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• Let {pn} be the sequence of primes in its natural order.

• In 1920(?, he would have been only 13!) Chowla
conjectured that if q ≥ 3, (q, a) = 1, then there are
infinitely many n such that

pn ≡ pn+1 ≡ a (mod q)

• Daniel Shiu [2000] shows that there are ‘strings’ of
congruent primes,

• i.e. that for any k there exist infinitely many n such that

pn+1 ≡ pn+2 ≡ . . . ≡ pn+k ≡ a (mod q).



Math 571
Maier’s
Theorem

Robert C.
Vaughan

Background

The Buchstab
Function

Exceptional
Zeros

Distribution of
Primes

Proof of
Maier’s
Theorem

• Let {pn} be the sequence of primes in its natural order.

• In 1920(?, he would have been only 13!) Chowla
conjectured that if q ≥ 3, (q, a) = 1, then there are
infinitely many n such that

pn ≡ pn+1 ≡ a (mod q)

• Daniel Shiu [2000] shows that there are ‘strings’ of
congruent primes,

• i.e. that for any k there exist infinitely many n such that

pn+1 ≡ pn+2 ≡ . . . ≡ pn+k ≡ a (mod q).



Math 571
Maier’s
Theorem

Robert C.
Vaughan

Background

The Buchstab
Function

Exceptional
Zeros

Distribution of
Primes

Proof of
Maier’s
Theorem

• Let {pn} be the sequence of primes in its natural order.

• In 1920(?, he would have been only 13!) Chowla
conjectured that if q ≥ 3, (q, a) = 1, then there are
infinitely many n such that

pn ≡ pn+1 ≡ a (mod q)

• Daniel Shiu [2000] shows that there are ‘strings’ of
congruent primes,

• i.e. that for any k there exist infinitely many n such that

pn+1 ≡ pn+2 ≡ . . . ≡ pn+k ≡ a (mod q).



Math 571
Maier’s
Theorem

Robert C.
Vaughan

Background

The Buchstab
Function

Exceptional
Zeros

Distribution of
Primes

Proof of
Maier’s
Theorem

• Let {pn} be the sequence of primes in its natural order.

• In 1920(?, he would have been only 13!) Chowla
conjectured that if q ≥ 3, (q, a) = 1, then there are
infinitely many n such that

pn ≡ pn+1 ≡ a (mod q)

• Daniel Shiu [2000] shows that there are ‘strings’ of
congruent primes,

• i.e. that for any k there exist infinitely many n such that

pn+1 ≡ pn+2 ≡ . . . ≡ pn+k ≡ a (mod q).



Math 571
Maier’s
Theorem

Robert C.
Vaughan

Background

The Buchstab
Function

Exceptional
Zeros

Distribution of
Primes

Proof of
Maier’s
Theorem

• Shiu’s proof uses a sophisticated form of the

• 1. Maier matrix method, and requires

• 2. an estimate of de Bruijn for y -factorable numbers,

• 3. a result of Gallagher on the distribution of primes which
in turn depends on log-free zero density estimates near 1.

• 4. a generalization of Landau’s theorem on the proportion
of numbers which are the sum of two squares,

• 5. the standard zero-free region for Dirichlet L-functions
and a technique for avoiding exceptional zeros.

• Only 5 is usually covered in Math 568 and we do not have
the time to cover all of rest in detail.

• I propose instead to give an account of Maier’s theorem
and an overview of the necessary background which
includes all of the above except 4.

• In addition we get an immediate proof of Linnik’s theorem
on the least prime in a.p.
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• There is a standard probabilistic model for the primes due
to Cramér [1936] which states that the probability that a
number of size x is prime is 1/ log x . This is known as the
Cramér model of the primes.

• This predicts that if λ > 1, then

π
(
x + (log x)λ

)
− π(x) ∼ (log x)λ−1 as x → ∞.

• Maier [1985] showed that this breaks down for short
intervals.

• He proved that if λ > 1, then

lim inf
x→∞

π
(
x + (log x)λ

)
− π(x)

(log x)λ−1
< 1

< lim sup
x→∞

π
(
x + (log x)λ

)
− π(x)

(log x)λ−1
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• Maier showed that

Theorem 1 (Maier)

Let λ > 1 and ω denote the Buchstab function,

Ω−(λ) = inf{ω(τ) : τ > λ}, Ω+(λ) = sup{ω(τ) : τ > λ}.

Then

lim sup
x→∞

π
(
x + (log x)λ

)
− π(x)

(log x)λ−1
≥ eC0Ω+(λ)

and

lim inf
x→∞

π
(
x + (log x)λ

)
− π(x)

(log x)λ−1
≤ eC0Ω−(λ).

Moreover Ω−(λ) < e−C0 < Ω+(λ).
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• The Buchstab function ω(u) is defined for u ≥ 1 by

ω(u) =
1

u
(1 < u ≤ 2), (uω(u))′ = ω(u − 1) (u > 2)

and continuity at u = 2.

• Thus ω(u) =
1 + log(u − 1)

u
(2 < u ≤ 3).

• Also, when 2 < u ≤ 3 we have

ω′(u) =
1− (u − 1) log(u − 1)

u2(u − 1)

• so that ω′(2) = 1
4 and ω′(3) = 1−2 log 2

18 < 0.
• Thus ∃ u ∈ (2, 3) s.t. ω′(u) = 0 and ω(u) has a local max.
• We also have for u > 2

uω′(u) = ω(u − 1)− ω(u) = −
∫ u

u−1
ω′(v)dv

so ω′(u) changes sign in every interval of length 1.
• It can also be shown that limu→∞ ω(u) = e−C0 where C0 is

Euler’s constant. For more details see Chapter 7 of MNT.
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• The following lemma is particularly useful in the proof of
Maier’s theorem.

Lemma 2 (de Bruijn)

The function ω(u)− e−C0 changes sign in every interval
[t − 1, t] with t ≥ 2.

• Proof. Define ξ(u) for u > −1 by

ξ(u) =

∫ ∞

0
exp

(
−ux − x +

∫ x

0

e−y − 1

y
dy

)
dx .

• ξ is differentiable for u > −1 and by integration by parts

uξ′(u − 1) + ξ(u) = 0.

• We also have
1

u + 2
< ξ(u) <

1

u + 1
.

• For t ≥ 2, let η(t) =

∫ t

t−1
ω(u)ξ(u)du + tω(t)ξ(t − 1).

• Then η′(t) = 0 (t > 2) and limt→∞ η(t) = e−C0 .
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ξ(u) =

∫ ∞

0
exp

(
−ux − x +

∫ x

0

e−y − 1

y
dy

)
dx .

• ξ is differentiable for u > −1 and by integration by parts

uξ′(u − 1) + ξ(u) = 0.

• We also have
1

u + 2
< ξ(u) <

1

u + 1
.

• For t ≥ 2, let η(t) =

∫ t

t−1
ω(u)ξ(u)du + tω(t)ξ(t − 1).

• Then η′(t) = 0 (t > 2) and limt→∞ η(t) = e−C0 .
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• Hence∫ t

t−1
ω(u)ξ(u)du + tω(t)ξ(t − 1) = e−C0 (t ≥ 2).

• Let

ν(t) =

∫ t

t−1
ξ(u)du + tξ(t − 1).

• Then ν ′(t) = 0 (t > 0). We also have ν(t) → 1 as
t → ∞. Therefore∫ t

t−1
ξ(u)du + tξ(t − 1) = 1(t > 0)

and so∫ t

t−1

(
ω(u)− e−C0

)
η(u)du + t

(
ω(t)− e−C0

)
η(t − 1) = 0.

• Since η(t) > 0 and ω(u) is not a constant when
2 ≤ u ≤ 3, then the lemma follows.



Math 571
Maier’s
Theorem

Robert C.
Vaughan

Background

The Buchstab
Function

Exceptional
Zeros

Distribution of
Primes

Proof of
Maier’s
Theorem

• Hence∫ t

t−1
ω(u)ξ(u)du + tω(t)ξ(t − 1) = e−C0 (t ≥ 2).

• Let

ν(t) =

∫ t

t−1
ξ(u)du + tξ(t − 1).

• Then ν ′(t) = 0 (t > 0). We also have ν(t) → 1 as
t → ∞. Therefore∫ t

t−1
ξ(u)du + tξ(t − 1) = 1(t > 0)

and so∫ t

t−1

(
ω(u)− e−C0

)
η(u)du + t

(
ω(t)− e−C0

)
η(t − 1) = 0.

• Since η(t) > 0 and ω(u) is not a constant when
2 ≤ u ≤ 3, then the lemma follows.



Math 571
Maier’s
Theorem

Robert C.
Vaughan

Background

The Buchstab
Function

Exceptional
Zeros

Distribution of
Primes

Proof of
Maier’s
Theorem

• Hence∫ t

t−1
ω(u)ξ(u)du + tω(t)ξ(t − 1) = e−C0 (t ≥ 2).

• Let

ν(t) =

∫ t

t−1
ξ(u)du + tξ(t − 1).

• Then ν ′(t) = 0 (t > 0). We also have ν(t) → 1 as
t → ∞. Therefore∫ t

t−1
ξ(u)du + tξ(t − 1) = 1(t > 0)

and so∫ t

t−1

(
ω(u)− e−C0

)
η(u)du + t

(
ω(t)− e−C0

)
η(t − 1) = 0.

• Since η(t) > 0 and ω(u) is not a constant when
2 ≤ u ≤ 3, then the lemma follows.



Math 571
Maier’s
Theorem

Robert C.
Vaughan

Background

The Buchstab
Function

Exceptional
Zeros

Distribution of
Primes

Proof of
Maier’s
Theorem

• Hence∫ t

t−1
ω(u)ξ(u)du + tω(t)ξ(t − 1) = e−C0 (t ≥ 2).

• Let

ν(t) =

∫ t

t−1
ξ(u)du + tξ(t − 1).

• Then ν ′(t) = 0 (t > 0). We also have ν(t) → 1 as
t → ∞. Therefore∫ t

t−1
ξ(u)du + tξ(t − 1) = 1(t > 0)

and so∫ t

t−1

(
ω(u)− e−C0

)
η(u)du + t

(
ω(t)− e−C0

)
η(t − 1) = 0.

• Since η(t) > 0 and ω(u) is not a constant when
2 ≤ u ≤ 3, then the lemma follows.



Math 571
Maier’s
Theorem

Robert C.
Vaughan

Background

The Buchstab
Function

Exceptional
Zeros

Distribution of
Primes

Proof of
Maier’s
Theorem

• We need good information about the distribution of
primes in fairly short intervals.

• Before establishing the requisite result we need to review
some results which are not usually proved in Math 568.

• Exceptional Zero Statement. By Corollary 11.10 of
MNT there is a positive constant c1 such that

F (s,T ) =
∏
q≤T

∏∗

χmod q

L(s, χ)

has at most one zero s with ℜs > 1− 1
c1 logT

, of necessity
real and if this “exceptional zero” β1 exists, then the
corresponding character χ1 is quadratic and, by Corollary
11.12, there is a positive constant c2 such that
δ1 = 1− β1 satisfies

1

c2q
1/2
1 (log q1)2

≤ δ1 <
1

c1 logT

where q1 is the conductor of χ1.
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• It is convenient to write E1 = 0 if there is no exceptional
zero and E1 = 1 if there is an exceptional zero and to
reserve χ1, β1, q1 to denote the corresponding exceptional
character, zero and conductor.

• Let
N∗(θ,T )

denote the number of zeros ρ = β + iγ of F (s,T ), with
β ≥ θ and |γ| ≤ T , other than any exceptional zero.

• One can observe that if as T varies there are only a finite
number of exceptional moduli, then in principle one could
simply adjust the constant c1 and eliminate the concept of
“exceptional”.

• On the other hand if the exceptional moduli form an
infinite sequence {qj} and {βj} are the corresponding
exceptional zeros, then by the same token one would have
to have

lim sup
j→∞

(1− βj) log qj = 0.

• So c1 could be taken to be as small as one pleases.
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• We will probably have to skip the proof of the following.

Theorem 3

There are constants c > 0, c0 > 0 so that for 1
2 ≤ θ ≤ 1 and

T ≥ 2
N∗(θ,T ) ≤ c0T

c(1−θ),

and if there is an exceptional real zero β1, χ1, q1, then

N∗(θ,T ) ≤ c0δ1(logT )T c(1−θ).

• This gives an effective Deuring-Heilbronn theorem.

Corollary 4

There are c0 > 0, c > 0 so that if β1 is exceptional, then any
other zero ρ = β + iγ with |γ| ≤ T of F (s,T ) satisfies

β ≤ 1−
log 1

c0(1−β1) logT

c logT
.
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• An important application of the above is

Theorem 5 (Gallagher)

There are constants c ≥ 1, κ0 ≥ 3 so that if κ ≥ κ0 is a
constant and Q and x satisfy 1 < Q6c ≤ x, then

∑
q≤Q

∑∗

χmod q

|ϑ(x ;χ)− E0(χ)x | ≪ x exp

(
− log x

κ logQ

)
+

x log2 x

Q log2Q

unless F (s, q) =
∏
q≤Q

∏∗

χmod q

L(s, χ) has an exceptional zero β1

with 1− β1 <
1

κ logQ when the general term on the left is

replaced by

∣∣∣∣ϑ(x ;χ1) +
xβ1

β1

∣∣∣∣ when χ = χ1 is the exceptional

character, and the right hand side by

(1− β1)(log x)

(
x exp

(
− log x

logQ

)
+

x log x

Q logQ

)
.
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• The following two theorems are almost immediate

Theorem 6 (Gallagher)

Suppose that 1 < q6c ≤ x, (a, q) = 1, c , κ is as in Theorem 5

and that there is no exceptional zero β1 with 1− β1 <
1

κ log q
.

Then

ϑ(x ; q, a) =
x

ϕ(q)

(
1 + O

(
exp

(
− log x

κ log q

)
+

log2 x

q log2 q

))
.

• Given q ∈ N and a ∈ Z with (q, a) = 1 we define p(q, a)
to be the least prime number p such that p ≡ a (mod q).

Theorem 7 (Linnik)

There is a positive constant A such that whenever q ∈ N,
a ∈ Z and (q, a) = 1 we have p(q, a) ≤ qA.
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• Theorem 5. There are c ≥ 1, κ0 ≥ 3 so if

κ ≥ κ0,Q
6c ≤ x, then

∑
q≤Q

∑∗

χmod q

|ϑ(x ;χ)− E0(χ)x |

≪ x exp

(
− log x

κ logQ

)
+

x log2 x

Q log2Q

unless there is a β1 > 1− 1
κ logQ when LHS with χ = χ1 is∣∣∣∣ϑ(x ;χ1) +

xβ1

β1

∣∣∣∣ when χ = χ1 and the RHS is

(1− β1)(log x)

(
x exp

(
− log x

logQ

)
+

x log x

Q logQ

)
.

• Proof. By MVvol1 or Math 568, when x ≥ 2,T ≤ x1/2

ϑ(x ;χ) = E0(χ)x −
∑

ρ∈R(χ)

xρ

ρ
+ O

( x

T
(log x)2

)
(0)

where R(χ) = {ρ : L(ρ, χ) = 0, β ≥ 1
2 , |γ| ≤ T}.
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• Let the constants c , c0, c1, c2 be as in the Exceptional
Zero Statement, Theorem 3 and Corollary 4, and let

κ0 = 3max(c , c1, c0e, 1, c0e
3c). (1)

• On hypothesis, κ ≥ κ0 and it is convenient to write

κ′ = κ/3.

• Let
T = Q3. (2)

• The proof divides into two cases.
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• First we suppose that

F = F (s,T ) =
∏

q≤T

∏∗

χmod q

L(s, χ)

has no zeros ρ = β + iγ with |γ| ≤ T and

β > 1− 1

κ0 logT
,

• that is, either there are no exceptional zeros, or the
exceptional zero exists but satisfies 1− β1 ≥ 1

κ0 logT
.

• By the explicit formula
∑
q≤Q

∑∗

χmod q

|ϑ(x ;χ)− E0(χ)x |

≪ QxT−1(log x)2 +
∑
q≤Q

∑∗

χmod q

∑
ρ∈R(χ)

xβ.

• We have xβ = x1/2 +

∫ β

1/2
xu(log x)du and so the above is

≤ x1/2N∗(1/2,T ) +

∫ 1−1/(κ′ logT )

1/2
xuN∗(u,T )(log x)du.
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• Thus
∑
q≤Q

∑∗
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|ϑ(x ;χ)− E0(χ)x |

≤ x1/2N∗(1/2,T ) +

∫ 1−1/(κ′ logT )

1/2
xuN∗(u,T )(log x)du.

• By Theorem 3 this is

≪ x1/2T c/2 +

∫ 1−1/(κ′ logT )

1/2
xuT c(1−u)(log x)du.

By (2) and the hypothesis on x .

xT−c = xQ−3c ≥ x1/2 and x1/2Qc/2 ≤ x3/4.

• Hence the sum of interest is

≪ xQ−2(log x)2 + x1−1/(κ′ logT )T c/(κ′ logT )

= xQ−2(log x)2 + x exp
(
− (log x)/(κ′ logQ) + c/κ′

)
≪ xQ−2(log x)2 + x exp

(
− (log x)/(κ logQ) + c/κ′

)
.
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• The remaining case is that in which there is an exceptional
zero satisfying β1 > 1− (κ′ logT )−1.

• Now ϑ(x , χ) + E1(χ)
xβ1

β1
≪ xT−1(log x)2 +

∑
ρ∈R∗(χ)

xβ

where R∗(χ) denotes the set of zeros ρ = β + iγ of
L(s;χ), other than β1, with |γ| ≤ T and β ≥ 1

2 .
• We can proceed as above, but now the multiple sum is

≪ (1− β1)(logT )x1/2T c/2

+

∫ 1−δ

1/2
(1− β1)(logT )xuT c(1−u)du

≪ (1− β1)(logT )x1−δT cδ where δ =
log 1

c0(1−β1) logT

c logT

• So, by the inequality for δ1 in EZS, the sum is

≪ (1− β1)QxT
−1(log x)2 + (1− β1)(log x)x

1−δT cδ

≪ (1− β1)(log x)
x log x

Q logQ
+ (1− β1)(log x)x

1−δT cδ.
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• We have

x1−δT cδ = x exp

(
log(xT−c)

c logT
log

(
c0(1− β1) logT

))
≤ x exp

(
− log x − 3c logQ

3c logQ
log(κ′/c0)

)
≪ x exp

(
− log x − 3c logQ

logQ

)
≪ x exp

(
− log x

logQ

)
and that completes the proof.
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• As a consequence of Gallagher’s theorem.

Lemma 8

Let P(z) =
∏

p≤z p. Then there are positive constants c and
κ0 which have the property that when A > max(2, 6c) and
κ ∈ [κ0, 2κ0] there are arbitrarily large z > z0(A, κ) such that
whenever (a,P(z)) = 1 we have

π
(
2P(z)A,P(z), a)

)
− π

(
P(z)A,P(z), a)

)
− P(z)A

ϕ
(
P(z)

)(
A logP(z)

) ≪ P(z)A exp(−A/κ)

ϕ
(
P(z)

)(
A logP(z)

) .

• Note that this is not for every large z , only some, perhaps
very thin, subset of all large z .
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• Proof. Let q = P(pn). If there is no exceptional zero β1 of

Fn(s) =
∏

m|P(pn)

∏∗

χmod m

L(s, χ)

with β1 > 1− 1
κ0 logP(pn)

, then we have, provided pn is
large enough in terms of A and κ0.

ϑ
(
2P(pn)

A,P(pn), a)
)
− ϑ

(
P(pn)

A,P(pn), a)
)

− P(pn)
A

ϕ
(
P(pn)

) ≪ P(pn)
A exp(−A/κ0)

ϕ
(
P(pn)

)) .

• Moreover, for P(pn)
A < p ≤ 2P(pn)

A, we have

log p = A logP(pn) + O(1)

and the desired conclusion follows with z = pn.
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• Now suppose that there is an exceptional zero β1 of

Fn(s) =
∏

m|P(pn)

∏∗

χmod m

L(x , χ)

satisfying β1 > 1− 1
κ0 logP(pn)

and let q1 be the
corresponding conductor.

• Since

logP(pn) ≪
1

1− β1
≪ q

1/2
1 log q21

q1 is large in terms of n.
• Now choose l minimally so that q1|P(pl) and consider
P(pl−1). The l will also be large in terms of n, and β1 will
satisfy

β1 > 1− 1

κ0 logP(pl)
,

so will be exceptional for Fl(s).
• Suppose that Fl−1(s) has an exceptional zero β2, so that

β2 > 1− 1

κ0 logP(pl−1)
.
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• Then the associated conductor will divide P(pl) but by the
minimality of l the exceptional conductor will differ from
q1.

• But there cannot be a second exceptional zero of Fl(s), so

β2 ≤ 1− 1

κ0 logP(pl)
= 1− 1

κ0
(
logP(pl−1) + log pl

)
< 1− 1

2κ0 logP(pl−1)
.

• Thus there are no exceptional zeros of the kind

β1 > 1− 1

2κ0 logP(pl−1)

associated with P(pl−1) and we can proceed as in the first
part of the proof.
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Recall Maier’s Theorem

• Theorem 1 (Maier). ω denotes the Buchstab function,

Ω−(λ) = inf{ω(τ) : τ > λ}, Ω+(λ) = sup{ω(τ) : τ > λ}.

Then lim sup
x→∞

π
(
x + (log x)λ

)
− π(x)

(log x)λ−1
≥ eC0Ω+(λ) and

lim inf
x→∞

π
(
x + (log x)λ

)
− π(x)

(log x)λ−1
≤ eC0Ω−(λ). Moreover

Ω−(λ) < e−C0 < Ω+(λ).
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Proof of Maier’s Theorem

• Let τ > λ and consider the array M = (auv )(
1 ≤ u ≤ P(z)A−1, 1 ≤ v ≤ (A logP(z))τ ,

(
v ,P(z)

)
= 1

)
where auv = 1 when uP(z)A−1 + v is prime and 0
otherwise.

• By Lemma 8 (Gallagher), the number of non-zero entries
in the v -th column is

π
(
2P(z)A,P(z), v

)
− π

(
P(z)A,P(z), v

)
=

P(z)A

ϕ(P(z))A logP(z)

(
1 + O

(
exp(−A/κ)

))
(3)
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1 ≤ u ≤ P(z)A−1, 1 ≤ v ≤ (A logP(z))τ ,

(
v ,P(z)

)
= 1

)
where auv = 1 when uP(z)A−1 + v is prime and 0
otherwise.

• By Lemma 8 (Gallagher), the number of non-zero entries
in the v -th column is

π
(
2P(z)A,P(z), v

)
− π

(
P(z)A,P(z), v

)
=

P(z)A

ϕ(P(z))A logP(z)

(
1 + O

(
exp(−A/κ)

))
(3)
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• We need to know the number of rows with non-zero
entries.

• That is the number of v with
1 ≤ v ≤ (A logP(z))τ ,

(
v ,P(z)

)
= 1

)
, so the number

Φ
(
(A logP(z))τ , z

)
• where Φ is as in:

Theorem 9 (Buchstab)

Let Φ(x , y) denote the number of positive integers n ≤ x
composed entirely of prime numbers p ≥ y, and let ω(u) be
Buchstab’s function. Then

Φ(x , y) =
ω(u)x

log y
− y

log y
+ O

( x

(log x)2

)
uniformly for 1 ≤ u ≤ U and all y ≥ 2. Here u = (log x)/ log y,
i.e. y = x1/u.
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• Thus the total number of non-zero entries in the array is

P(z)AΦ
(
(A logP(z))τ , z

)
ϕ
(
P(z)

)
A logP(z)

(
1 + O

(
exp(−A/κ)

))
=

P(z)A−1
(
A log(P(z))

)τ
ω

(
τ log

(
A logP(z)

)
log z

)
A logP(z)

∏
p≤z(1− 1/p)

(
1 + O

(
”
))
.

• Moreover, by the prime number theorem and Mertens,

logP(z) = ϑ(z) = z + O(z/ log z),

log(A logP(z)) = (log z)
(
1 + O

(
(logA)(log z)−1

))
∏
p≤z

(1− 1/p) =
e−C0

log z

(
1 + O

(
1

log z

))
, so

• ω(τ log(A logP(z))/ log z) = ω(τ)(1 + O(logA/ log z)))
• and the total number of non-zero entries in the array is

P(z)A−1(A log(P(z)))τeC0ω(τ)

A logP(z)

(
1 + O

(
exp(−A/κ)

))
.
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• The total number of non-zero entries in the array is

P(z)A−1(A log(P(z)))τeC0ω(τ)

A logP(z)

(
1 + O

(
exp(−A/κ)

))
.

• The total number of rows is P(z)A−1.

• Hence there are rows with ≥ M non-zero entries where

M =
(A log(P(z)))τeC0ω(τ)

A logP(z)

(
1 + O

(
exp(−A/κ)

))
• By dividing the primes counted in these rows into N
subintervals of length (A log(P(z)))τN−1 where

N =
⌈
(A log(P(z)))τ−λ

⌉
we find that there are intervals(

X ,X + (A log(P(z)))τN−1
]
containing

≥ (A log(P(z)))λeC0ω(τ)

A logP(z)

(
1 + O

(
exp(−A/κ)

))
primes

where P(z)A ≤ X ≤ 2P(z)A +
(
A logP(z)

)τ
.
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• Intervals
(
X ,X + (A log(P(z)))τN−1

]
, with

N =
⌈
(A log(P(z)))τ−λ

⌉
, containing

≥ (A log(P(z)))λeC0ω(τ)

A logP(z)

(
1 + O

(
exp(−A/κ)

))
primes

where P(z)A ≤ X ≤ 2P(z)A +
(
A logP(z)

)τ
.

• The length of such intervals is as most(
A logP(z)

)λ ≤ (logX )λ.

• Moreover
A logP(z) = logX + O(1)

• Thus it follows that there are arbitrarily large X such that

π(X + (logX )λ)− π(X )

≥ eC0ω(τ)(logX )λ−1
(
1 + O

(
exp(−A/κ)

))
.
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• In the opposite direction, there are rows with at most

(A log(P(z)))τeC0ω(τ)

A logP(z)

(
1 + O

(
exp(−A/κ)

))
non-zero entries.

• The choice N =

⌊
(A log(P(z)))τ(

log
(
2P(z)A +

(
A logP(z)

)τ))λ
⌋

produces intervals

(
X ,X +

(A log(P(z)))τ

N

]
of length at

least
(
log

(
2P(z)A + (A logP(z))τ

))λ ≥ (logX )λ

containing ≤ eC0ω(τ)(logX )λ−1(1 + O(exp(−A/κ)))
primes.

• Thus it follows that there are arbitrarily large X such that

π(X + (logX )λ)− π(X )

≤ eC0ω(τ)(logX )λ−1(1 + O(exp(−A/κ))).

The theorem now follows.
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