⊆ [−1, 1].

–1

1
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Figure E.1 Graph of Beurling’s function B(x) for −3 ≤ x ≤ 3.

Proof We begin by establishing further formulae for B(z). We recall the partial fraction
formula ( π

sin πz

)2

=

∞∑

n=−∞

1

(z − n)2
.

(This may be proved by noting that the difference between the two sides is a bounded
entire function that tends to 0 as z → i∞.) On combining this with (E.1) we find that

(E.2) B(z) = 1 + 2
( sin πz

π

)2(1

z
−

∞∑

n=1

1

(z + n)2

)
.

Suppose that z /∈ (−∞, 0]. The integral test suggessts that the sum above is approximately
∫ ∞

0

(u + z)−2 du =
1

z
.
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Hence the second factor on the right hand side is the difference between this approximation
and the sum. To express this quantity more explicitly, we observe that if f has continuous
first derivative on an interval [α, β], then

∫ β

α

f(u) du = f(β)(β − α) −

∫ β

α

f ′(u)(u − α) du

by integration by parts. By taking α = n − 1, β = n, f(u) = (u + z)−2, it follows that

∫ n

n−1

(u + z)−2 du = (z + n)−2 + 2

∫ n

n−1

(z + u)−3{u} du

provided that z /∈ [−n,−n + 1]. If z /∈ (−∞, 0], then we may sum over n = 1, 2, . . . , and
thus we deduce from (E.2) that

(E.3) B(z) = 1 + 4
( sin πz

π

)2
∫ ∞

0

{u}

(u + z)3
du.

Similarly from (E.1) and (E.2) we find that

(E.4) B(z) = −1 + 2
( sin πz

π

)2(1

z
+

∞∑

n=0

1

(z − n)2

)
,

and that if z /∈ [0,∞), then

(E.5) B(z) = −1 + 4
( sin πz

π

)2
∫ ∞

0

1 − {u}

(u − z)3
du.

The assertions (a) and (b) are immediate from the definition (E.1) of B(z). For x ≥ 0
the inequality (c) and the estimate (d) follow from (E.3), since the value of the integral
lies between 0 and 1

2x−2. For x < 0 these assertions follow similarly from (E.5). To obtain
the estimate (e) it suffices to differentiate the formulae (E.3), (E.5), and then estimate the
quantities that arise. As for (f), we note that (sin πz)2 � e2π|y|, and that if <z ≥ 0, then

∫ ∞

0

{u}

(u + z)3
du �

∫ ∞

0

du

(u + |z|)3
� |z|−2.

Thus we obtain (f) from (E.3) when <z ≥ 0, and similarly from (E.5) when <z < 0. As
for (g), let

(E.6) V (z) =
( sin πz

π

)2(2

z
+

∞∑

n=−∞

sgn(n)

(z − n)2

)
,

so that B(z) = V (z)+ (sin πz)2/(πz)2. Since V (x) and sgn(x) are odd functions, we know
that ∫ X

−X

V (x) − sgn(x) dx = 0
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for any X. Hence

∫ ∞

−∞

B(x) − sgn(x) dx = lim
X→∞

∫ X

−X

B(x) − sgn(x) dx

= lim
X→∞

∫ X

−X

V (x) − sgn(x) + (sin πx)2/(πx)2 dx

= lim
X→∞

∫ X

−X

( sin πx

πx

)2

dx

=

∫ ∞

−∞

( sin πx

πx

)2

dx = 1.

The evaluation of this last definite integral can be accomplished by means of the calculus
of residues. �

Although the proof is now complete, it is instructive to note that (c) can be derived
from (E.2) and (E.4) by appealing to the integral test. For example, if x > 0, then

∞∑

n=1

1

(x + n)2
<

∫ ∞

0

du

(x + u)2
=

1

x
.

We now use the function B(z) to construct approximations to the characteristic function
χ

I
of an interval [α, β].

Theorem E.2 Let I = [α, β] be a finite interval, and suppose that δ > 0 is given. Then

there exist entire functions S+(z) and S−(z) such that:
(a) S±(x) �α,β,δ min(1, x−2) for real x;
(b) S−(x) ≤ χ

I
(x) ≤ S+(x) for real x;

(c)
∫ ∞

−∞
S±(x) dx = β − α ± 1/δ;

(d) Ŝ±(t) = 0 when |t| ≥ δ;
(e) S±(x) is of bounded variation on R.
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Figure E.2 Graph of χ
I
(x) and Selberg’s functions S±(x) for I = [−1, 1] and δ = 10.
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Proof We take

S+(z) =
1

2
B(δ(z − α)) +

1

2
B(δ(β − z)),

S−(z) = −
1

2
B(δ(α − z)) −

1

2
B(δ(z − β));

these are the Selberg functions. Then the assertion (a) follows immediately from Theo-
rem E.1(d). To obtain the inequalities (b) we note that

S+(x) ≥
1

2
sgn(δ(x − α)) +

1

2
sgn(δ(β − x))

by Theorem E.1(c). Here the right hand side is χ
I
(x) unless x = α or x = β. If α < β,

then we may conclude that S+(α) ≥ 1, S+(β) ≥ 1, because S+ is continuous. If α = β,
then S+(α) = 1 because B(0) = 1. Similarly we see that S−(x) ≤ χ

I
(x) for all x. As for

(c), we note that

∫ ∞

−∞

S+(x) dx =

∫ ∞

−∞

χ
I
(x) dx +

∫ ∞

−∞

S+(x) − χ
I
(x) dx

= β − α +
1

2

∫ ∞

−∞

B(δ(x − α)) − sgn(δ(x − α)) dx

+
1

2

∫ ∞

−∞

B(δ(β − x)) − sgn(δ(β − x)) dx

= β − α + 1/δ,

by Theorem E.1(g), and similarly for S−. Since the functions S± are in L1(R), we can
define their Fourier transforms,

Ŝ±(t) =

∫ ∞

−∞

S±(x)e(−tx) dx.

Here S±(z)e−2πitz is an entire function, and if t ≥ δ, then by Theorem E.1(f) we see that
this function is �α,β,δ |z|−2 in the lower half-plane =z ≤ 0. We consider the integral above
to be a contour integral in the complex plane, and on replacing this path by a semicircle

in the lower half-plane we conclude that Ŝ±(t) = 0 if t ≥ δ. Similarly S±(t) = 0 if t ≤ −δ,
so we have (d). Finally, from Theorem E.1(e) we see that B(x) is of bounded variation on
R, and hence the same is true of S±. �

We now derive analogous results for approximations in T = R/Z by trigonometric
polynomials.

Theorem E.3 For any arc I = [α, β] in T with length β − α < 1, and for any positive

integer K, there are trigonometric polynomials

(E.7) T±(x) =
N∑

k=−N

T̂±(k)e(kx)
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of degree at most N such that:
(a) T−(x) ≤ χ

I
(x) ≤ T+(x) for all x;

(b)
∫ 1

0
T±(x) dx = β − α ± 1/(N + 1).

Proof. Take δ = N + 1, and let S± be the functions described in Theorem E.2. Put

T±(x) =
∑

n

S±(x + n).

From Theorem E.2(a) we see that this series is uniformly convergent for x in a compact
set, so that T±(x) is continuous. The inequalities (a) follow from Theorem E.2(b). From
Theorem E.2(a),(e) we see that the Poisson summation formula, in the form given in
Theorem D.3, applies to S±. Thus

T±(x) = lim
K→∞

K∑

k=−K

Ŝ±(k)e(kx).

But Ŝ±(k) = 0 for |k| ≥ δ = N + 1, and T̂±(k) = Ŝ±(k) for all k, so we find that T± is a
trigonometric polynomial, as in (E.7). Finally, the integral in (b) is

T̂±(0) = Ŝ±(0) =

∫ ∞

−∞

S±(x) dx,

and the stated result follows from Theorem E.2(c). �
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Figure E.3 Graph of χ
I
(x) and T±(x) for I = [2/5, 3/5] with K = 16.

In the above situation, the interval I is short, δ is large, the graphs of S±(x) are repeated

with period 1, and the Ŝ±(k) become Fourier coefficients. With an alternative application
of the Poisson Summation Formula we reverse this, so that I is long, δ is small, the graphs

of Ŝ± are repeated with period 1, and the S± are Fourier coefficients.
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Theorem E.4 Let M and N be integers, N ≥ 1. Suppose that 0 < δ ≤ 1/2. There exist

functions W±(x) with period 1 and absolutely convergent Fourier expansions W±(x) =∑
n w±(n)e(nx) such that

(a) w−(n) ≤ χ
[M+1,M+N ]

(n) ≤ w+(n) for all integers n;

(b) W±(x) = 0 if ‖x‖ ≥ δ;
(c)

∑
n w±(n) = W±(0) = N − 1 ± 1/δ.

Proof Let S±(u) be the Selberg functions for the interval I = [M + 1, M + N ], and
set w±(u) = S±(u). Thus we have (a). We apply the Poisson Summation Formula to
f(u) = S±(u)e(ux). Hence by Theorem D.3 we see that

∞∑

n=−∞

w±(n)e(nx) =
∞∑

k=−∞

Ŝ±(k − x),

and then properties (b) and (c) are immediate. �

E.1.1 Exercises

1. Suppose that I = [α, β] is an interval on the real line, put K = (β − α)/δ, and
suppose that K is a positive integer. Suppose that f ∈ L1(R), that f(x) ≥ χ

I
(x)

for all x, that f has bounded variation on R, and that f̂(t) = 0 when |t| ≥ δ.
(a) Show that

∞∑

n=−∞

f(n/δ + x) = δf̂(0)

for all x.
(b) Show that x can be chosen so that n/δ + x ∈ I for K + 1 values of n.
(c) Deduce that ∫ ∞

−∞

f(u) du ≥ β − α + 1/δ .

That is, the function S+ described in Theorem E.2 is optimal when (β − α)/δ is
an integer.

2. Prove the following identities:

( sin πx

πx

)2

=

∫ 1

−1

(1 − |t|)e(tx) dt;(a)

(sin πx)2

x
= π

∫ 1

0

sin 2πtx dt;(b)

N∑

n=−N

sgn(n)e(−nt) = −i cot πt + i
cos π(2N + 1)t

sin πt
;(c)

sgn(x) =
2

π

∫ ∞

0

1

t
sin 2πtx dt.(d)
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3. Let V (z) be Vaaler’s function as defined in (E.6), and put

VN (z) =
( sin πz

π

)2(2

z
+

N∑

−N

sgn(n)

(z − n)2

)
.

(a) Using the identities in Exercise 2, or otherwise, show that

VN (x) = 2

∫ 1

0

(
(1 − t) cotπt + 1/π

)
sin 2πtx dt

− 2

∫ 1

0

cos π(2N + 1)t

sin πt
(1 − t) sin 2πtx dt.

(b) By using the Riemann–Lebesgue lemma, show that

V (x) = 2

∫ 1

0

(
(1 − t) cotπt +

1

π

)
sin 2πtx dt.

(c) Let

ϕ(t) =





1 if t = 0,

π(1 − |t|)t cotπt + |t| if 0 < |t| ≤ 1,

0 if |t| > 1.

Show that

V ′(x) = 2

∫ 1

−1

ϕ(t)e(xt) dt.

(d) Show that ϕ(t) is non-negative, continuously differentiable on R and that is is
strictly decreasing on [0, 1].
(e) Show that V (z) is an odd entire function, and that

V (z) = 1 − 6
( sin πz

π

)2
∫ ∞

0

{u}(1 − {u})

(z + u)4
du

provided that z /∈ (−∞, 0].
(f) Show that V (n) = sgn(n) for all integers n, that V ′(n) = 0 for all integers
n 6= 0, that V ′(0) = 2, and that 0 ≤ V (x) ≤ 1 for x > 0.
(g) Show that if x > 0, then

V (x) − 1 � min(1, x−3),

V ′(x) � min(1, x−3).

(h) Show that all zeros of V ′(x) lie on the real axis.
(i) Show that

V (x) − sgn(x) =

∫ ∞

−∞

ϕ(t) − 1

πit
e(tx) dt.
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Figure E.4 Graph of Vaaler’s function V (x) for −2 ≤ x ≤ 2.
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Figure E.5 Graph of ϕ(t) for −1 ≤ t ≤ 1.

4. Let

P (x) =
K + 1

2

∞∑

n=−∞

V ′((K + 1)(n + x)),

Q(x) =
1

2

∞∑

n=−∞

V ((K + 1)(n + x)) − sgn(n + x),

R(x) = Q(x) − {x} + 1/2.

(a) Show that P (x) is a trigonometric polynomial of degree K, with coefficients

P̂ (k) = ϕ(k/(K + 1)).
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(b) Show that Q(x) has Fourier coefficients

Q̂(k) =
ϕ( k

K+1 ) − 1

2πik

for k 6= 0, and that Q̂(0) = 0.
(c) Show that R(x) is a trigonometric polynomial of degree K with coefficients

R̂(k) =
ϕ( k

K+1 )

2πik

for k 6= 0, R̂(0) = 0, and that R′(x) = P (x) − 1.
(d) Show that for all x,

R(x) −
∆K+1(x)

2(K + 1)
≤ 1/2 − {x} ≤ R(x) +

∆K+1(x)

2(K + 1)
.

5. Let P (x) and Q(x) be as above. Suppose that f is of bounded variation on T.
(a) Show that if f is continuous at x, then

f(x) =

∫ 1

0

f(x + u)P (u) du +

∫ 1

0

Q(u) df(x + u).

(b) Suppose that f is a real-valued function of bounded variation on T. Show that

−

∫ 1

0

∆K+1(x − u)

2(K + 1)
|df(u)| ≤ f(x) −

∫ 1

0

f(x + u)P (u) du ≤

∫ 1

0

∆K+1(x − u)

2(K + 1)
|df(u)|.

for all x.
(c) Show that

∫ 1

0
f(x + u)P (u) du is a trigonometric polynomial of degree at most

K with coefficients ϕ(k/(K + 1))f̂(k).

(d) Show that
∫ 1

0
∆K+1(x − u) |df(u)| is a trigonometric polynomial of degree at

most K with coefficients

1 − |k|
K+1

2(K + 1)

∫ 1

0

e(−ku) |df(u)|.

(e) Let

T±(x) =

∫ 1

0

f(x + u)P (u) du ±

∫ 1

0

∆K+1(x − u)

2(K + 1)
|df(u)|.

Show that T± is a trigonometric polynomial of degree at most K such that T−(x) ≤
f(x) ≤ T+(x) for all x, and that

∫ 1

0

T±(u) du =

∫ 1

0

f(u) du ±
VarT(f)

2(K + 1)
.
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(f) Show that if f = χ
[α,β]

, then the T± above are the same as in Theorem E.3,

and hence that the trigonometric polynomials in that theorem have coefficients

T̂±(k) =
(
ϕ(

k

K + 1
)
sin πk(β − α)

πk
±

1 − |k|
K+1

K + 1
cos πk(β − α)

)
e(−k(β + α)/2)

for 0 < |k| ≤ K, T̂±(0) = β − α ± 1/(K + 1).

6. (a) Suppose that T (x) is a trigonometric polynomial of degree at most K, and that
N > K. Show that for any real α,

1

N

N∑

n=1

T (α + n/N) =

∫ 1

0

T (x) dx.

(b) Suppose that I = [α, β] is an arc of T, and that (β − α)N is an integer < N .
Show that if a function T ∈ L1(T) has the property that T (x) ≥ χ

I
(x) for all

x ∈ T, then
N∑

n=1

T (α + n/N) ≥ (β − α)N + 1.

(c) Suppose that T (x) is a trigonometric polynomial of degree at most K, that
(β − α)(K + 1) is an integer < K + 1, and that T (x) ≥ χ

[α,β]
(x) for all x ∈ T.

Show that
∫ 1

0
T (x) dx ≥ β − α + 1/(K + 1).

(d) Suppose that T (x) is a trigonometric polynomial of degree at most K, that
(β − α)(K + 1) is an integer < K + 1, and that T (x) ≤ χ

[α,β]
(x) for all x ∈ T.

Show that
∫ 1

0
T (x) dx ≤ β − α − 1/(K + 1).

E.2 Maximal inequalities

We develop a technique that allows us to truncate a given sum. The penalty we pay for
this is generally a factor of one logarithm. This method applies to additive characters
(the finite Fourier transform), the Fourier expansion of periodic functions, and to Dirichlet
polynomials. We begin with additive characters.

Let f be an arithmetic function with period q, and let f̂ denote its finite Fourier trans-
form,

f̂(k) =

q∑

n=1

f(n)e(−nk/q) .

We have the finite Fourier expansion

f(n) =

q∑

k=1

f̂(k)e(kn/q),



12 Further Topics In Harmonic Analysis

as in (4.3). Let M and N be integers, with 1 ≤ N ≤ q. Thus

M+N∑

n=M+1

f(n)e(an/q) =

M+N∑

n=M+1

e(an/q)

q∑

k=1

f̂(k)e(nk/q)

=

q∑

k=1

f̂(k)

M+N∑

n=M+1

e(n(a + k)/q) .

By (16.5), the inner sum is � min(N, 1/‖(a + k)/q‖), so the above is

�

q∑

k=1

|f̂(k)|min
(
N, 1/‖(a + k)/q‖

)
.

Here the right hand side is independent of M , and can be made independent of N by
replacing N by q. That is, we have shown that

(E.8) max
1≤M≤q
1≤N≤q

∣∣∣
M+N∑

n=M+1

f(n)e(an/q)
∣∣∣ �

q∑

k=1

|f̂(k)|min
(
q, 1/‖(a + k)/q‖

)
.

If we take a = 0 and f(n) = χ(n) where χ is a primitive character modulo q, then the
estimate above becomes the key step in our proof of the Pólya–Vinogradov inequality (cf
Theorem 9.18).

The estimate (E.8) may be used in several ways. If we take |f̂(k)| out at its maximum,
then we are left with a harmonic sum, so

(E.9)
M+N∑

n=M+1

f(n)e(an/q) � q(log 2q) max
k

|f̂(k)|

By taking M = 0, N = q, and a suitably, the left hand side can be made as large as

q max |f̂(k)|, so the above is within a factor log 2q of being best-possible. Alternatively, we
can sum both sides of (E.8) over a to see that

(E.10)

q∑

a=1

max
1≤M≤q
1≤N≤q

∣∣∣
M+N∑

n=M+1

f(n)e(an/q)
∣∣∣ � q(log 2q)

q∑

k=1

|f̂(k)| .

Moreover, by Cauchy’s inequality we see that

q∑

k=1

|f̂(k)|min
(
q, 1/‖(a + k)/q‖

)
≤

( q∑

k=1

|f̂(k)|2 min
(
q, 1/‖(a + k)/q‖

))1/2

×
( q∑

k=1

min
(
q, 1/‖(a + k)/q‖

))1/2

� (q log 2q)1/2
( q∑

k=1

|f̂(k)|2 min
(
q, 1/‖(a + k)/q‖

))1/2

.
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Thus by squaring both sides of (E.8), and then summing over a, we find that

(E.11)

q∑

a=1

max
1≤M≤q
1≤N≤q

∣∣∣
M+N∑

n=M+1

f(n)e(an/q)
∣∣∣
2

� (q log 2q)2
q∑

k=1

|f̂(k)|2 .

If we take M = 0 and N = q, then the left hand side becomes q2
∑

|f̂(k)|2, so the upper
bound is never larger than the truth by more than a factor of (log 2q)2.

For f ∈ L1(T) we recall the definition of the Fourier coefficient f̂(k), the Dirichlet
kernel DK(x), and its closed-form formula, as in (D.1)–(D.4). We observe that DK(x) �
min(K, 1/‖x‖). Thus

K∑

k=−K

f̂(k)e(kα) =

∫

T

Dk(x)f(α + x) dx

�

∫

T

|f(x + α)|min(N, 1/‖x‖) dx(E.12)

if K ≤ N and N ≥ 1. In the same way that we deduced (E.9), (E.10), and (E.11) from
(E.8), we deduce that

(E.13) max
0≤K≤N

∣∣∣
K∑

k=−K

f̂(k)e(kα)
∣∣∣ � ‖f‖L∞(T) log 2N,

(E.14)

∫

T

max
0≤K≤N

∣∣∣
K∑

k=−K

f̂(k)e(kα)
∣∣∣ dα � ‖f‖L1(T) log 2N,

and

(E.15)

∫

T

max
0≤K≤N

∣∣∣
K∑

k=−K

f̂(k)e(kα)
∣∣∣
2

dα � ‖f‖2
L2(T)(log 2N)2,

Finally, we consider truncations of a Dirichlet polynomial

(E.15) D(s) =
N∑

n=1

ann−s .

Our discussion here has some points of contact with our treatment of the quantitative
truncation of Perron’s formula (cf Theorem 5.2). We begin by observing that

∫ U

−U

eiβu sin αu

u
du =

∫ U

−U

cos βu sin αu

u
du

=
1

2

∫ U

−U

sin(α + β)u + sin(α − β)u

u
du

= sgn(α + β)

∫ |α+β|U

0

sin u

u
du + sgn(α − β)

∫ |α−β|U

0

sin u

u
du .(E.16)
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We recall that
∫ ∞

0
sinu

u du = π/2, and that the sine integral si(x) is defined to be

si(x) = −

∫ ∞

x

sin u

u
du .

Thus the expression (E.15) is

sgn(α + β)
(π

2
+ si(|α + β|U)

)
+ sgn(α − β)

(π

2
+ si(|α − β|U)

)
.

Let χ
I

denote the characteristic function of the interval [−α, α], and recall that it is evident
that si(x) � min(1, 1/x) for x ≥ 0, as was recorded already in (5.6). Thus the above is

= πχ
I
(β) + O

(
min

(
1,

1

U |α − β|

))
+

(
min

(
1,

1

U |α + β|

))
.

For integers K, 0 ≤ K < N , we take α = log(K + 1/2), β = − log n, multiply by an, and
sum over n. Thus we find that

K∑

n=1

an =

∫ U

−U

D(iu)
sin αu

u
du + O

( N∑

n=1

|an|min
(
1,

1

U | logn/(K + 1/2)|

))
.

Now (sin αu)/u � min(|α|, 1/u), and | logn/(K + 1/2)| � 1/N . Hence

(E.17) max
y≤N

∣∣∣
∑

n≤y

an

∣∣∣ �
∫ U

−U

|D(iu)|min(log N, 1/|u|) du +
N

U

N∑

n=1

|an| .

By replacing an by ann−it it follows that

(E.18) max
y≤N

∣∣∣
∑

n≤y

ann−it
∣∣∣ �

∫ U

−U

|D(it + iu)|min(log N, 1/|u|) du +
N

U

N∑

n=1

|an| .

By Cauchy’s inequality we see that

( ∫ U

−U

|D(it + iu)|min(log N, 1/|u|) du
)2

≤

∫ U

−U

|D(it + iu)|2 min(log N, 1/|u|) du

∫ U

−U

min(log N, 1/|u|) du

�

∫ U

−U

|D(it + iu)|2 min(log N, 1/|u|) du log(U log N) .

Thus if we square both sides of (E.18) and integrate with respect to t, we find that

∫ T

0

max
y≤N

∣∣∣
∑

n≤y

ann−it
∣∣∣
2

dt �

∫ U

−U

∫ T

0

|D(it + iu)|2 dt min(log N, 1/|u|) du log(U log N)

(E.19)

+
N3T

U2

N∑

n=1

|an|
2 .


