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Background

Let {pn} be the sequence of primes in its natural order.
In 1920(7?, he would have been only 13!) Chowla
conjectured that if g > 3, (g,a) = 1, then there are
infinitely many n such that

Pn = Pn+1 =4 (mOd CI)

Daniel Shiu [2000] shows that there are ‘strings’ of
congruent primes,

i.e. that for any k there exist infinitely many n such that

Pntl = P2 = ... = ppik = a (mod q).
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Background

Shiu's proof uses a sophisticated form of the
1. Maier matrix method, and requires
2. an estimate of de Bruijn for y-factorable numbers,

3. a result of Gallagher on the distribution of primes which
in turn depends on log-free zero density estimates near 1.

4. a generalization of Landau’s theorem on the proportion
of numbers which are the sum of two squares,

5. the standard zero-free region for Dirichlet L-functions
and a technique for avoiding exceptional zeros.

Only 5 is usually covered in Math 568 and we do not have
the time to cover all of rest in detail.

| propose instead to give an account of Maier’s theorem
and an overview of the necessary background which
includes all of the above except 4.

In addition we get an immediate proof of Linnik's theorem
on the least prime in a.p.
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Thaers ® There is a standard probabilistic model for the primes due

Robert C. to Cramér [1936] which states that the probability that a

Vouehan number of size x is prime is 1/log x. This is known as the
Background Cramér model of the primes.

® This predicts that if A > 1, then

m(x + (Iogx)’\) — 7(x) ~ (logx)*1 as x — oo.

® Maier [1985] showed that this breaks down for short
intervals.

® He proved that if A > 1, then

liminf W(X + (Iogx)A) —m(x)

1
X—00 (log x)*1 <

) 7 (x log x)) — m(x
<|I)I(TI_)SOUOP ( +((|oggx))>‘21 ( )
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® Maier showed that
Theorem 1 (Maier)
Let X\ > 1 and w denote the Buchstab function,

Q () =inf{w(r) : 7> A}, QT (A\) = sup{w(7) : T > A}
Then

im sup TI'(X + (|ogx))‘) — m(x)

> CoQ-‘r A
X300 (log x)A~1 =€ *)

and
e 7r(x + (Iogx))‘) — 7(x)
X—00 (|Og X)’\_l

Moreover Q= (\) < e~ < QT (\).

< e (N).
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The Buchstab function w(u) is defined for u > 1 by

w(u) = % (1<u<2), (vw(uv)) =wlu-1)(u>2)
and continuity at u = 2.

1-+1 -1
Thus w(u) = itloglu—l) og(u )

Also, when 2 < u < 3 we have
1—(u—1)log(uv—1)
u?(u—1)
so that w/(2) = 1 and w/(3) = LIOQ <0.
Thus v e (2,3) s.t. w'(u)=0 and w(u) has a local max.
We also have for u > 2

uw' (u) = w(u—1) —w(u) = — /ilw’(v)dv

(2<u<3).

W(u) =

so w'(u) changes sign in every interval of length 1.
It can also be shown that lim, ;o w(u) = e~ where Gy is
Euler's constant. For more details see Chapter 7 of MNT.,
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The function w(u) — e~ changes sign in every interval
fheBuchsiab [t — 1 ¢t] with t > 2.

® Proof. Define {(u) for u > —1 by
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® ¢ is differentiable for v > —1 and by integration by parts
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® We also have
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The function w(u) — e~ changes sign in every interval
The Buchstab [t _ ]_7 t] Wlth t Z 2

Function

® Proof. Define {(u) for u > —1 by

f(u):/oooexp <uxx+/ox e_yy_ldy) dx.

¢ is differentiable for u > —1 and by integration by parts

ué(u—1)+¢&(u) = 0.
1

u+1

For t > 2, let n(t) = /t w(u)é(u)du + tw(t)é(t —1).
t—1

Then 7/(t) =0 (t > 2) and lim;_,oo n(t) = e~ .

We also have

u—+2 <&(u) <



® Hence

/t;w(u)g(u)du Fr(DE(t-1)=e @ (¢>2).
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® Hence

® | et

/t;w(u)g(u)du Fr(DE(t-1)=e @ (¢>2).

u(t) = /t;g(u)du +ee(t—1),
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t—1

® |et

The Buchstab
Function

v(t) = /ttlg(u)du + t&(t —1).

® Then /(t) =0 (t > 0). We also have v(t) — 1 as
t — oco. Therefore

/t £(u)du + t€(t — 1) = 1(t > 0)
t—1

and so

/til (w(u) — e_CO)n(u)du + t(w(t) — e_CO)r](t —-1)=0.
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s / ' w()()du+ (- 1) = e C (£ 2),
t—1

[ ]
The Buchstab Let

Function

v(t) = /ttlg(u)du + t&(t —1).

® Then /(t) =0 (t > 0). We also have v(t) — 1 as
t — oco. Therefore

/t £(u)du + te(t—1) = 1(¢ > 0)

t—1

and so

/til (w(u) — e_Co)n(u)du + t(w(t) — e_CO)r](t —-1)=0.

e Since n(t) > 0 and w(u) is not a constant when
2 < u < 3, then the lemma follows.
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® \We need good information about the distribution of

primes in fairly short intervals.

Before establishing the requisite result we need to review
some results which are not usually proved in Math 568.

Exceptional Zero Statement. By Corollary 11.10 of
MNT there is a positive constant c; such that

Fis.T) =TT IT L(s.x)

QST Xmod ¢

has at most one zero s with s > 1 — ﬁ, of necessity
real and if this “exceptional zero” (1 exists, then the
corresponding character x1 is quadratic and, by Corollary
11.12, there is a positive constant ¢, such that

01 = 1 — B satisfies

1
- - S 51 < -
a1 (log q1)2 cilog T

where g1 is the conductor of x1.



bt ® |t is convenient to write E; = 0 if there is no exceptional
aler' s . . .

Theorem zero and E; = 1 if there is an exceptional zero and to
Robert C. reserve X1, B1, g1 to denote the corresponding exceptional
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Theorem zero and E; = 1 if there is an exceptional zero and to
Fi/c;tiegr;ai- reserve X1, B1, g1 to denote the corresponding exceptional
character, zero and conductor.
® |et
N*(0,T)
Exceptional denote the number of zeros p = 3 + iy of F(s, T), with

B >0 and |y| < T, other than any exceptional zero.

® One can observe that if as T varies there are only a finite
number of exceptional moduli, then in principle one could
simply adjust the constant ¢; and eliminate the concept of
“exceptional”.

® On the other hand if the exceptional moduli form an
infinite sequence {q;} and {f;} are the corresponding
exceptional zeros, then by the same token one would have
to have

limsup(1 — f3;) log q; = 0.

j—o0o

® So ¢; could be taken to be as small as one pleases.
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There are constants ¢ > 0, ¢y > 0 so that for % <6<1 and
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and if there is an exceptional real zero 1, x1, g1, then

N*(6, T) < cod1(log T) T,
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® \We will probably have to skip the proof of the following.
Theorem 3

There are constants ¢ > 0, ¢y > 0 so that for % <6<1 and
T>2
N*(97 T) < (€)) TC(1_0)7

and if there is an exceptional real zero 1, x1, g1, then

N*(0, T) < cob1(log T) T<=0),

® This gives an effective Deuring-Heilbronn theorem.

Corollary 4

There are cyg > 0, c > 0 so that if 31 is exceptional, then any
other zero p = B + iy with |y| < T of F(s, T) satisfies

1
|Og co(1—pP1)log T

<1l-
b= clog T



L ® An important application of the above is
aler s
Theorem

Robert C. Theorem 5 (Gallagher)

Vaughan
There are constants ¢ > 1, kg > 3 so that if Kk > kg Is a
constant and Q and x satisfy 1 < Q¢ < x, then
* log x x log? x
Z Z |9(x; x) — Eo(x)x| < xexp _H|OgQ + 01 0
Distribution of g<Q Xmod q g
Primes

unless F(s,q) = H 1_[k L(s, x) has an exceptional zero (31
g<Q Xmod q
with 1 — (51 < ﬁ when the general term on the left is
B1
replaced by ’ﬁ(x; X1) + XB' when x = x1 Is the exceptional
1
character, and the right hand side by

(- g (rerp (1255 + 285,
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® The following two theorems are almost immediate
Theorem 6 (Gallagher)

Suppose that 1 < ¢°¢ < x, (a,q) =1, ¢,k is as in Theorem 5

and that there is no exceptional zero 51 with 1 — 51 < og g’
K
Then

_ X log x log? x
a2 =5 <1 O (eXp (_Fc'og q) i qlog2q>> '
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Vaughan Theorem 6 (Gallagher)

Suppose that 1 < ¢°¢ < x, (a,q) =1, ¢,k is as in Theorem 5
and that there is no exceptional zero B1 with 1 — 31 <
Then

kloggqg’

Ei#ribution of | | 2
rimes X OgX Og X
ﬁx;q,a:<1+0<exp(— )—i— >>
( ) ¢(q) rklogg) qlog’q

® Given g € N and a € Z with (g, a) = 1 we define p(q, a)
to be the least prime number p such that p = a (mod q).

Theorem 7 (Linnik)

There is a positive constant A such that whenever g € N,
a€7Z and (q,a) =1 we have p(q,a) < g*.



Lo ® Theorem 5. There are c > 1, kg > 3 so if

Theorem K Z K0, Q6C S X, then Z Z* |19(Xv X) - EO(X)X|
friii 9=Q Ximod o
L xe ( log x )—i— xlog_ x
xexp | —
P\ kg Q) T Qlog? Q
unless there is a 1 > 1 — m when LHS with x = x1 is
Distribution of xB1
Primes 19(X, Xl) + ﬂi when X = X1 and the RHS is
1

(1= tos) (xerw (025 )+ Groes )



Math 571 ® Theorem 5. There are c > 1, kg > 3 so if

Maier's

Theorem K Z K0, Q6C S X, then Z Z* |19(Xv X) - EO(X)X|
ot A=Q Xmod a
log x x log? x
<K xex —
p( HlogG)) Qlog? @
unless there is a f1 > 1 — m when LHS with x = x1 is
Distribution of xB1
Primes 19()( Xl) + ﬂi when X = X1 and the RHS is
1
log x x log x
1-— I — .
(1 — B1)(log x) (xexp( IogQ) + QIogQ)

¢ Proof. By MVvoll or Math 568, when x > 2, T < x1/2

90ix) = Bax — 30 4 0(E(ogx?)  (0)

PER(x) P

where R(x) ={p: L(p,x) =0,8>3,]7| < T}.



Math 571
Maier's
Theorem

Robert C.
Vaughan

® | et the constants ¢, ¢p, c1, ¢ be as in the Exceptional
Zero Statement, Theorem 3 and Corollary 4, and let

ko = 3max(c, c1, coe, 1, cpe°). (1)

Distribution of
Primes



Math 571

Maier's
Theorem
Robert C.
Vaughan
® | et the constants ¢, ¢p, c1, ¢ be as in the Exceptional
Zero Statement, Theorem 3 and Corollary 4, and let
ko = 3max(c, c1, coe, 1, cpe°). (1)
Ei?r:‘e‘:“tio" of ® On hypothesis, kK > kg and it is convenient to write

k' =k/3.



Math 571

Maier's
Theorem
Robert C.
Vaughan
® | et the constants ¢, ¢p, c1, ¢ be as in the Exceptional
Zero Statement, Theorem 3 and Corollary 4, and let
ko = 3max(c, c1, coe, 1, cpe°). (1)
E:;je‘:“tio" of ® On hypothesis, kK > kg and it is convenient to write
/
K =kK/3.

® | et
T=@3. (2)
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® | et the constants ¢, ¢p, c1, ¢ be as in the Exceptional
Zero Statement, Theorem 3 and Corollary 4, and let
ko = 3max(c, c1, coe, 1, cpe°). (1)
Eiis;:ie‘;“tion of ® On hypothesis, kK > kg and it is convenient to write
k' =k/3.
® |et
T=Q3 (2)
[}

The proof divides into two cases.



® First we suppose that
F=F(s,T)=Tlg<t H _ L(s, x)
has no zeros p =  + iy with |y| < T and

1—
B> kolog T’
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Robert C.
Vaughan has no zeros p = 5 + iy W|th \7| < T and

>1— ——F,
b kolog T

® that is, either there are no exceptional zeros, or the

. . . - 1
exceptional zero exists but satisfies 1 — >
Distribution of P Bl = kolog T
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® First we suppose that

F=F(sT)=

q<T H

has no zeros p = 3 + iy W|th \7| < T and

>1—-—
b kolog T

® that is, either there are no exceptional zeros, or the

exceptional zero exists but satisfies 1 — 31 >

= nologT'

® By the explicit formula Z Z |9(x; x) — Eo(x)x]|

< QOxT™

g<Q Xmod q

1(Iogx)2+z Z* Z x5

g<Q Xmod q pET\’,(X)



Math 571 ® First we suppose that

Maier's
Theorem F F(s T q<T H
Robert C.
Vaughan has no zeros p = 5 + iy W|th \7| < T and
>1—- —
p kolog T’
® that is, either there are no exceptional zeros, or the
RTn— exceptional zero exists but satisfies 1 — 31 > W'
rime ® By the explicit formula Z Z [9(x; x) — Eo(x)x|
d<Q Xmod q

<<QXT_1(Iogx)2+Z Z* Z X,

g<Q Xmod q pER(X)
B
e We have x? = x!/? +/ x“(log x)du and so the above is
1/2
1-1/(k’ log T)

< xY2N*(1/2,T) +/ x“N*(u, T)(log x)du.
1/2



g<Q Xmod q

o Thus Y N 10(xiv) — Eo(x)x|

1-1/(k"log T)
< xM2N*(1/2,T) +/ x“N*(u, T)(log x)du.
1/2

«O> «Fr «=>»

«E)»
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Math 571 ® Thus Z Z |9(x; x) — Eo(x)x]|

Theorem

g<Q Xmod q
Robert C.
Vaughan 1_1/("'€/ |°g T)
< xY2N*(1/2,T) +/ x“N*(u, T)(log x)du.
1/2
® By Theorem 3 this is
1-1/(x"log T)

Distribution of < X1/2 TC/2 + / Xu TC(I_U)(log X)du.
Primes 1/2

By (2) and the hypothesis on x.

xT € = XQf3c > X1/2 and X1/2Qc/2 < X3/4.



Math 571 ® Thus Z Z |9(x; x) — Eo(x)x]|

Theorem qSQ Xmod q
Vouaar: 1-1/("log T)
< xY2N*(1/2,T) +/ x“N*(u, T)(log x)du.
1/2
® By Theorem 3 this is
1-1/(x"log T)

Distribution of < X1/2 TC/2 + / Xu TC(I_U)(log X)dU.
Primes 1/2

By (2) and the hypothesis on x.
xT € = XQ*3C > X1/2 and X1/2Qc/2 < X3/4.
® Hence the sum of interest is
< XQ_2(|Og X)2 + Xl—l/(,‘i/ log T) Tc/(n’ log T)

= xQ ?(log x)? + xexp ( — (log x)/(x" log Q) + c/K)
< xQ ?(log x)* + xexp ( — (log x)/(x log Q) + c/x’).



® The remaining case is that in which there is an exceptional
zero satisfying 81 > 1 — (x'log T)™L.

«O> «Fr «=>»

«E)»
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Math 571 ® The remaining case is that in which there is an exceptional

Theorem zero satisfying 31 > 1 — (x'log T)™*

Robert C. XBI

Vaughan ® Now 9(x, x) + E1(x) 5 < xT *(log x)? Z x?
S)1

PER*(X)
where R*(x) denotes the set of zeros p = 3 + iy of

L(s; x), other than 1, with [y| < T and 8 > 1.
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Primes



Math 571 ® The remaining case is that in which there is an exceptional

Theorem zero satisfying 31 > 1 — (x'log T)™*

Robert C. XBI

Vaughan ® Now 9(x, x) + E1(x) 5 < xT *(log x)? Z x?
S)1

PER*(X)
where R*(x) denotes the set of zeros p = 3 + iy of

L(s; x), other than 1, with [y| < T and 8 > 1.
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Math 571 ® The remaining case is that in which there is an exceptional

Maier's

Theorem zero satisfying 31 > 1 — (x'log T)™*
Robert C. XBI
Vaughan ® Now 9(x, x) + E1(x) 5 < xT *(log x)? Z x?
Ej1 ;
PER*(X)
where R*(x) denotes the set of zeros p = 3 + iy of
L(s; x), other than 1, with [y| < T and 8 > 1.
® \We can proceed as above, but now the multiple sum is
P! < (1= p1)(log T)x'/2T</2

1-6
+ / (1 — B1)(log T)x“ T gy
1/2

Iog%
< (1= $1)(log T)x'~° T where § = ° w(l-fi)leg T
clog T
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The remaining case is that in which there is an exceptional
zero satisfying 31 > 1 — (x'log T)™*

XBI
Now 9(x, x) + E1(x) 5 < xT *(log x)? Z x?

Ej1 ;

PER*(X)

where R*(x) denotes the set of zeros p = 3 + iy of
L(s; x), other than 1, with [y| < T and 8 > 1.
We can proceed as above, but now the multiple sum is

< (1 — ﬂl)(log T)X1/2 TC/2

1-6
+ / (1 - 51)(|0g T)x” Tc(l—u)du
1/2

Iog%
< (1= $1)(log T)x'~° T where § = ° w(l-fi)leg T
clog T

So, by the inequality for 63 in EZS, the sum is
< (1= 1) QxT(log x)* + (1 — B1)(log x)x* T

< (1= Br)(log ) g B + (1= )0 x0T
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® We have

X1—5 TC5

N (l clog T Iog (o1 = ) tog T)>

log x — 3clog Q ,
istribution o S p ( g("{ /CO)
Prmer " <! 3clog Q
_logx —3clog Q
< xexp log Q

X Xp -

and that completes the proof.
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® As a consequence of Gallagher's theorem.

Lemma 8

Let P(z) =[],<, p. Then there are positive constants c and
ko which have the property that when A > max(2,6c¢) and

K € [ko,2Ko] there are arbitrarily large z > zy(A, k) such that
whenever (a, P(z)) = 1 we have

7r(2P(z)A, P(z), a)) - 7T(P(Z)A7 P(z), a))
P(2) P(2)" exp(—A/k)

~ ¢(P(2))(Alog P(2)) < o(P(2)) (Alog P(2))
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® As a consequence of Gallagher's theorem.

Lemma 8

Let P(z) =[],<, p. Then there are positive constants c and
ko which have the property that when A > max(2,6c¢) and

K € [ko,2Ko] there are arbitrarily large z > zy(A, k) such that
whenever (a, P(z)) = 1 we have

7r(2P(z)A, P(z), a)) - 7T(P(Z)A7 P(z), a))
P(2) P(2)" exp(—A/k)

~ ¢(P(2))(Alog P(2)) < o(P(2)) (Alog P(2))

e Note that this is not for every large z, only some, perhaps
very thin, subset of all large z.
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® Proof. Let g = P(py). If there is no exceptional zero 3; of

Fs)= [T I tsv

m|P(pn) Xmod m

Robert C.
Vaughan

with 51 > 1 — m, then we have, provided p, is
large enough in terms of A and kg.

Distribution of
Primes

19(2P(PH)A7 P(pn). a)) — ﬁ(P(pn)Av P(pn). a))

_ _Pp)* _ P(pn)* exp(=A/ro)

6(P(pn)) (P(pn)))




Math 571
Maier's

Theorem ® Proof. Let g = P(py). If there is no exceptional zero 3; of

Fs)= [T I tsv

Vaughan
m|P(pn) Xmod m

with 51 > 1 — m, then we have, provided p, is
large enough in terms of A and kg.

Distribution of
Primes

ﬂ(zp(Pn)AaP(Pn)@)) _ﬁ(P(pn)Av'D(Pn)@))
_ _Pp)* _ P(pn)* exp(=A/ro)
6(P(pn)) (P(pn)))

® Moreover, for P(p,)* < p < 2P(p,)*", we have

log p = Alog P(pn) + O(1)

and the desired conclusion follows with z = p,,.



Math 571 L4
Maier's
Theorem

Robert C. Fa(s) = H 1_[k L(x, x)

Vaughan m|P(pn) Xmod m

Now suppose that there is an exceptional zero 57 of

satisfying 81 > 1 — m and let g1 be the
corresponding conductor.
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Primes



Math 571 ® Now suppose that there is an exceptional zero 81 of

Maier's

e F(s)= TT TT Ltx)

Vaughan m|P(p,,) Xmod m

satisfying 81 > 1 — m and let g1 be the
corresponding conductor.
® Since

< g% log ¢}

1

Distribution of - /81

Primes . .
g1 is large in terms of n.



Math 571 ® Now suppose that there is an exceptional zero 31 of

Maier's

e F(s)= TT TT Ltx)

Vaughan m|P(p,,) Xmod m

satisfying 81 > 1 — m and let g1 be the
corresponding conductor.

® Since

1
log P(pn) < 1 < q%logq}

Distribution of - ,61
rmes g1 is large in terms of n.
® Now choose / minimally so that g1|P(p;) and consider
P(pi—1). The I will also be large in terms of n, and S; will
satisfy
fr>1 Ko log P(p;)’
so will be exceptional for Fi(s).
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Now suppose that there is an exceptional zero 31 of

)= T1 TT teen)

m|P(pn) Xmod m

satisfying 81 > 1 — m and let g1 be the
corresponding conductor.

Since
log P(pn) <

: _lﬂl < g% log ¢}

g1 is large in terms of n.

Now choose / minimally so that g1|P(p;) and consider
P(pi—1). The I will also be large in terms of n, and S; will
satisfy

fr>1 Ko log P(p;)’

so will be exceptional for Fi(s).

Suppose that F;_1(s) has an exceptional zero (3, so that

1

>1- —
b= e Plpr )



Math 571

Maier's

Theorem ® Then the associated conductor will divide P(p;) but by the

Robert C. .. . . . .

Vaughan minimality of / the exceptional conductor will differ from
qi-

Distribution of
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Maier's
Theorem ® Then the associated conductor will divide P(p;) but by the
Robert C. .. . . . .

Valtjg;ai minimality of / the exceptional conductor will differ from

qi.

® But there cannot be a second exceptional zero of F(s), so

1 1
fp<l— —————=1-
Distribution of K/O Iog P(pl) HO( IOg P(plf]_) + |Og p/)

Primes 1

~ 2kglog P(pi-1)’

<1
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® Then the associated conductor will divide P(p;) but by the

Robert C.

Vaughan minimality of / the exceptional conductor will differ from
qi-
® But there cannot be a second exceptional zero of F(s), so
1 1
Bp<le——— ——=1-
Distribution of Ko Iog P(pl) K/O( Iog P(p/,]_) + |Og pl)
Primes 1

<l—-—
2r9 log P(pi-1)

® Thus there are no exceptional zeros of the kind

1

>l-—
e Tog Plor )

associated with P(p;_1) and we can proceed as in the first
part of the proof.
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Recall Maier’'s Theorem

Theorem 1 (Maier). w denotes the Buchstab function,
Q (\) =inf{w(r): 7> A}, QT () = sup{w(7) : 7 > A}

7(x + (log x)*) — m(x)

Then Ii)rlsolip (log x> 1 > 0T (\) and
log x)*) —

lim inf m(x + (log ) 2 m(x) < e%Q~(\). Moreover

X—00 (log x)*1

Q= (\) < e @ < QF(N).



® Let 7 > A\ and consider the array I = (a,y)

(1<u<P@)* !, 1< v < (AlogP(2)), (v, P(2)) =1)

where a,, = 1 when uP(z)*~! + v is prime and 0
otherwise.

«O>» «Fr «=)r « =)
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N Proof of Maier's Theorem

Theorem

Robert C.

Vaughan
® let 7 > X and consider the array 9t = (a,y)
(1<u<P* ! 1< v < (AlogP(2)), (v, P(2)) =1)
where a,, = 1 when uP(z)*~! + v is prime and 0
otherwise.
Proof of
Maier's ® By Lemma 8 (Gallagher), the number of non-zero entries

Theorem

in the v-th column is

7r(2P(z)A, P(z), v) — W(P(Z)A, P(z), v)
P(2)"

= (P Al Pz) (L T O(&P(A/R) ()




® \We need to know the number of rows with non-zero
entries.

«Or «Fr o«
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Maier’s ® \We need to know the number of rows with non-zero

Theorem .
entries.
Robert C.

Vaughan ® That is the number of v with

1 <v < (AlogP(z))", (v,P(z)) =1), so the number
<D((A log P(z))T,z)

Maier's
Theorem
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Proof of
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® \We need to know the number of rows with non-zero
entries.

® That is the number of v with
1 <v < (AlogP(z))", (v,P(z)) =1), so the number

<D((A log P(2))7, z)
® where ® is as in:
Theorem 9 (Buchstab)

Let ®(x, y) denote the number of positive integers n < x
composed entirely of prime numbers p >y, and let w(u) be
Buchstab’s function. Then

~ w(u)x y X
Pl y) = logy logy + O((Iogx)2)

uniformly for 1 < u < U and all y > 2. Here u = (log x)/log y,
ie y=xi/u



Math 571 ® Thus the total number of non-zero entries in the array is
Maier's

Theorem A

Robert C. P(Z) d)((A |Og P(Z))T7 Z)

Vaughan

(P(z))Alog P(2) (14 O(exp(—A/r))) =

P(z)" (Alog(P(2)))w (T'g(‘“g”())

log z

Alog P(2) [, (1 — 1/p) (1+0()).

Proof of
Maier's
Theorem



Math 571 ® Thus the total number of non-zero entries in the array is
Maier's

Theorem

b P(z)ACD((A log P(z))T,z) exo(—A/k))) —
Vaughan gf)(P(z))Alog P(Z) (1 + O( p( A/ ))) -

P(z)" (Alog(P(2)))w (T'g(‘“g”())

psr
Aog PO, 1m0
® Moreover, by the prime number theorem and Mertens,
Proof of log P(z) = ¥(z) = z + O(z/ log z),
Theoren log(Alog P(z)) = (log z) (1 + O ((log A)(log ) 1))

flo- - 55 -0(:2) =




Math 571 ® Thus the total number of non-zero entries in the array is
Maier's

Theorem

b P(z)ACD((A log P(z))T,z) exo(—A/k))) —
Vaughan gf)(P(z))Alog P(Z) (1 + O( p( A/ ))) -

P(z)" (Alog(P(2)))w (T'g(‘“g”())

psr
Aog PO, 1m0
® Moreover, by the prime number theorem and Mertens,
Proof of log P(z) = ¥(z) = z + O(z/ log z),
Theoren log(Alog P(z)) = (log z) (1 + O ((log A)(log ) 1))

flo-vm- 55 0 ()

o w(rlog(Alog P(z))/logz) = w(7)(1+ O(log A/ log z)))
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® Thus the total number of non-zero entries in the array is

P29 ((AlogP(@)"2) |
¢(P(z))Alog P(z) (1+ O(exp(=A/r))) =

P(z)" (Alog(P(2)))w (T'g(‘“g”())

=) (1+0())
Alog P(2) [Tp<.(1 = 1/p) '
® Moreover, by the prime number theorem and Mertens,
log P(z) = ¥(z) = z + O(z/ log z),
log(Alog P(z)) = (log z) (1 + O ((log A)(log ) 1))

flo-vm- 55 0 ()

e w(Tlog(Alog P(2))/logz) = w(7)(1+ O(log A/ log z)))

® and the total number of non-zero entries in the array is
z)A1 z)))e%w(r

Plz) (Agféif(z)))) 2T) (14 0(exp(~A/n))).
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Mater's ® The total number of non-zero entries in the array is
Robert C. A1 ;G
Pz)" " (Alog(P(2)))" e%e(r)
1+0 —A .
Alog P(z) (1+0(exp(~A/r)))
Proof of
Maier's

Theorem



Math 571

Maier's ® The total number of non-zero entries in the array is
Robert C. A—1 T C
Vaughan P(Z) (AIOg(P(Z))) e O(U(T)
1+0 —A .
Alog P(z) (1+0(exp(~A/r)))
® The total number of rows is P(z)*~1.
Proof of
Maier's

Theorem



Math 571

Mater's ® The total number of non-zero entries in the array is
Vr P(2)" L(Alog(P(2)))eSou(r)

Alog P(z) (1+ O(exp(—A/~K))).

® The total number of rows is P(z)*~1.
® Hence there are rows with > M non-zero entries where
(Alog(P(2)))"e%w(r)
M= 1 —A
ot AlgP(z) L+ Olew(=A/K)

Theorem
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Maier's
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Robert C.
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Proof of
Maier's
Theorem

The total number of non-zero entries in the array is

P(2)* *(Alog(P(2)))"e“w(r)
Alog P(z)

(1+ O(exp(—A/K))).

The total number of rows is P(z)*~1.

Hence there are rows with > M non-zero entries where

(Alog(P(2)))"ew(r)

M= Alog P(z)

(1+ O(exp(—A/K)))

By dividing the primes counted in these rows into N
subintervals of length (Alog(P(z)))"N~! where

N = [(Alog(P(z)))T_)‘w we find that there are intervals
(X, X + (Alog(P(z)))"N~'] containing

z))) ew(r
> (Alog%(og))/s)(;) D (14 0(exp(~A/x))) primes

where P(2)* < X < 2P(2)* + (Alog P(2))".
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Proof of
Maier's
Theorem

® |ntervals (X X+

Alog(P(2)))" N7, with
)y -‘ containing

(
N = [(Alog(P(2))

o AeCoyy
Rtk 1)

where P(2)* < X < 2P(2)* + (Alog P(2))".

>



Math 571

Maiers ® Intervals (X, X + (Alog(P(z)))"N™'], with
Robr . N = [(Alog(P(z)))T*)‘-‘, containing
o z))) eCow(r
> (Alog(P(2))) ( )(1+ O(exp(—A/k))) primes

Alog P(z)
where P(2)* < X < 2P(2)* + (Alog P(2))".

® The length of such intervals is as most

(Alog P(2))" < (log X).
T
Theorem



Math 571 Fr—1 .
Maier's L] |nterva|S (X7X + (A |0g(P(Z))) N }’ Wlth

Theorem

Robert C. N = [(Alog(P(z)))T*)‘-‘, containing

Vaughan o 2 Aecow -
Rtk 1)

where P(2)* < X < 2P(2)* + (Alog P(2))".

® The length of such intervals is as most

>

(Alog P(2))" < (log X).
Proof of
Maier's

Theorem [ ] Moreover
Alog P(z) = log X + O(1)



Math 571

Maiers ® Intervals (X, X + (Alog(P(2)))"N~!], with
Robr . N = [(Alog(P(z)))T*)‘-‘, containing
o z))) eCow(r
> (Alog(P(2))) ( )(1+ O(exp(—A/k))) primes

Alog P(z)
where P(2)* < X < 2P(2)* + (Alog P(2))".

The length of such intervals is as most

(Alog P(2))" < (log X).
Proof of
Maier's

Theorem [ ] Moreover
Alog P(z) = log X + O(1)

Thus it follows that there are arbitrarily large X such that

~(X + (log X)*) — w(X)
> e%uw(r)(log X)* (1 + O(exp(—A/k))).



Moth o7t ® |n the opposite direction, there are rows with at most
Theorem
Robert C. (A IOg(P(z)))TeCOw(T)
au, an 1 O _A
Vaugh Alog P(2) (1+ O(exp(—A/K)))
non-zero entries.
Proof of

Maier's
Theorem



Math 571 ® |n the opposite direction, there are rows with at most
ier
Theorem

Robert C. Alog(P(z)))" e“w(r
(Alesl! |E>g))/a)(z) ) (14 0(exp(—A/)))
non-zero entries.
® The choice N = { (Alog(P(2)))" p )\J
(log (2P(2)A + (Alog P(z))"))
o produces intervals (X,X + (,M()g(l\lj(z)))] of length at
Theorem least (log (2P(2)* + (Alog P(z))T))/\ > (log X)*

co.ntaining < ew(T)(log X)* (1 4+ O(exp(—A/k)))
primes.
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Proof of
Maier's
Theorem

® |n the opposite direction, there are rows with at most

(Alog(P(2)))"e“w(7)

Alog P(2) (1+ O(exp(—A/K)))

non-zero entries.

The choice N = { (Alog(P(2)))" = )\J
(log (2P(2)A + (Alog P(2))"))
(Alog(P(2)))"
N
least (log (2P(2)" + (Alog P(2))"))* > (log X)
co.ntaining < ew(T)(log X)* (1 4+ O(exp(—A/k)))
primes.

produces intervals (X,X + ] of length at

Thus it follows that there are arbitrarily large X such that

(X + (log X)*) — 7(X)
< e@w(r)(log X)* (1 + O(exp(—A/x)))-

The theorem now follows.
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