
Appendix D

Topi
s In Harmoni
 Analysis

1. Pointwise 
onvergen
e of Fourier series

Let f 2 L

1

(T), and suppose that

(1)

b

f(k) =

Z

T

f(x)e(�kx) dx

are the Fourier 
oeÆ
ients of f . Here e(�) = e

2�i�

is the 
omplex exponential with period 1.

It is a familiar fa
t in the theory of Fourier series that if f has bounded variation on T

then

(2) lim

K!1

K

X

k=�K

b

f(k)e(k�) =

f(�

+

) + f(�

�

)

2

:

Less familiar is the strong quantitative version of this that we now derive.

Let D

K

(x) =

P

K

k=�K

e(kx). This is the Diri
hlet kernel . We multiply both sides of (1)

by e(k�) and sum, to see that

K

X

k=�K

f(k)e(k�) =

Z

T

f(x)D

K

(�� x) dx =

Z

T

D

K

(x)f(�� x) dx:

Sin
e D

K

is an even fun
tion, the above is

=

Z

T

D

K

(x)f(�+ x) dx:(3)

Clearly D

K

(0) = 2K + 1. If x =2 Z then D

K

(x) is the sum of a segment of a geometri


progression, whi
h permits us to write D

K

in 
losed form,

D

K

(x) =

e

�

(K + 1)x

�

� e(�Kx)

e(x)� 1

=

e

�

(K +

1

2

)x

�

� e

�

� (K +

1

2

)x

�

e(x=2)� e(�x=2)

=

sin(2K + 1)�x

sin�x

:(4)

511



512 APPENDIX D. TOPICS IN HARMONIC ANALYSIS

Our analysis of the pointwise 
onvergen
e of Fourier series is based on the behaviour of the

the Fourier series of one parti
ular fun
tion, namely the `saw-tooth fun
tion' s(x) given by

s(x) =

�

fxg �

1

2

(x =2 Z);

0 (x 2 Z):

Lemma 1. Let

E

K

(x) = s(x) +

K

X

k=1

sin 2�kx

�k

:

Then jE

K

(x)j � min

�

1=2; 1=((2K + 1)�j sin�xj)

�

.

It is easy to 
ompute the Fourier 
oeÆ
ients of s(x); we �nd that bs(0) = 0, and that

bs(k) = �1=(2�ik) for k 6= 0. Thus the above lemma 
onstitutes a quantitative form of (2),

for the fun
tion s(x).
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Figure 1. Graph of s(x) and its Fourier approximation �

P

15

k=1

sin 2�kx=(�k).

Proof. All terms 
omprising E

K

(x) are odd, and hen
e E

K

is odd. Thus we may suppose

that 0 � x � 1=2. The 
ase x = 0 is 
lear. We observe that if x =2 Z then

E

0

K

(x) = 1 + 2

K

X

k=1


os 2�kx = D

K

(x):

Hen
e if 0 < x � 1=2 then by (4) we see that

E

K

(x) = �

1

2

Z

1�x

x

D

K

(z) dz

=

�1

2

Z

1�x

x

sin(2K + 1)�z

sin�z

dz =

i

2

Z

1�x

x

e

�

(K +

1

2

)z

�

sin�z

dz:
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The integrand is analyti
 in the re
tangle x � <z � 1 � x, 0 � =z � Y , so by letting

Y !1 and applying Cau
hy's theorem we see that the above is

=

i

2

Z

x+i1

x

e

�

(K +

1

2

)z

�

sin�z

dz �

i

2

Z

1�x+i1

1�x

e

�

(K +

1

2

)z

�

sin�z

dz:

On writing z = x+ iy in the �rst integral, and z = 1� x+ iy in the se
ond, we see that

the above is

(5) =

�1

2

Z

1

0

�

e

�

(K +

1

2

)x

�

sin�(x+ iy)

�

e

�

� (K +

1

2

)x

�

sin�(1� x+ iy)

�

e

�(2K+1)�y

dy:

But sin�(x+ iy) = (sin�x) 
osh�y� i(
os�x) sinh�y, so that j sin�(x+ iy)j � sin�x for

all real y. Hen
e the expression above has absolute value not ex
eeding

1

sin�x

Z

1

0

e

�(2K+1)�y

dy =

1

(2K + 1)� sin�x

:

This gives the se
ond part of the bound. The �rst bound, jE

K

(x)j � 1=2, is weaker if

1=(2K + 1) � x � 1=2, sin
e sin�x � 2x in this range. Thus it suÆ
es to show that

jE

K

(x)j � 1=2 when 0 < x < 1=(2K + 1). Sin
e 0 < sinu < u for 0 � u � �, it follows

from the de�nition of E

K

(x) that

x�

1

2

� E

K

(x) � (2K + 1)x�

1

2

for 0 � x � 1=(2K + 1). This gives the desired bound.

We now establish an analogue of Lemma 1 for arbitrary fun
tions of bounded variation.

Theorem 2. If f has bounded variation on T, with

b

f(k) given by (1), then for any �,

�

�

�

�

f(�

+

) + f(�

�

)

2

�

K

X

k=�K

b

f(k)e(k�)

�

�

�

�

�

Z

1

�

0

+

min

�

1

2

;

1

(2K + 1)� sin�x

�

jdf(�+ x)j:

Sin
e the right hand side here tends to 0 as K !1, this inequality implies the quali-

tative relation (2).

Proof. As E

0

K

(x) = D

K

(x) when x =2 Z, the integral (3) is

Z

1

�

0

+

E

0

K

(x)f(�+ x) dx =

Z

1

�

0

+

f(�+ x) dE

K

(x);

by Theorem A.3. But E

K

(0

+

) = �1=2, E

K

(1

�

) = 1=2. Hen
e by integrating by parts (as

in Theorem A.2) we see that the above is

1

2

f(�

+

) +

1

2

f(�

�

)�

Z

1

�

0

+

E

K

(x) df(�+ x):

To 
omplete the proof it suÆ
es to apply the triangle inequality (as in Theorem A.4) and

the bound of Lemma 1.
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2. The Poisson summation formula

The formula in question asserts that under suitable 
onditions,

(6)

1

X

n=�1

f(n) =

1

X

k=�1

b

f(k)

where f is a fun
tion of a real variable, and

b

f is its Fourier transform,

(7)

b

f(t) =

Z

R

f(x)e(�tx) dx:

To ensure that

b

f is well-de�ned, we impose the 
ondition f 2 L

1

(R), i.e. that the integral

R

R

jf(x)j dx is �nite. Put

(8) F (�) =

X

n2Z

f(n+ �):

This sum is absolutely 
onvergent for almost all �, sin
e

Z

1

0

X

n2Z

jf(n+ �)j d� =

X

n2Z

Z

n+1

n

jf(�)j d� =

Z

R

jf(�)j d� <1:

Moreover, F (�) has period 1,

R

T

jF (�)j d� <1, and F has Fourier 
oeÆ
ients

b

F (k) =

Z

1

0

F (�)e(�k�) d� =

X

n2Z

Z

1

0

f(n+ �)e(�k�) d� =

Z

R

f(x)e(�kx) dx

=

b

f(k):(9)

Here the inter
hange of the integral and the sum is justi�ed by absolute 
onvergen
e. Thus

the Fourier expansion of F is

X

k2Z

b

f(k)e(k�):

The Poisson summation formula (6) is simply the assertion that this Fourier expansion


onverges to F (�) when � = 0. Our hypotheses thus far do not ensure this, but in this

dire
tion we establish the following two pre
ise results.

Theorem 3. Suppose that f 2 L

1

(R), and that f is of bounded variation on R. Then

X

n2Z

f(n

+

) + f(n

�

)

2

= lim

K!1

K

X

k=�K

b

f(k):

If in addition f is 
ontinuous then we have a result whi
h is 
lose to (6), although it is

still ne
essary to restri
t ourselves to symmetri
 partial sums on the right hand side.
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Proof. We �rst note that if n � � � n+ 1 then

f(�) =

Z

n+1

n

f(x) dx+

Z

�

n

(x� n) df(x) +

Z

n+1

�

(x� n� 1) df(x);

as 
an readily be seen by integration by parts. Hen
e

(10) jf(�)j �

Z

n+1

n

jf(x)j dx+ var

[n;n+1℄

f;

and it follows from our hypotheses that the sum

X

n2Z

f(n+ �)

is absolutely 
onvergent for all �, and uniformly 
onvergent in 
ompa
t regions. Hen
e

F (�) 
an be taken to be the value of this sum for all �, not merely for almost all �.

By the triangle inequality, var

T

F � var

R

f , so that F is of bounded variation on T, and

hen
e the relation (2) applies to F . Thus we see that the Fourier series of F 
onverges to

�

F (�

+

)+F (�

�

)

�

=2 for all �. Using the fa
t that f is of bounded variation on
e more, we

see that F (�

+

) =

P

n2Z

f((n+ �)

+

), and similarly for F (�

�

). Hen
e we have the stated

result.

Theorem 4. Suppose that f is 
ontinuous, and that the series

P

n2Z

f(n+�) is uniformly


onvergent for 0 � � � 1. Then

X

n2Z

f(n) = lim

K!1

K

X

k=�K

�

1�

jkj

K

�

b

f(k):

Proof. Clearly F (�) given in (8) is 
ontinuous. Sin
e we have not assumed that f 2

L

1

(R), the Fourier transform

b

f(t) may not exist. However, if k is an integer then

b

f(k)

exists as a 
onvergent improper integral. To see this we �rst note that

P

N

n=M

f(n+ �) is

small if M and N are large integers and 0 � � � 1. Then

Z

1

0

N

X

M

f(n+ �)e(�k�) d� =

Z

N+1

M

f(x)e(�kx) dx

is small. The hypothesis that

P

n

f(n + �) 
onverges uniformly implies that f(x) ! 0

as jxj ! 1. Hen
e

R

v

u

f(x)e(�kx) dx ! 0 as u, v tend to in�nity through real values.

The 
al
ulation of

b

F (k) in (9) is still valid, but is now justi�ed by uniform 
onvergen
e.

Next we appeal to a theorem of Fej�er, whi
h asserts that the Fourier series of a 
ontinuous

fun
tion F (�) with period 1 is uniformly (C; 1)-summable to F . That is,

K

X

k=�K

�

1�

jkj

K

�

b

F (k)e(k�) �! F (�)

uniformly as K !1. The stated identity follows on taking � = 0.
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D.2. Exer
ises

1. Show that if f satis�es the hypotheses of Theorem 2, and � and � are real numbers,

then the fun
tion f(x+ �)e(�x) does also. Spe
ify 
onditions under whi
h

X

n

f(n+ �)e(�n) =

X

k

b

f(k � �)e((k � �)�):

2. Suppose that f has bounded variation on [�A;A℄, for every A > 0. Show that

lim

N!1

N

X

n=�N

f(n) = lim

T!1

1

X

k=�1

Z

T

�T

f(x)e(�kx) dx

provided that either limit exists.

3. Suppose that f 2 L

1

(R

n

), and for x 2 T

n

put

F (x) =

X

�2Z

n

f(�+ x) :

(a) Show that the sum F (x) is absolutely 
onvergent for almost all x.

(b) Show that F 2 L

1

(T

n

) and that kFk

L

1

(T

n

)

� kfk

L

1

(R

n

)

.

(
) Show that

b

F (k) =

b

f(t).

4. (a) Suppose that there is a Æ > 0 su
h that 
(k)� (1 + jkj)

�n�Æ

. Show that

X

k2Z

n


(k)e(k � x)

is a 
ontinuous fun
tion of x 2 T

n

.

(b) Suppose that there is a Æ > 0 su
h that f(x) � (1 + jxj)

�n�Æ

for x 2 R

n

. Suppose

also that f(x) is 
ontinuous. Show that

F (x) =

X

�2Z

n

f(�+ x)

is a 
ontinuous fun
tion for x 2 T

n

.

(
) Suppose that in addition to the hypotheses in (b), the fun
tion f also has the property

that

b

f(t)� (1 + jtj)

�n�Æ

. Show that

X

�2Z

n

f(�+ x) =

X

k2Z

n

b

f(k)e(k � x)

for all x 2 T

n

.
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5. A latti
e in R

n

is a set of points of the form AZ

n

where A is a non-singular n � n

matrix. Thus Z

n

is an example of a latti
e, 
alled the latti
e of integral points.

(a) Suppose that �

1

= AZ

n

and �

2

= BZ

n

are two latti
es. Show that �

2

� �

1

if and

only if there is an n� n matrix K with integral entries su
h that B = AK.

(b) An n � n matrix U is said to be unimodular if (i) its entries are integers, and (ii)

detU = �1. Show that if �

1

= AZ

n

and �

2

= BZ

n

are two latti
es, then �

1

= �

2

if and

only if there is a unimodular matrix U su
h that B = AU .

(
) Let a

1

; : : : ; a

n

denote the 
olumns of A. These ve
tors are said to form a basis for

�

1

, be
ause every member of �

1

has a unique representation in the form 


1

a

1

+ � � � 


n

a

n

where the 


i

are integers. If � = AZ

n

, we say that the determinant of � is d(�) = j detAj.

Show that the determinant of a latti
e is independent of the basis by whi
h it is presented.

(d) Suppose that � = AZ

n

is a latti
e in R

n

. Let �

�

be the set of all those points

� 2 R

n

su
h that � � � 2 Z for all � 2 �. Show that �

�

is a latti
e, and indeed that

�

�

=

�

A

�1

�

T

Z

n

.

(e) Suppose that f is a 
ontinuous fun
tion on R

n

su
h that

f(x)� (1 + jxj)

�n�Æ

;

b

f(t)� (1 + jtj)

�n�Æ

for some Æ > 0. Let � = AZ

n

be a latti
e. Show that

X

�2�

f(�+ x) =

1

d(�)

X

�2�

�

b

f(�)e(� � x)

for all x.

D. Notes

x1. The relation (2) is the famous Diri
hlet{Jordan test, whi
h is usually derived with

mu
h less e�ort. Theorem 2 generalizes and re�nes an argument of P�olya (1918), who

estimated the rate of 
onvergen
e of the Fourier series (9.18). For more on the 
onvergen
e

of Fourier series, see Katznelson (1968, Chapter 2), K�orner (1988, Part I), or Zygmund

(1968, Chapter II).

x2. For more on the Poisson summation formula, see Katznelson (1968, VI.1.15), K�orner

(1988, x27), or Zygmund (1968, Chapter IIx13). For a dis
ussion of the Poisson summation

formula in higher dimensions, see Stein & Weiss (1971, Chapter VIIx2). Siegel (1935)

showed that Minkowski's 
onvex body theorem 
ould be derived by applying the Poisson

summation formula. Cohn & Elkies (2003), Cohn (2002) and Cohn & Kumar (2004) have

applied the Poisson summation formula in R

n

to limit the density of sphere pa
kings.
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