MATH 571 CHAPTER 2

1. THE MULTIPLICATIVE STRUCTURE OF RESIDUE
CLASSES

In elementary number theory courses it is usual taught that
the reduced residue classes modulo ¢ form a cyclic group
under multiplication if and only if ¢ = p* with p = 2 and
k =1or 2, or with p > 2 and all £k > 1. A generator
g is called a primitive root. It is often also shown that if
p =2 and k > 3, then every reduced residue modulo 2* is
generated by
(_1)U5U

where v = 0 or 1 and 0 < v < 2¥°2. One can then use
the Chinese Remainder Theorem to express each residue
modulo ¢ in a suitable form. This was all first proved by
Gauss. It is also an example of the theorem, usually proved
in abstract algebra courses, that each abelian group is a
direct product of cyclic groups. The methods of abstract
algebra do not necessarily give explicit representations. We
will not need this later, but it comes up in the next section.

2. DIRICHLET CHARACTERS

It is often useful to represent the characteristic function of
a reduced residue class (mod ¢) as a linear combination of
totally multiplicative functions y(n) each one supported on
the reduced residue classes and having period q. These are
the Dirichlet characters. In the fancy language of abstract
algebra we are examining the structure of homomorphisms
from the units modulo ¢ to an isomorphism of this group

on the unit circle in the complex plane. Fundamental is
1
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that the homomorphisms themselves form a group which is
also isomorphic to the original group.

Since y(n) has period ¢ we may think of it as mapping
from residue classes, and since x(n) # 0 if and only if
(n,q) = 1, we may think of y as mapping from the mul-
tiplicative group of reduced residue classes to the multi-
plicative group C* of non-zero complex numbers. As y is
totally multiplicative, x(mn) = x(m)x(n) for all m, n, we
see that the map x : (Z / qZ) * — C* is a homomorphism.
The method we use to describe these characters applies
when (Z/qZ)>< is replaced by an arbitrary finite abelian
group G, so we consider the slightly more general problem
of finding all homomorphisms x : G — C* from such a
group G to C*. We call these homomorphisms the char-
acters of (G, and let GG denote the set of all characters of
G. We let xo denote the principal character, whose value
is identically 1. We note that if x € G then x(e) = 1 where
e denotes the identity in GG. Let n denote the order of G.
If g€ G and x € @, then ¢" = e, and hence x(¢") = 1.
Consequently x(g)" = 1, and so we see that all values taken
by characters are n'* roots of unity. In particular, this im-
plies that G is finite, since there can be at most n" such
maps. If x; and xs are two characters of G, then we can
define a product character xixs by xix2(9) = x1(9)x2(9)-
For x € G, let X be the character x(g). Then x - X = ¥o,
and we see that G is a finite abelian group with identity
Xo- The following lemmas prepare for a full description of
G in Theorem 4.
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Lemma 2.1. Suppose that G s cyclic of order n, say G =
(a). Then there are exactly n characters of G, namely
xt(a™) = e(km/n) for 1 <k <mn. Moreover,

> x(g) = {g‘ Y=o

otherwise,

and

otherwise.

Zx@):{g vo=c

~

In this situation, G is cyclic, G = (y1).

Proof. Suppose that y € G. As we have observed, x(a) is a

™ root of unity, say x(a) = e(k/n) for some k, 1 < k < n.
Hence x(a™) = x(a)™ = e(km/n). Since the characters are
now known explicitly, the remaining assertions are easily
verified. ]

Next we describe the characters of the direct product of
two groups in terms of the characters of the factors.

Lemma 2.2. Suppose that G and Gy are finite abelian
groups, and that G = G1 ® Ga. If x; 1s a character of G;,
i=1,2, and g € G is written g = (g1,92), g; € G, then
xX(9) = x1(g1)x2(g2) is a character of G. Conversely, if
X € G, then there exist unique x; € G; such that x(g) =
X1(91)x2(g2). The identities 12) and 13) hold for G if they
hold for both G1 and G.

We see here that each y S G corresponds to a pair
(X1, X2) € G1 X Gg Thus G = Gl ® G2

Proof. The first assertion is clear. As for the second, put

x1(g1) = x((g1,€2)), x2(g92) = x((e1, g2)). Then x; € éz for
i =1,2, and x1(91)x2(92) = x(g). The x; are unique, for if
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g = (g1, €2) then

xX(9) = x((g1, €2)) = x1(g91)x2(e2) = x1(g1),
and similarly for xo. If x(g) = x1(91)x2(g2), then

> x(g) = < > X1(91)>< > Xz(g2)>,

geG g1€G1 g2€G>

so that 12) holds for G if it holds for G and for Go. Simi-
1ar1Y7 if g = (91792)7 then

Xzejéx(g) = < > X1(91)>< > Xz(92)>,

x1€G1 x1€G>

so that (13) holds for G if it holds for G; and Gb. O

Theorem 2.3. Let G be a finite abelian group. Then G is
isomorphic to G, and 12) and (13) both hold.

Proof. Any finite abelian group is isomorphic to a direct
product of cyclic groups, say

G=2C, 0,0 - -®C,.
The result then follows immediately from the lemmas. [J

Though G and G are isomorphic, the isomorphism is not
canonical. That is, no particular one-to-one correspondence
between the elements of G and those of G is naturally dis-
tinguished.

Corollary 2.4. The multiplicative group (Z/QZ)>< of re-
duced residue classes (mod q) has p(q) Dirichlet characters.
If x is such a character, then

i () = {SO(Q) if X = xo,

0 otherwise.
n=1

(n,q)=1
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If (n,q) =1 then

3" x(n) = {w(q) ifn=1 (mod g),

0 otherwise

where the sum is extended over the w(q) Dirichlet charac-
ters x (mod q).

As we remarked at the outset, for our purposes it is con-
venient to define the Dirichlet characters (mod ¢) on all
integers; we do this by setting y(n) = 0 when (n,q) > 1.
Thus y is a totally multiplicative function with period ¢
that vanishes whenever (n,q) > 1, and any such function is
a Dirichlet character (mod ¢). In this book a character is
understood to be a Dirichlet character unless the contrary
is indicated.

Corollary 2.5. If x; is a character (mod ¢;) fori = 1,2,
then x1(n)x2(n) is a character (mod |[q1,q)). If ¢ = q1go,
(q1,q2) = 1, and x is a character (mod q), then there exist
unique characters x; (mod q), i = 1,2, such that x(n) =

x1(n)xa(n) for all n.

Proof. The first assertion follows immediately from the ob-
servations that x;(n)x2(n) is totally multiplicative, that it
vanishes if (n, [q1, ¢2]) > 1, and that it has period [g1, ¢2]. As
for the second assertion, we may suppose that (n,q) = 1.
By the Chinese Remainder Theorem we see that

(Z/q2)" = (Z)Z)" ® (Z/q:Z)"
if (q1,q2) = 1. Thus the result follows from Lemma 2. [

Our proof of Theorem 2.3 depends on Abel’s Theorem
that any finite abelian group is isomorphic to the direct
product of cyclic groups, but we can prove Corollary 2.4
without appealing to this result, as follows. By the Chinese
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Remainder Theorem we see that

(z/qz)" = Q) (Z/p°Z)".
pllg
If p is odd then the reduced residue classes (mod p®) form a
cyclic group; in classical language we say there is a primitive
root g. Thus if (n,p) = 1 then there is a unique v (mod
@(p®)) such that ¢ =n (mod p®). The number v is called
the index of n, and is denoted v = indyn. From Lemma 2
it follows that the characters (mod p®), p > 2, are given by
kind, n)

xk(n) = e< p(p*)

for (n,p) = 1. We obtain ¢(p®) different characters by
allowing k£ to assume integral values in the range 1 < k <
¢(p®). By Lemma 3 it follows that if ¢ is odd then the
general character (mod ¢q) is given by

() :e(z kindgn)

p“llq (p)

for (n,q) = 1, where it is understood that k = k(p“) is
determined (mod ¢(p®)) and that g = g(p®) is a primitive
root (mod p®).

The multiplicative structure of the reduced residues (mod
2%) is more complicated. For @ = 1 or aw = 2 the group
is cyclic (of order 1 or 2, respectively), and (16) holds as
before. For @ > 3 the group is not cyclic, but if n is odd
then there exist unique p (mod 2) and v (mod 2°72) such
that n = (—1)#5” (mod 2%). In group-theoretic terms this
means that

(Z/2°Z)* = Cy @ Caa-2
when o > 3. By Lemma 3 the characters in this case take
the form
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for odd n where j = 0 or 1 and 1 < k < 2°72. Thus (17)
holds if 8 1 ¢, but if 8|¢ then the general character takes the

form ' L vind
I % indy n
n)=-el—+ +
x(n) (2 20—2 p%l:q ©(p®) )
p>2

when (n, q) = 1.

By definition, if f(n) is totally multiplicative, f(n) = 0
whenever (n,q) > 1, and f(n) has period ¢, then f is a
Dirichlet character (mod ¢). It is useful to note that the
first condition can be relaxed.

Theorem 2.6. If f is multiplicative, f(n) = 0 whenever
(n,q) > 1, and f has period q, then f is a Dirichlet char-
acter modulo q.

Proof. 1t suffices to show that f is totally multiplicative. If
(mn,q) > 1 then f(mn) = f(m)f(n) since 0 = 0. Suppose
that (mn,q) = 1. Hence in particular (m,q) = 1, so that
the map k — n+kq (mod m) permutes the residue classes
(mod m). Thus there is a k for which n+kq =1 (mod m),
and consequently (m,n + kq) = 1. Then

f(mn) = f(m(n + kq)) (by periodicity) (2.1)
= f(m)f(n+ kq) (by multiplicativity) (2.2)
= f(m)f(n) (by periodicity), (2.3)

[

and the proof is complete.

3. PRIMITIVE CHARACTERS

Suppose that d | ¢ and that x* is a character (mod d), and

set
o(n) = {X*(n) (n.q) = 1;

0 otherwise.

Then x(n) is multiplicative and has period ¢, so by Theo-
rem 4.7 we deduce that y(n) is a Dirichlet character (mod
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q). In this situation we say that x* induces x. If ¢ is com-
posed entirely of primes dividing d then x(n) = x*(n) for
all n, but if there is a prime factor of ¢ not found in d then
x(n) does not have period d. Nevertheless, xy and x* are
nearly the same in the sense that y(p) = x*(p) for all but
at most finitely many primes, and hence

L(s,x) = L(s,x") H (1 — X*(p)).

pS
plq

Our immediate task is to determine when one character
induces another.

Lemma 3.1. Let x be a character (mod q). We say that
d 1s a quasiperiod of x if x(m) = x(n) whenever m = n
(mod d) and (mn,q) = 1. The least quasiperiod of x is a
divisor of q.

Proof. Let d be a quasiperiod of y, and put ¢ = (d,q).
We show that ¢ is also a quasiperiod of xy. Suppose that
m =n (mod g) and that (mn,q) = 1. Since ¢ is a linear
combination of d and ¢, and m — n is a multiple of g, it
follows that there are integers x and y such that m —n =
dz + qy. Then x(m) = x(m — qy) = x(n + dz) = x(n).
Thus ¢ is a quasiperiod of . O

With more effort it can be shown that if d; and d» are
quasiperiods of x then (di,ds) is also a quasiperiod, and
hence the least quasiperiod divides all other quasiperiods,
and in particular it divides ¢ (since ¢ is a quasiperiod of ).

The least quasiperiod d of x is called the conductor of
X- Suppose that d is the conductor of y. If (n,d) = 1
then (n + kd,d) = 1. Also, if (r,d) = 1 then there exist
values of k£ (mod r) for which (n+ kd,r) = 1. Hence there
exist integers k for which (n + kd, q) = 1. For such a k put
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X*(n) = x(n+kd). Although there are many such k, there is
only one value of y(n+kd) when (n+kd, q) = 1. We extend
the definition of x* by setting x*(n) = 0 when (n,d) > 1.
It is readily seen that y* is multiplicative and that y* has
period d. Thus by Theorem 4.7, x* is a character modulo
d. Moreover, if y( is the principal character modulo g,
then x(n) = x*(n)xo(n). Thus x* induces y. Clearly x*
has no quasiperiod smaller than d, for otherwise y would
have a smaller quasiperiod, contradicting the minimality
of d. In addition, x* is the only character (mod d) that
induces y, for if there were another, say i, then for any
n with (n,d) = 1 we would have x*(n) = x*(n + kd) =
x(n + kd) = x1(n + kd) = x1(n), on choosing k as above.

A character y modulo ¢ is said to be primitive when g is
the least quasiperiod of y. Such y are not induced by any
character having a smaller conductor. We summarize our
discussion as follows.

Theorem 3.2. Let x denote a Dirichlet character modulo
q and let d be the conductor of x. Then d | q, and there is
a unique primitive character x* modulo d that induces q.

We now identify the primitive characters in such a way
that we can describe them in terms of the explicit construc-

tion of §5.2.

Lemma 3.3. Suppose that (q1,q2) = 1 and that x1 and x»
are characters modulo q; and gy respectively. Put x(n) =
x1(n)xa(n). Then the character x is primitive modulo q1qo
iof and only if both x1 and xo are primitive.

Proof. For convenience write ¢ = qlgo. Suppose that y is
primitive modulo ¢, and for ¢ = 1, 2 let d; be the conductor
of x;. If (mn,q) =1 and m =n (mod didy) then x;(m) =
xi(n) for i = 1,2, and hence dids is a quasiperiod of .
Since y is primitive, this means that dids = ¢. But d; |
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¢;, so this implies that d; = ¢;, which is to say that the
characters x; are primitive.

Now suppose that y; is primitive modulo ¢; for + = 1, 2,
and let d be the conductor of xy. Put d; = (d,q;). We
show that d; is a quasiperiod of x;. Suppose that m = n
(mod d;) and that (mn, g;) = 1. Choose m’ so that m' = m
(mod ¢;), m" = 1 (mod ¢2). Similarly, choose n’ so that
n’ = n (mod ¢;) and n’ = 1 (mod ¢3). Thus m' = n'
(mod d) and (m'n’,q) = 1, and hence y(m’) = x(n’). But
x(m') = x1(m) and x(n') = x1(n), so x1(m) = x1(n). Thus
dy is a quasiperiod of x;. Since y; is primitive, it follows
that d; = ¢;. Similarly dy = ¢». Thus d = ¢, which is to
say that y is primitive. [

By Lemma 3.3 we see that in order to exhibit the primi-
tive characters explicitly it suffices to determine the prim-
itive characters (mod p®). Suppose first that p is odd, and
let g be a primitive root of p®. Then by (4.16) we know
that any character xy (mod p®) is given by

kind, n)

x(n) e( e(p)

for some integer k. If & = 1 then y is primitive if and only
if it is non-principal, which is to say that (p — 1) 1 k. If
a > 1 then x is primitive if and only if p 1 k. Now consider
primitive characters (mod 2%). When o = 1 we have only
the principal character, which is imprimitive. When a = 2
we have two characters, namely the principal character,
which is imprimitive, and the primitive character y given
by x(4k + 1) =1, x(4k — 1) = —1. When « > 3, we write
an odd integer n in the form n = (—1)"5” (mod 2%), and
then characters (mod 2%) are of the form
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where j is determined (mod 2) and £ is determined (mod
2072). Here Yy is primitive if and only if & is odd.
We now give two useful criteria for primitivity.

Theorem 3.4. Let x be a character modulo q. Then the
following are equivalent:

(1) x is primitive.

(2) If d | q and d < q then there is a ¢ such that ¢ =
(mod d), (c,q) = 1, x() # 1.

(8) If d | q and d < q, then for every integer a,

Z x(n) = 0.

n=1

n=a (mod d)

I
—_

Proof. (1) = (2). Suppose that d | ¢, d < ¢. Since Y is
primitive, there exist integers m and n such that m = n
(mod d), x(m) # x(n), x(mn) # 0. Choose ¢ so that
(¢,q) =1, cm =n (mod ¢q). Thus we have (2).

(2) = (3). Let ¢ be as in (2). As k runs through a com-
plete residue system (mod ¢/d), the numbers n = ac + ked
run through all residues (mod ¢) for which n = a (mod d).
Thus the sum S in question is

q/d
S = Z x(ac + ked) = x(c)S.
k=1
Since x(c) # 1, it follows that .S = 0.

(3) = (1). Suppose that d | ¢, d < q. Take a = 1 in
(3). Then x(1) = 1 is one term in the sum, but the sum
is 0, so there must be another term x(n) in the sum such
that x(n) # 1, x(n) # 0. But n =1 (mod d), so d is not a
quasiperiod of y, and hence y is primitive. O
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4. (GAUSS SUMS

Given a character xy modulo ¢, we define the Gauss sum
7(x) of x to be

Zx e(a/q).

This may be regarded as the inner product of the multi-
plicative character y(a) with the additive character e(a/q).
As such, it is analogous to the gamma function I'(s) =
Jo a* e dx, which is the inner product of the multi-
plicative character x® with the additive character e with
respect to the invariant measure dx/x. Gauss sums are in-
valuable in transferring questions concerning Dirichlet char-
acters to questions concerning additive characters, and vice
versa.

The Gauss sum is a special case of the more general sum

ZX Je(an/q).

When Yy is the principal character, this is Ramanujan’s sum
q
cg(n) = Y elan/q),

a=1
(a,q)=1

whose properties were discussed in §4.1. We now show that
the sum ¢, (n) is closely related to 7(x).

Theorem 4.1. Suppose that x is a character modulo q. If
(n,q) =1 then

Z Ye(an/q), (4.4)

and wn particular
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Proof. If (n,q) = 1 then the map a — an permutes the
residues modulo ¢, and hence

q

x(n)ex(n) =Y xlan)e(an/q) = 7(x).

a=1

On replacing x by ¥, this gives (6), and (7) follows by
taking n = —1. ]

Theorem 4.2. Suppose that (q1,q2) = 1, that x; is a char-
acter modulo q; fori = 1,2, and that x = x1x2. Then

T(x) = 7(x1)7(x2)x1(g2)x2(q1)-

Proof. By the Chinese remainder theorem, each

a (mod q1¢)
can be written uniquely as ai;qo + asqq with 1 < a; < g;.
Thus the general term in (3) is
Xl(a1Q2)X2(QQQ1)€(a1/Q1)€(a2/QQ)a

so the result follows. O]

For primitive characters the hypothesis that (n,q) = 1 in
Theorem 5 can be removed.

Theorem 4.3. Suppose that x is a primitive character
modulo q. Then (4.4) holds for all n, and |T(x)| = /4

Proof. Tt suffices to prove (4.4) when (n,q) > 1. Choose m
and d so that (m,d) =1 and m/d = n/q. Then

q q

d
ZX e(an/q) :Ze hm/d) Z x(a).

a=1 a=1
a=h (mod d)

Since d | ¢ and d < ¢, the inner sum vanishes by Theorem
3.4. Thus (4.4) holds also in this case.
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We replace x in (4.4) by X, take the square of the absolute
value of both sides, and sum over n to see that

2
2

e(a)|T()] x(a)e(an/q)

I
NE
NE

n=1"'a=1

q

> x(@x(v) Y _el(a—b)n/q).

1 =1 n=1

NE

a

The innermost sum on the right is 0 unless a = b (mod q),
in which case it is equal to ¢. Thus ©(q)|7(x)|* = ¢(q)q,
and hence |7(x)| = 1/ O

If x is primitive modulo ¢ then not only does 4.4 hold for
all n but also 7(X) # 0, and hence we have

Corollary 4.4. Suppose that x is a primitive character
modulo q. Then for any integer n,

This is very useful, since it allows us to express the mul-
tiplicative character x as a linear combination of additive
characters e(an/q).

We next show that 7(x) can be expressed in terms of
7(x*) where x* is the primitive character that induces Y.

Theorem 4.5. Let x be a character modulo q that is in-
duced by the primitive character x* modulo d. Then T(x) =

p(q/d)x*(q/d)T(x*)-

Proof. If (d,q/d) > 1 then x*(q¢/d) = 0, so we begin by
showing that 7(x) = 0 in this case. Let p be a prime such
that p | d, p | q/d, and write a = jq/p + k with 0 < j < p,
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0<k< q/p. Then

a/p

Zx e(a/q) =Y > x(ia/p+k)e(i/p+k/q)-

k=1 j=1

But p | (¢/p), so (jg/p + k,q) = 1if and only if (jg/p +
k,q/p) = 1, which in turn is equivalent to (k,q/p) = 1.

Also, d | q/p, so the above is

q/p p
Z X (k)e(k/q) Y e(j/p)-
- —1

(kg Jp)=1 ’

Here the inner sum vanishes, so 7(x) = 0 when (d, ¢/d) > 1.
Now suppose that (d,q/d) = 1, and let y, denote the
principal character modulo g/d. Then by Theorem 4.2,

7(x) = 7(xox") = 7(x0)T(X")x0(d)x" (/).
By taking n = 1 in Theorem 4.1 we find that 7(xo) =
p(g/d). Thus we have the stated result. O]

We now turn our attention to the more general ¢, (n). To
this end we begin with an auxiliary result.

Lemma 4.6. Let x be a character modulo q induced by the
primitive character x* modulo d. Suppose that r | q. Then

Y x() =x*(0)e(9)/e(r)

n=1
n=b (mod )

when (b,r) =1 and d | r, and is O otherwise.

Proof. Let S(b,r) denote the sum in question. If p | (b,r)
and n = b (mod ), then p | n, and so (n,q) > 1. Thus
each term in S(b,7) is 0. Thus we are done when (b,r) > 1,
so we suppose that (b,r) = 1. Consider next the case when
d 1 r. Then r is not a quasiperiod of x. Hence there exist
m and n such that (mn,q) = 1, m = n (mod r), and
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x(m) # x(n). Choose ¢ so that cn = m (mod ¢). Then
¢ =1 (mod r) and x(c) # 1. Hence x(c)S(b,7) = S(b, 1),
as in the proof of Theorem 4, so S(b,7) = 0 in this case.
Finally suppose that d | . Let x( be the principal character
modulo ¢. If n =b (mod r) then x*(n) = x*(b). Thus
q
Sb,r)=x) Y, xon).
nEb%ﬁédr)
Write ¢/r = q1qo where ¢ is the largest divisor of ¢/r that
is relatively prime to r. Then the sum on the right above

1S
q192

> 1=gp(q) = e(q)/e(r),

k=1
(k7"+57Q1):1

as required. [

We are now in a position to deal with ¢, (n).

Theorem 4.7. Let x be a character modulo q induced by
the primitive character x* modulo d. Put r = q/(q,n).
Then ¢, (n) =0 if d 1 r, while if d | r then

R N -1 () S
ex(n) = X0/ (g )X (r/d)u(r/d) Ze3m0C).

Proof. If (n,q) = 1 then by (4.4) and Theorem 4.5 we see
that

cy(n) =X(n)7T(x) = X" (n)ulq/d)x"(q/d)T(x")-

Since r = ¢, we have d | r, so we have the correct result.
Now suppose that (n,q) > 1. In the definition (4) of ¢, (n),
let a=br+kwith0<b<gq/r,1<k<r. Then

r Q/T

cy(n) = Z e(kn/q) Zx(br + k).
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By Lemma 4.6 this is 0 when d 1 r. Thus we may suppose
that d | r. Then, by Lemma 4.6,

r

ey(n) = > elkn/q)x*(k)e(q)/e(r).
(kim)=1

Put m = n/(q,n), and let x; denote the character modulo
r induced by x*. Then the above is

r

= 29 S~ o).

p(r) <=

Since (m,r) = 1, we see by the first case treated that the
above is

2 e/ ()7
which suffices. ]




