Robert C. Vaughan

Background

The Buchsta Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

Math 571 Maier's Theorem

Robert C. Vaughan

April 18, 2023

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • Let $\{p_n\}$ be the sequence of primes in its natural order.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Background

The Buchsta Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

- Let $\{p_n\}$ be the sequence of primes in its natural order.
- In 1920(?, he would have been only 13!) Chowla conjectured that if q ≥ 3, (q, a) = 1, then there are infinitely many n such that

$$p_n \equiv p_{n+1} \equiv a \pmod{q}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Background

The Buchsta Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

- Let $\{p_n\}$ be the sequence of primes in its natural order.
- In 1920(?, he would have been only 13!) Chowla conjectured that if q ≥ 3, (q, a) = 1, then there are infinitely many n such that

$$p_n \equiv p_{n+1} \equiv a \pmod{q}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Daniel Shiu [2000] shows that there are 'strings' of congruent primes,

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

- Let $\{p_n\}$ be the sequence of primes in its natural order.
- In 1920(?, he would have been only 13!) Chowla conjectured that if q ≥ 3, (q, a) = 1, then there are infinitely many n such that

$$p_n \equiv p_{n+1} \equiv a \pmod{q}$$

- Daniel Shiu [2000] shows that there are 'strings' of congruent primes,
- i.e. that for any k there exist infinitely many n such that

$$p_{n+1} \equiv p_{n+2} \equiv \ldots \equiv p_{n+k} \equiv a \pmod{q}.$$

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • Shiu's proof uses a sophisticated form of the

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • Shiu's proof uses a sophisticated form of the

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• 1. Maier matrix method, and requires

Robert C. Vaughan

Background

The Buchstat Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

- Shiu's proof uses a sophisticated form of the
- 1. Maier matrix method, and requires
- 2. an estimate of de Bruijn for y-factorable numbers,

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

- Shiu's proof uses a sophisticated form of the
- 1. Maier matrix method, and requires
- 2. an estimate of de Bruijn for y-factorable numbers,
- 3. a result of Gallagher on the distribution of primes which in turn depends on log-free zero density estimates near 1.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

- Shiu's proof uses a sophisticated form of the
- 1. Maier matrix method, and requires
- 2. an estimate of de Bruijn for y-factorable numbers,
- 3. a result of Gallagher on the distribution of primes which in turn depends on log-free zero density estimates near 1.
- 4. a generalization of Landau's theorem on the proportion of numbers which are the sum of two squares,

Robert C. Vaughan

Background

- The Buchstab Function
- Exceptional Zeros
- Distribution of Primes
- Proof of Maier's Theorem

- Shiu's proof uses a sophisticated form of the
- 1. Maier matrix method, and requires
- 2. an estimate of de Bruijn for y-factorable numbers,
- 3. a result of Gallagher on the distribution of primes which in turn depends on log-free zero density estimates near 1.
- 4. a generalization of Landau's theorem on the proportion of numbers which are the sum of two squares,
- 5. the standard zero-free region for Dirichlet *L*-functions and a technique for avoiding exceptional zeros.

Robert C. Vaughan

Background

- The Buchstab Function
- Exceptional Zeros
- Distribution of Primes
- Proof of Maier's Theorem

- Shiu's proof uses a sophisticated form of the
- 1. Maier matrix method, and requires
- 2. an estimate of de Bruijn for y-factorable numbers,
- 3. a result of Gallagher on the distribution of primes which in turn depends on log-free zero density estimates near 1.
- 4. a generalization of Landau's theorem on the proportion of numbers which are the sum of two squares,
- 5. the standard zero-free region for Dirichlet *L*-functions and a technique for avoiding exceptional zeros.
- Only 5 is usually covered in Math 568 and we do not have the time to cover all of rest in detail.

Robert C. Vaughan

Background

- The Buchstab Function
- Exceptional Zeros
- Distribution of Primes
- Proof of Maier's Theorem

- Shiu's proof uses a sophisticated form of the
- 1. Maier matrix method, and requires
- 2. an estimate of de Bruijn for y-factorable numbers,
- 3. a result of Gallagher on the distribution of primes which in turn depends on log-free zero density estimates near 1.
- 4. a generalization of Landau's theorem on the proportion of numbers which are the sum of two squares,
- 5. the standard zero-free region for Dirichlet *L*-functions and a technique for avoiding exceptional zeros.
- Only 5 is usually covered in Math 568 and we do not have the time to cover all of rest in detail.
- I propose instead to give an account of Maier's theorem and an overview of the necessary background which includes all of the above except 4.

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

- Shiu's proof uses a sophisticated form of the
- 1. Maier matrix method, and requires
- 2. an estimate of de Bruijn for y-factorable numbers,
- 3. a result of Gallagher on the distribution of primes which in turn depends on log-free zero density estimates near 1.
- 4. a generalization of Landau's theorem on the proportion of numbers which are the sum of two squares,
- 5. the standard zero-free region for Dirichlet *L*-functions and a technique for avoiding exceptional zeros.
- Only 5 is usually covered in Math 568 and we do not have the time to cover all of rest in detail.
- I propose instead to give an account of Maier's theorem and an overview of the necessary background which includes all of the above except 4.
- In addition we get an immediate proof of Linnik's theorem on the least prime in a.p.

- Math 571 Maier's Theorem
- Robert C. Vaughan
- Background
- The Buchstal Function
- Exceptional Zeros
- Distribution of Primes
- Proof of Maier's Theorem

• There is a standard probabilistic model for the primes due to Cramér [1936] which states that the probability that a number of size x is prime is $1/\log x$. This is known as the Cramér model of the primes.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

- There is a standard probabilistic model for the primes due to Cramér [1936] which states that the probability that a number of size x is prime is $1/\log x$. This is known as the Cramér model of the primes.
- This predicts that if $\lambda > 1$, then

$$\pi \big(x + (\log x)^{\lambda} \big) - \pi(x) \sim (\log x)^{\lambda - 1} \text{ as } x \to \infty.$$

Robert C. Vaughan

Background

- The Buchstal Function
- Exceptiona Zeros
- Distribution of Primes
- Proof of Maier's Theorem

- There is a standard probabilistic model for the primes due to Cramér [1936] which states that the probability that a number of size x is prime is $1/\log x$. This is known as the Cramér model of the primes.
- This predicts that if $\lambda > 1$, then

$$\pi \big(x + (\log x)^{\lambda} \big) - \pi(x) \sim (\log x)^{\lambda - 1} \text{ as } x \to \infty.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Maier [1985] showed that this breaks down for short intervals.

Robert C. Vaughan

Background

- The Buchstal Function
- Exceptiona Zeros
- Distribution of Primes
- Proof of Maier's Theorem

- There is a standard probabilistic model for the primes due to Cramér [1936] which states that the probability that a number of size x is prime is $1/\log x$. This is known as the Cramér model of the primes.
- This predicts that if $\lambda > 1$, then

$$\pi (x + (\log x)^{\lambda}) - \pi(x) \sim (\log x)^{\lambda - 1}$$
 as $x \to \infty$.

- Maier [1985] showed that this breaks down for short intervals.
- He proved that if $\lambda > 1$, then

$$\begin{split} \liminf_{x \to \infty} \frac{\pi \big(x + (\log x)^\lambda \big) - \pi(x)}{(\log x)^{\lambda - 1}} < 1 \\ < \limsup_{x \to \infty} \frac{\pi \big(x + (\log x)^\lambda \big) - \pi(x)}{(\log x)^{\lambda - 1}} \end{split}$$

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

• Maier showed that

Theorem 1 (Maier)

Let $\lambda > 1$ and ω denote the Buchstab function,

 $\Omega^{-}(\lambda) = \inf\{\omega(\tau) : \tau > \lambda\}, \ \Omega^{+}(\lambda) = \sup\{\omega(\tau) : \tau > \lambda\}.$

Then

$$\limsup_{x \to \infty} \frac{\pi \big(x + (\log x)^\lambda \big) - \pi(x)}{(\log x)^{\lambda - 1}} \geq e^{C_0} \Omega^+(\lambda)$$

and

$$\liminf_{x o \infty} rac{\pi ig(x + (\log x)^\lambdaig) - \pi(x)}{(\log x)^{\lambda - 1}} \leq e^{\mathcal{C}_0} \Omega^-(\lambda).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Moreover $\Omega^{-}(\lambda) < e^{-C_0} < \Omega^{+}(\lambda)$.

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • The Buchstab function $\omega(u)$ is defined for $u \ge 1$ by

$$\omega(u) = rac{1}{u} \ (1 < u \le 2), \quad (u\omega(u))' = \omega(u-1) \ (u > 2)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

≡ 9 < ભ

and continuity at u = 2.

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • The Buchstab function $\omega(u)$ is defined for $u \ge 1$ by

$$\omega(u) = \frac{1}{u} \ (1 < u \le 2), \quad (u\omega(u))' = \omega(u-1) \ (u > 2)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

Ξ 9 Q (P

and continuity at
$$u = 2$$
.
• Thus $\omega(u) = \frac{1 + \log(u - 1)}{u}$ $(2 < u \le 3)$.

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • The Buchstab function $\omega(u)$ is defined for $u \ge 1$ by

$$\omega(u) = rac{1}{u} \ (1 < u \le 2), \quad (u\omega(u))' = \omega(u-1) \ (u > 2)$$

and continuity at u = 2.

• Thus $\omega(u) = \frac{1 + \log(u - 1)}{u}$ (2 < $u \le 3$).

• Also, when $2 < u \leq \overline{3}$ we have

$$\omega'(u) = \frac{1 - (u - 1)\log(u - 1)}{u^2(u - 1)}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • The Buchstab function $\omega(u)$ is defined for $u \ge 1$ by

$$\omega(u) = rac{1}{u} \ (1 < u \le 2), \quad (u\omega(u))' = \omega(u-1) \ (u > 2)$$

and continuity at u = 2.

• Thus $\omega(u) = \frac{1 + \log(u - 1)}{u}$ $(2 < u \le 3).$

• Also, when $2 < u \leq \overline{3}$ we have

$$\omega'(u) = \frac{1 - (u - 1)\log(u - 1)}{u^2(u - 1)}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

• so that
$$\omega'(2) = \frac{1}{4}$$
 and $\omega'(3) = \frac{1-2\log 2}{18} < 0.$

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • The Buchstab function $\omega(u)$ is defined for $u \ge 1$ by

$$\omega(u) = rac{1}{u} \ (1 < u \le 2), \quad (u\omega(u))' = \omega(u-1) \ (u > 2)$$

and continuity at u = 2.

• Thus $\omega(u) = \frac{1 + \log(u - 1)}{u}$ (2 < $u \le 3$).

• Also, when $2 < u \leq \overline{3}$ we have

$$\omega'(u) = \frac{1 - (u - 1)\log(u - 1)}{u^2(u - 1)}$$

• so that
$$\omega'(2) = \frac{1}{4}$$
 and $\omega'(3) = \frac{1-2\log 2}{18} < 0$.

• Thus
$$\exists \ u \in (2,3)$$
 s.t. $\omega'(u) = 0$ and $\omega(u)$ has a local max.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

Robert C. Vaughan

Background

The Buchstab Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • The Buchstab function $\omega(u)$ is defined for $u \ge 1$ by

$$\omega(u) = rac{1}{u} \ (1 < u \le 2), \quad (u\omega(u))' = \omega(u-1) \ (u > 2)$$

and continuity at u = 2.

- Thus $\omega(u) = \frac{1 + \log(u 1)}{u}$ (2 < $u \le 3$).
- Also, when $2 < u \leq \overline{3}$ we have

$$\omega'(u) = \frac{1 - (u - 1)\log(u - 1)}{u^2(u - 1)}$$

- so that $\omega'(2) = \frac{1}{4}$ and $\omega'(3) = \frac{1-2\log 2}{18} < 0$.
- Thus $\exists \ u \in (2,3)$ s.t. $\omega'(u) = 0$ and $\omega(u)$ has a local max.
- We also have for u > 2

$$u\omega'(u) = \omega(u-1) - \omega(u) = -\int_{u-1}^{u} \omega'(v) dv$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

so $\omega'(u)$ changes sign in every interval of length 1.

Robert C. Vaughan

Background

The Buchstab Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • The Buchstab function $\omega(u)$ is defined for $u \ge 1$ by

$$\omega(u) = \frac{1}{u} \ (1 < u \le 2), \quad (u\omega(u))' = \omega(u-1) \ (u > 2)$$

and continuity at u = 2.

• Thus $\omega(u) = \frac{1 + \log(u - 1)}{u}$ (2 < $u \le 3$).

• Also, when $2 < u \leq \overline{3}$ we have

$$\omega'(u) = \frac{1 - (u - 1)\log(u - 1)}{u^2(u - 1)}$$

- so that $\omega'(2) = \frac{1}{4}$ and $\omega'(3) = \frac{1-2\log 2}{18} < 0.$
- Thus $\exists \ u \in (2,3)$ s.t. $\omega'(u) = 0$ and $\omega(u)$ has a local max.
- We also have for u > 2

$$u\omega'(u) = \omega(u-1) - \omega(u) = -\int_{u-1}^{u} \omega'(v) dv$$

so $\omega'(u)$ changes sign in every interval of length 1.

• It can also be shown that $\lim_{u\to\infty} \omega(u) = e^{-C_0}$ where C_0 is Euler's constant. For more details see Chapter 7 of MNT

Robert C. Vaughan

Background

The Buchstab Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • The following lemma is particularly useful in the proof of Maier's theorem.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Lemma 2 (de Bruijn)

The function $\omega(u) - e^{-C_0}$ changes sign in every interval [t-1, t] with $t \ge 2$.

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • The following lemma is particularly useful in the proof of Maier's theorem.

Lemma 2 (de Bruijn)

The function $\omega(u) - e^{-C_0}$ changes sign in every interval [t-1, t] with $t \ge 2$.

• Proof. Define $\xi(u)$ for u > -1 by

$$\xi(u) = \int_0^\infty \exp\left(-ux - x + \int_0^x \frac{e^{-y} - 1}{y} dy\right) dx.$$

Robert C. Vaughan

Background

The Buchstab Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • The following lemma is particularly useful in the proof of Maier's theorem.

Lemma 2 (de Bruijn)

The function $\omega(u) - e^{-C_0}$ changes sign in every interval [t-1, t] with $t \ge 2$.

• Proof. Define
$$\xi(u)$$
 for $u > -1$ by

$$\xi(u) = \int_0^\infty \exp\left(-ux - x + \int_0^x \frac{e^{-y} - 1}{y} dy\right) dx.$$

• ξ is differentiable for u>-1 and by integration by parts

$$u\xi'(u-1)+\xi(u)=0.$$

Robert C. Vaughan

Background

The Buchstab Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • The following lemma is particularly useful in the proof of Maier's theorem.

Lemma 2 (de Bruijn)

The function $\omega(u) - e^{-C_0}$ changes sign in every interval [t-1, t] with $t \ge 2$.

• Proof. Define
$$\xi(u)$$
 for $u > -1$ by

$$\xi(u) = \int_0^\infty \exp\left(-ux - x + \int_0^x \frac{e^{-y} - 1}{y} dy\right) dx.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• ξ is differentiable for u>-1 and by integration by parts

$$u\xi'(u-1)+\xi(u)=0$$

• We also have $rac{1}{u+2}<\xi(u)<rac{1}{u+1}.$

Robert C. Vaughan

Background

The Buchstab Function

Exceptiona Zeros

Distribution of Primes

1

1

Proof of Maier's Theorem • The following lemma is particularly useful in the proof of Maier's theorem.

Lemma 2 (de Bruijn)

The function $\omega(u) - e^{-C_0}$ changes sign in every interval [t-1, t] with $t \ge 2$.

• Proof. Define
$$\xi(u)$$
 for $u > -1$ by

$$\xi(u) = \int_0^\infty \exp\left(-ux - x + \int_0^x \frac{e^{-y} - 1}{y} dy\right) dx.$$

• ξ is differentiable for u>-1 and by integration by parts

$$u\xi'(u-1) + \xi(u) = 0.$$
• We also have
$$\frac{1}{u+2} < \xi(u) < \frac{1}{u+1}.$$
• For $t \ge 2$, let $\eta(t) = \int_{t-1}^t \omega(u)\xi(u)du + t\omega(t)\xi(t-1).$

▲ロト ▲母 ト ▲ 臣 ト ▲ 臣 - ● ● ●

Robert C Vaughan

The Buchstab Function

1

• The following lemma is particularly useful in the proof of Majer's theorem.

Lemma 2 (de Bruijn)

The function $\omega(u) - e^{-C_0}$ changes sign in every interval [t - 1, t] with $t \ge 2$.

• Proof. Define
$$\xi(u)$$
 for $u > -1$ by

$$\xi(u) = \int_0^\infty \exp\left(-ux - x + \int_0^x \frac{e^{-y} - 1}{y} dy\right) dx.$$

• ξ is differentiable for u > -1 and by integration by parts

$$\begin{split} & u\xi'(u-1) + \xi(u) = 0.\\ \bullet \text{ We also have } \frac{1}{u+2} < \xi(u) < \frac{1}{u+1}.\\ \bullet \text{ For } t \geq 2, \text{ let } \eta(t) = \int_{t-1}^{t} \omega(u)\xi(u)du + t\omega(t)\xi(t-1).\\ \bullet \text{ Then } \eta'(t) = 0 \quad (t>2) \text{ and } \lim_{t \to \infty} \eta(t) = e^{-C_0}. \end{split}$$

Robert C. Vaughan

Background

The Buchstab Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Hence

$$\int_{t-1}^t \omega(u)\xi(u)du + t\omega(t)\xi(t-1) = e^{-C_0} \quad (t \ge 2).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

• Hence

$$\int_{t-1}^t \omega(u)\xi(u)du + t\omega(t)\xi(t-1) = e^{-C_0} \quad (t \ge 2).$$

• Let

$$\nu(t) = \int_{t-1}^t \xi(u) du + t\xi(t-1).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

Ξ 9 Q (P

Robert C. Vaughan

Background

The Buchstab Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

• Hence

$$\int_{t-1}^t \omega(u)\xi(u)du + t\omega(t)\xi(t-1) = e^{-C_0} \quad (t \ge 2).$$

Let

$$\nu(t)=\int_{t-1}^t\xi(u)du+t\xi(t-1).$$

• Then $\nu'(t) = 0$ (t > 0). We also have $\nu(t) \rightarrow 1$ as $t \rightarrow \infty$. Therefore

$$\int_{t-1}^t \xi(u) du + t\xi(t-1) = 1(t > 0)$$

and so

$$\int_{t-1}^{t} (\omega(u) - e^{-C_0}) \eta(u) du + t (\omega(t) - e^{-C_0}) \eta(t-1) = 0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Background

The Buchstab Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

• Hence

$$\int_{t-1}^t \omega(u)\xi(u)du + t\omega(t)\xi(t-1) = e^{-C_0} \quad (t \ge 2).$$

Let

$$\nu(t)=\int_{t-1}^t\xi(u)du+t\xi(t-1).$$

• Then $\nu'(t) = 0$ (t > 0). We also have $\nu(t) \rightarrow 1$ as $t \rightarrow \infty$. Therefore

$$\int_{t-1}^{t} \xi(u) du + t\xi(t-1) = 1(t > 0)$$

and so

$$\int_{t-1}^{t} (\omega(u) - e^{-C_0}) \eta(u) du + t (\omega(t) - e^{-C_0}) \eta(t-1) = 0.$$

• Since $\eta(t) > 0$ and $\omega(u)$ is not a constant when $2 \le u \le 3$, then the lemma follows.
Robert C. Vaughan

Background

The Buchstat Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • We need good information about the distribution of primes in fairly short intervals.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Background

The Buchstat Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

- We need good information about the distribution of primes in fairly short intervals.
- Before establishing the requisite result we need to review some results which are not usually proved in Math 568.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

- We need good information about the distribution of primes in fairly short intervals.
- Before establishing the requisite result we need to review some results which are not usually proved in Math 568.
- Exceptional Zero Statement. By Corollary 11.10 of MNT there is a positive constant c₁ such that

$$\mathsf{F}(s, \mathcal{T}) = \prod_{q \leq \mathcal{T}} \prod_{\chi_{ ext{mod } q}}^* \mathsf{L}(s, \chi)$$

has at most one zero s with $\Re s > 1 - \frac{1}{c_1 \log T}$, of necessity real and if this "exceptional zero" β_1 exists, then the corresponding character χ_1 is quadratic and, by Corollary 11.12, there is a positive constant c_2 such that $\delta_1 = 1 - \beta_1$ satisfies

$$\frac{1}{c_2 q_1^{1/2} (\log q_1)^2} \leq \delta_1 < \frac{1}{c_1 \log T}$$

where q_1 is the conductor of χ_1 .

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • It is convenient to write $E_1 = 0$ if there is no exceptional zero and $E_1 = 1$ if there is an exceptional zero and to reserve χ_1 , β_1 , q_1 to denote the corresponding exceptional character, zero and conductor.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Background

The Buchstat Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • It is convenient to write $E_1 = 0$ if there is no exceptional zero and $E_1 = 1$ if there is an exceptional zero and to reserve χ_1 , β_1 , q_1 to denote the corresponding exceptional character, zero and conductor.

Let

 $N^*(\theta, T)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

denote the number of zeros $\rho = \beta + i\gamma$ of F(s, T), with $\beta \ge \theta$ and $|\gamma| \le T$, other than any exceptional zero.

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • It is convenient to write $E_1 = 0$ if there is no exceptional zero and $E_1 = 1$ if there is an exceptional zero and to reserve χ_1 , β_1 , q_1 to denote the corresponding exceptional character, zero and conductor.

Let

 $N^*(\theta, T)$

denote the number of zeros $\rho = \beta + i\gamma$ of F(s, T), with $\beta \ge \theta$ and $|\gamma| \le T$, other than any exceptional zero.

• One can observe that if as *T* varies there are only a finite number of exceptional moduli, then in principle one could simply adjust the constant *c*₁ and eliminate the concept of "exceptional".

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • It is convenient to write $E_1 = 0$ if there is no exceptional zero and $E_1 = 1$ if there is an exceptional zero and to reserve χ_1 , β_1 , q_1 to denote the corresponding exceptional character, zero and conductor.

Let

 $N^*(\theta, T)$

denote the number of zeros $\rho = \beta + i\gamma$ of F(s, T), with $\beta \ge \theta$ and $|\gamma| \le T$, other than any exceptional zero.

- One can observe that if as *T* varies there are only a finite number of exceptional moduli, then in principle one could simply adjust the constant *c*₁ and eliminate the concept of "exceptional".
- On the other hand if the exceptional moduli form an infinite sequence {q_j} and {β_j} are the corresponding exceptional zeros, then by the same token one would have to have

 $\limsup_{j\to\infty}(1-\beta_j)\log q_j=0.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • It is convenient to write $E_1 = 0$ if there is no exceptional zero and $E_1 = 1$ if there is an exceptional zero and to reserve χ_1 , β_1 , q_1 to denote the corresponding exceptional character, zero and conductor.

Let

 $N^*(\theta, T)$

denote the number of zeros $\rho = \beta + i\gamma$ of F(s, T), with $\beta \ge \theta$ and $|\gamma| \le T$, other than any exceptional zero.

- One can observe that if as *T* varies there are only a finite number of exceptional moduli, then in principle one could simply adjust the constant *c*₁ and eliminate the concept of "exceptional".
- On the other hand if the exceptional moduli form an infinite sequence {q_j} and {β_j} are the corresponding exceptional zeros, then by the same token one would have to have

 $\limsup_{j \to \infty} (1 - \beta_j) \log q_j = 0.$

Sac

• So c_1 could be taken to be as small as one pleases.

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • We will probably have to skip the proof of the following.

Theorem 3

There are constants c > 0, $c_0 > 0$ so that for $\frac{1}{2} \le \theta \le 1$ and $T \ge 2$ $N^*(\theta, T) \le c_0 T^{c(1-\theta)}$,

and if there is an exceptional real zero β_1, χ_1, q_1 , then

 $N^*(\theta, T) \leq c_0 \delta_1(\log T) T^{c(1-\theta)}.$

Robert C. Vaughan

Background

The Buchstat Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • We will probably have to skip the proof of the following.

Theorem 3

There are constants c > 0, $c_0 > 0$ so that for $\frac{1}{2} \le \theta \le 1$ and $T \ge 2$ $N^*(\theta, T) \le c_0 T^{c(1-\theta)}$,

and if there is an exceptional real zero β_1, χ_1, q_1 , then

$$\mathsf{N}^*(heta, au) \leq c_0 \delta_1(\log au) T^{c(1- heta)}$$

• This gives an effective Deuring-Heilbronn theorem.

Corollary 4

There are $c_0 > 0, c > 0$ so that if β_1 is exceptional, then any other zero $\rho = \beta + i\gamma$ with $|\gamma| \leq T$ of F(s, T) satisfies

$$\beta \leq 1 - \frac{\log \frac{1}{c_0(1-\beta_1)\log T}}{c\log T}$$

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • An important application of the above is

Theorem 5 (Gallagher)

There are constants $c \ge 1$, $\kappa_0 \ge 3$ so that if $\kappa \ge \kappa_0$ is a constant and Q and x satisfy $1 < Q^{6c} \le x$, then

$$\sum_{q \le Q} \sum_{\chi_{\text{mod } q}}^{*} |\vartheta(x;\chi) - E_0(\chi)x| \ll x \exp\left(-\frac{\log x}{\kappa \log Q}\right) + \frac{x \log^2 x}{Q \log^2 Q}$$

unless $F(s,q) = \prod_{q \leq Q} \prod_{\chi_{mod q}} L(s,\chi)$ has an exceptional zero β_1 with $1 - \beta_1 < \frac{1}{\kappa \log Q}$ when the general term on the left is replaced by $\left| \vartheta(x;\chi_1) + \frac{x^{\beta_1}}{\beta_1} \right|$ when $\chi = \chi_1$ is the exceptional character, and the right hand side by

$$(1 - \beta_1)(\log x)\left(x \exp\left(-\frac{\log x}{\log Q}\right) + \frac{x \log x}{Q \log Q}\right)$$

• □ ▶ • • □ ▶ • • = ▶ • • = ▶

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • The following two theorems are almost immediate

Theorem 6 (Gallagher)

Suppose that $1 < q^{6c} \le x$, (a, q) = 1, c, κ is as in Theorem 5 and that there is no exceptional zero β_1 with $1 - \beta_1 < \frac{1}{\kappa \log q}$. Then

$$\vartheta(x; q, a) = \frac{x}{\phi(q)} \left(1 + O\left(\exp\left(-\frac{\log x}{\kappa \log q} \right) + \frac{\log^2 x}{q \log^2 q} \right) \right).$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • The following two theorems are almost immediate

Theorem 6 (Gallagher)

Suppose that $1 < q^{6c} \le x$, (a, q) = 1, c, κ is as in Theorem 5 and that there is no exceptional zero β_1 with $1 - \beta_1 < \frac{1}{\kappa \log q}$. Then

$$\vartheta(x; q, a) = \frac{x}{\phi(q)} \left(1 + O\left(\exp\left(-\frac{\log x}{\kappa \log q} \right) + \frac{\log^2 x}{q \log^2 q} \right) \right).$$

Given q ∈ N and a ∈ Z with (q, a) = 1 we define p(q, a) to be the least prime number p such that p ≡ a (mod q).

Theorem 7 (Linnik)

There is a positive constant A such that whenever $q \in \mathbb{N}$, $a \in \mathbb{Z}$ and (q, a) = 1 we have $p(q, a) \leq q^A$.

Robert C. Vaughan

Background

The Buchstat Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

Theorem 5. There are
$$c \ge 1$$
, $\kappa_0 \ge 3$ so if
 $\kappa \ge \kappa_0$, $Q^{6c} \le x$, then $\sum_{q \le Q} \sum_{\chi_{\text{mod } q}}^* |\vartheta(x;\chi) - E_0(\chi)x|$
 $\ll x \exp\left(-\frac{\log x}{\kappa \log Q}\right) + \frac{x \log^2 x}{Q \log^2 Q}$

unless there is a $\beta_1 > 1 - \frac{1}{\kappa \log Q}$ when LHS with $\chi = \chi_1$ is $\left| \vartheta(x; \chi_1) + \frac{x^{\beta_1}}{\beta_1} \right|$ when $\chi = \chi_1$ and the RHS is

$$(1-\beta_1)(\log x)\left(x\exp\left(-\frac{\log x}{\log Q}\right)+\frac{x\log x}{Q\log Q}\right).$$

Sac

Robert C. Vaughan

Background

The Buchstat Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

Theorem 5. There are
$$c \ge 1$$
, $\kappa_0 \ge 3$ so if
 $\kappa \ge \kappa_0$, $Q^{6c} \le x$, then $\sum_{q \le Q} \sum_{\chi_{\text{mod } q}}^* |\vartheta(x; \chi) - E_0(\chi)x|$
 $\ll x \exp\left(-\frac{\log x}{\kappa \log Q}\right) + \frac{x \log^2 x}{Q \log^2 Q}$

unless there is a $\beta_1 > 1 - \frac{1}{\kappa \log Q}$ when LHS with $\chi = \chi_1$ is $\left| \vartheta(x; \chi_1) + \frac{x^{\beta_1}}{\beta_1} \right|$ when $\chi = \chi_1$ and the RHS is

$$(1-eta_1)(\log x)\left(x\exp\left(-rac{\log x}{\log Q}
ight)+rac{x\log x}{Q\log Q}
ight).$$

• **Proof.** By MVvol1 or Math 568, when $x \ge 2, T \le x^{1/2}$

$$\vartheta(x;\chi) = E_0(\chi)x - \sum_{\rho \in \mathcal{R}(\chi)} \frac{x^{\rho}}{\rho} + O\left(\frac{x}{T}(\log x)^2\right) \quad (0)$$

where $\mathcal{R}(\chi) = \{ \rho : L(\rho, \chi) = 0, \beta \geq \frac{1}{2}, |\gamma| \leq T \}$.

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Let the constants c, c_0 , c_1 , c_2 be as in the Exceptional Zero Statement, Theorem 3 and Corollary 4, and let

$$\kappa_0 = 3 \max(c, c_1, c_0 e, 1, c_0 e^{3c}).$$
 (1)

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Let the constants c, c_0 , c_1 , c_2 be as in the Exceptional Zero Statement, Theorem 3 and Corollary 4, and let

$$\kappa_0 = 3 \max(c, c_1, c_0 e, 1, c_0 e^{3c}).$$
 (1)

イロト 不得 トイヨト イヨト ニヨー

Sac

• On hypothesis, $\kappa \geq \kappa_0$ and it is convenient to write

$$\kappa' = \kappa/3.$$

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Let the constants c, c_0 , c_1 , c_2 be as in the Exceptional Zero Statement, Theorem 3 and Corollary 4, and let

$$\kappa_0 = 3 \max(c, c_1, c_0 e, 1, c_0 e^{3c}).$$
 (1)

• On hypothesis, $\kappa \geq \kappa_0$ and it is convenient to write

$$\kappa' = \kappa/3.$$

Let

 $T = Q^3. \tag{2}$

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Let the constants *c*, *c*₀, *c*₁, *c*₂ be as in the Exceptional Zero Statement, Theorem 3 and Corollary 4, and let

$$\kappa_0 = 3 \max(c, c_1, c_0 e, 1, c_0 e^{3c}).$$
 (1)

- On hypothesis, $\kappa\geq\kappa_{\rm 0}$ and it is convenient to write

$$\kappa' = \kappa/3.$$

Let

 $T = Q^3. \tag{2}$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• The proof divides into two cases.

Robert C. Vaughan

Background

The Buchsta Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

First we suppose that

$$F = F(s, T) = \prod_{q \leq T} \prod_{\substack{\chi_{\text{mod } q} \\ \chi_{\text{mod } q}}}^* L(s, \chi)$$
has no zeros $\rho = \beta + i\gamma$ with $|\gamma| \leq T$ and
 $\beta > 1 - \frac{1}{\kappa_0 \log T}$,

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

First we suppose that

$$F = F(s, T) = \prod_{q \le T} \prod_{\substack{\chi_{\text{mod } q}}}^* L(s, \chi)$$
has no zeros $\rho = \beta + i\gamma$ with $|\gamma| \le T$ and
 $\beta > 1 - \frac{1}{\kappa_0 \log T}$,

 that is, either there are no exceptional zeros, or the exceptional zero exists but satisfies 1 − β₁ ≥ 1/_{δ0 log T}.

・ロット (雪) (キョット (日)) ヨー

Sac

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

First we suppose that

$$F = F(s, T) = \prod_{q \le T} \prod_{\substack{\chi_{\text{mod } q} \\ \chi_{\text{mod } q}}}^* L(s, \chi)$$
has no zeros $\rho = \beta + i\gamma$ with $|\gamma| \le T$ and
 $\beta > 1 - \frac{1}{\kappa_0 \log T}$,

 that is, either there are no exceptional zeros, or the exceptional zero exists but satisfies 1 − β₁ ≥ 1/(π − μ) = π − μ)

• By the explicit formula $\sum_{q \leq Q} \sum_{\chi_{\text{mod } q}}^{*} |\vartheta(x; \chi) - E_0(\chi)x|$

$$\ll QxT^{-1}(\log x)^2 + \sum_{q \leq Q} \sum_{\chi_{ ext{mod } q}}^* \sum_{
ho \in \mathcal{R}(\chi)} x^{eta}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Sar

Robert C Vaughan

Distribution of Primes

• First we suppose that

$$F = F(s, T) = \prod_{q \leq T} \prod_{\substack{\chi_{\text{mod } q}}}^* L(s, \chi)$$
has no zeros $\rho = \beta + i\gamma$ with $|\gamma| \leq T$ and
 $\beta > 1 - \frac{1}{\kappa_0 \log T}$,

that is, either there are no exceptional zeros, or the exceptional zero exists but satisfies $1 - \beta_1 \geq \frac{1}{\kappa_0 \log T}$.

• By the explicit formula $\sum \sum^{*} |\vartheta(x;\chi) - E_0(\chi)x|$ $q < Q \chi_{mod a}$

$$\ll Q x T^{-1} (\log x)^2 + \sum_{q \leq Q} \sum_{\chi_{ ext{mod } q}}^* \sum_{
ho \in \mathcal{R}(\chi)} x^{eta}.$$

• We have $x^{\beta} = x^{1/2} + \int_{1/2}^{\beta} x^{u} (\log x) du$ and so the above is

$$\leq x^{1/2} N^*(1/2, T) + \int_{1/2}^{1-1/(\kappa' \log T)} x^u N^*(u, T)(\log x) du.$$

Э

Robert C. Vaughan

Background

The Buchsta Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

Thus
$$\sum_{q \leq Q} \sum_{\chi_{\text{mod } q}}^{*} |\vartheta(x; \chi) - E_0(\chi)x|$$

 $\leq x^{1/2} N^*(1/2, T) + \int_{1/2}^{1-1/(\kappa' \log T)} x^u N^*(u, T)(\log x) du.$

ヘロト 人間 ト 人 ヨト 人 ヨト

Robert C. Vaughan

Background

The Buchsta Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

Thus
$$\sum_{q \leq Q} \sum_{\chi_{\text{mod } q}}^{*} |\vartheta(x;\chi) - E_0(\chi)x|$$

 $\leq x^{1/2} N^*(1/2,T) + \int_{1/2}^{1-1/(\kappa' \log T)} x^u N^*(u,T)(\log x) du.$

• By Theorem 3 this is

$$\ll x^{1/2}T^{c/2} + \int_{1/2}^{1-1/(\kappa'\log T)} x^u T^{c(1-u)}(\log x) du.$$

By (2) and the hypothesis on x.

$$xT^{-c} = xQ^{-3c} \ge x^{1/2}$$
 and $x^{1/2}Q^{c/2} \le x^{3/4}$.

ヘロト 人間 ト 人造 ト 人造 ト

æ

990

Robert C. Vaughan

Background

The Buchsta Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

Thus
$$\sum_{q \leq Q} \sum_{\chi_{\text{mod } q}}^{*} |\vartheta(x;\chi) - E_0(\chi)x|$$

 $\leq x^{1/2} N^*(1/2,T) + \int_{1/2}^{1-1/(\kappa' \log T)} x^u N^*(u,T)(\log x) du.$

• By Theorem 3 this is

$$\ll x^{1/2}T^{c/2} + \int_{1/2}^{1-1/(\kappa'\log T)} x^u T^{c(1-u)}(\log x) du.$$

By (2) and the hypothesis on x.

$$xT^{-c} = xQ^{-3c} \ge x^{1/2}$$
 and $x^{1/2}Q^{c/2} \le x^{3/4}$.

• Hence the sum of interest is

 $\ll xQ^{-2}(\log x)^2 + x^{1-1/(\kappa'\log T)}T^{c/(\kappa'\log T)}$ $= xQ^{-2}(\log x)^2 + x\exp(-(\log x)/(\kappa'\log Q) + c/\kappa')$ $\ll xQ^{-2}(\log x)^2 + x\exp(-(\log x)/(\kappa\log Q) + c/\kappa').$

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • The remaining case is that in which there is an exceptional zero satisfying $\beta_1 > 1 - (\kappa' \log T)^{-1}$.

Robert C. Vaughan

Background

The Buchsta Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • The remaining case is that in which there is an exceptional zero satisfying $\beta_1 > 1 - (\kappa' \log T)^{-1}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Now
$$\vartheta(x,\chi) + E_1(\chi) \frac{x^{\beta_1}}{\beta_1} \ll xT^{-1}(\log x)^2 + \sum_{\rho \in \mathcal{R}^*(\chi)} x^{\beta}$$

where $\mathcal{R}^*(\chi)$ denotes the set of zeros $\rho = \beta + i\gamma$ of

 $L(s; \chi)$, other than β_1 , with $|\gamma| \leq T$ and $\beta \geq \frac{1}{2}$.

Robert C. Vaughan

Background

The Buchsta Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • The remaining case is that in which there is an exceptional zero satisfying $\beta_1 > 1 - (\kappa' \log T)^{-1}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Now
$$\vartheta(x,\chi) + E_1(\chi) \frac{x^{\beta_1}}{\beta_1} \ll xT^{-1}(\log x)^2 + \sum_{\rho \in \mathcal{R}^*(\chi)} x^{\beta}$$

where $\mathcal{R}^*(\chi)$ denotes the set of zeros $\rho = \beta + i\gamma$ of

 $L(s; \chi)$, other than β_1 , with $|\gamma| \leq T$ and $\beta \geq \frac{1}{2}$.

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

- The remaining case is that in which there is an exceptional zero satisfying $\beta_1 > 1 (\kappa' \log T)^{-1}$.
- Now $\vartheta(x,\chi) + E_1(\chi) \frac{x^{\beta_1}}{\beta_1} \ll xT^{-1}(\log x)^2 + \sum_{\rho \in \mathcal{R}^*(\chi)} x^{\beta}$

where $\mathcal{R}^*(\chi)$ denotes the set of zeros $\rho = \beta + i\gamma$ of $L(s; \chi)$, other than β_1 , with $|\gamma| \leq T$ and $\beta \geq \frac{1}{2}$.

• We can proceed as above, but now the multiple sum is $\ll (1 - \beta_1)(\log T)x^{1/2}T^{c/2} + \int_{1/2}^{1-\delta} (1 - \beta_1)(\log T)x^u T^{c(1-u)} du$ $\ll (1 - \beta_1)(\log T)x^{1-\delta}T^{c\delta} \text{ where } \delta = \frac{\log \frac{1}{c_0(1-\beta_1)\log T}}{c\log T}$

イロト 不得 トイヨト イヨト ニヨー

Sac

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

- The remaining case is that in which there is an exceptional zero satisfying $\beta_1 > 1 (\kappa' \log T)^{-1}$.
- Now $\vartheta(x,\chi) + E_1(\chi) \frac{x^{\beta_1}}{\beta_1} \ll xT^{-1}(\log x)^2 + \sum_{\rho \in \mathcal{R}^*(\chi)} x^{\beta}$

where $\mathcal{R}^*(\chi)$ denotes the set of zeros $\rho = \beta + i\gamma$ of $L(s; \chi)$, other than β_1 , with $|\gamma| \leq T$ and $\beta \geq \frac{1}{2}$.

- We can proceed as above, but now the multiple sum is $\ll (1 - \beta_1)(\log T)x^{1/2}T^{c/2} + \int_{1/2}^{1-\delta} (1 - \beta_1)(\log T)x^u T^{c(1-u)} du$ $\ll (1 - \beta_1)(\log T)x^{1-\delta}T^{c\delta} \text{ where } \delta = \frac{\log \frac{1}{c_0(1-\beta_1)\log T}}{c\log T}$
- So, by the inequality for δ_1 in EZS, the sum is $\ll (1 - \beta_1)QxT^{-1}(\log x)^2 + (1 - \beta_1)(\log x)x^{1-\delta}T^{c\delta}$ $\ll (1 - \beta_1)(\log x)\frac{x\log x}{Q\log Q} + (1 - \beta_1)(\log x)x^{1-\delta}T^{c\delta}.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Robert C. Vaughan

Distribution of Primes

• We have

$$\begin{aligned} x^{1-\delta} T^{c\delta} &= x \exp\left(\frac{\log(xT^{-c})}{c\log T} \log\left(c_0(1-\beta_1)\log T\right)\right) \\ &\leq x \exp\left(-\frac{\log x - 3c\log Q}{3c\log Q}\log(\kappa'/c_0)\right) \\ &\ll x \exp\left(-\frac{\log x - 3c\log Q}{\log Q}\right) \\ &\ll x \exp\left(-\frac{\log x}{\log Q}\right) \end{aligned}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

Ξ 9 Q (P

and that completes the proof.

Robert C. Vaughan

Background

The Buchsta Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • As a consequence of Gallagher's theorem.

Lemma 8

Let $P(z) = \prod_{p \le z} p$. Then there are positive constants c and κ_0 which have the property that when $A > \max(2, 6c)$ and $\kappa \in [\kappa_0, 2\kappa_0]$ there are arbitrarily large $z > z_0(A, \kappa)$ such that whenever (a, P(z)) = 1 we have

$$\pi(2P(z)^A, P(z), a)) - \pi(P(z)^A, P(z), a)) - \frac{P(z)^A}{\phi(P(z))(A \log P(z))} \ll \frac{P(z)^A \exp(-A/\kappa)}{\phi(P(z))(A \log P(z))}.$$

Robert C. Vaughan

Background

The Buchsta Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • As a consequence of Gallagher's theorem.

Lemma 8

Let $P(z) = \prod_{p \le z} p$. Then there are positive constants c and κ_0 which have the property that when $A > \max(2, 6c)$ and $\kappa \in [\kappa_0, 2\kappa_0]$ there are arbitrarily large $z > z_0(A, \kappa)$ such that whenever (a, P(z)) = 1 we have

$$\pi(2P(z)^A, P(z), a)) - \pi(P(z)^A, P(z), a)) - \frac{P(z)^A}{\phi(P(z))(A \log P(z))} \ll \frac{P(z)^A \exp(-A/\kappa)}{\phi(P(z))(A \log P(z))}.$$

• Note that this is not for **every** large *z*, only some, perhaps very thin, subset of all large *z*.

Robert C. Vaughan

Background

The Buchstat Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Proof. Let $q = P(p_n)$. If there is no exceptional zero β_1 of

$$\mathcal{F}_n(s) = \prod_{m \mid P(p_n)} \prod_{\chi_{ ext{mod }m}}^* L(s,\chi)$$

with $\beta_1 > 1 - \frac{1}{\kappa_0 \log P(p_n)}$, then we have, provided p_n is large enough in terms of A and κ_0 .

$$\vartheta(2P(p_n)^A, P(p_n), a)) - \vartheta(P(p_n)^A, P(p_n), a)) - \frac{P(p_n)^A}{\phi(P(p_n))} \ll \frac{P(p_n)^A \exp(-A/\kappa_0)}{\phi(P(p_n)))}$$

٠

Robert C. Vaughan

Background

The Buchstat Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Proof. Let $q = P(p_n)$. If there is no exceptional zero β_1 of

$$\mathcal{F}_n(s) = \prod_{m \mid P(p_n)} \prod_{\chi_{ ext{mod }m}}^* L(s,\chi)$$

with $\beta_1 > 1 - \frac{1}{\kappa_0 \log P(p_n)}$, then we have, provided p_n is large enough in terms of A and κ_0 .

$$\vartheta(2P(p_n)^A, P(p_n), a)) - \vartheta(P(p_n)^A, P(p_n), a)) - \frac{P(p_n)^A}{\phi(P(p_n))} \ll \frac{P(p_n)^A \exp(-A/\kappa_0)}{\phi(P(p_n)))}.$$

• Moreover, for $P(p_n)^A , we have$

$$\log p = A \log P(p_n) + O(1)$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

and the desired conclusion follows with $z = p_n$.
Robert C. Vaughan

Background

The Buchsta Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • Now suppose that there is an exceptional zero β_1 of

$$F_n(s) = \prod_{m \mid P(p_n)} \prod_{\chi_{ ext{mod }m}} L(x,\chi)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Sac

satisfying $\beta_1>1-\frac{1}{\kappa_0\log P(p_n)}$ and let q_1 be the corresponding conductor.

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Now suppose that there is an exceptional zero β_1 of

$$F_n(s) = \prod_{m \mid P(p_n)} \prod_{\chi_{mod m}}^* L(x, \chi)$$

satisfying $\beta_1 > 1 - \frac{1}{\kappa_0 \log P(p_n)}$ and let q_1 be the corresponding conductor.

Since

$$\log P(p_n) \ll rac{1}{1-eta_1} \ll q_1^{1/2} \log q_1^2$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

 q_1 is large in terms of n.

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Now suppose that there is an exceptional zero β_1 of

$$F_n(s) = \prod_{m \mid P(p_n)} \prod_{\chi_{\text{mod } m}}^* L(x, \chi)$$

satisfying $\beta_1>1-\frac{1}{\kappa_0\log P(p_n)}$ and let q_1 be the corresponding conductor.

Since

$$\log P(p_n) \ll rac{1}{1-eta_1} \ll q_1^{1/2} \log q_1^2$$

 q_1 is large in terms of n.

• Now choose *I* minimally so that $q_1|P(p_l)$ and consider $P(p_{l-1})$. The *I* will also be large in terms of *n*, and β_1 will satisfy

$$\beta_1 > 1 - \frac{1}{\kappa_0 \log P(p_l)},$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

so will be exceptional for $F_l(s)$.

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Now suppose that there is an exceptional zero β_1 of

$$F_n(s) = \prod_{m \mid P(p_n)} \prod_{\chi \bmod m} L(x, \chi)$$

satisfying $\beta_1>1-\frac{1}{\kappa_0\log P(p_n)}$ and let q_1 be the corresponding conductor.

Since

$$\log P(p_n) \ll rac{1}{1-eta_1} \ll q_1^{1/2} \log q_1^2$$

 q_1 is large in terms of n.

• Now choose *I* minimally so that $q_1|P(p_l)$ and consider $P(p_{l-1})$. The *I* will also be large in terms of *n*, and β_1 will satisfy

$$\beta_1 > 1 - \frac{1}{\kappa_0 \log P(p_l)},$$

so will be exceptional for $F_{l}(s)$.

• Suppose that $F_{I-1}(s)$ has an exceptional zero β_2 , so that

$$\beta_2 > 1 - \frac{1}{\kappa_0 \log P(p_{l-1})}.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem Then the associated conductor will divide P(p_l) but by the minimality of *l* the exceptional conductor will differ from q₁.

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

- Then the associated conductor will divide P(p_l) but by the minimality of *l* the exceptional conductor will differ from q₁.
- But there cannot be a second exceptional zero of $F_l(s)$, so

$$egin{aligned} eta_2 &\leq 1 - rac{1}{\kappa_0 \log P(p_l)} = 1 - rac{1}{\kappa_0 ig(\log P(p_{l-1}) + \log p_lig)} \ &< 1 - rac{1}{2\kappa_0 \log P(p_{l-1})}. \end{aligned}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes A

Proof of Maier's Theorem

- Then the associated conductor will divide P(p_l) but by the minimality of *l* the exceptional conductor will differ from q₁.
- But there cannot be a second exceptional zero of $F_l(s)$, so

$$egin{split} eta_2 &\leq 1 - rac{1}{\kappa_0 \log P(p_l)} = 1 - rac{1}{\kappa_0 ig(\log P(p_{l-1}) + \log p_lig)} \ &< 1 - rac{1}{2\kappa_0 \log P(p_{l-1})}. \end{split}$$

• Thus there are no exceptional zeros of the kind

$$eta_1 > 1 - rac{1}{2\kappa_0 \log P(p_{l-1})}$$

associated with $P(p_{l-1})$ and we can proceed as in the first part of the proof.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Math 571 Maier's Theorem

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Theorem 1 (Maier). ω denotes the Buchstab function, $\Omega^{-}(\lambda) = \inf\{\omega(\tau) : \tau > \lambda\}, \ \Omega^{+}(\lambda) = \sup\{\omega(\tau) : \tau > \lambda\}.$ $\pi(\chi + (\log \chi)^{\lambda}) = \pi(\chi)$

Then
$$\limsup_{x \to \infty} \frac{\pi (x + (\log x)^{\lambda}) - \pi(x)}{(\log x)^{\lambda - 1}} \ge e^{C_0} \Omega^+(\lambda) \text{ and}$$
$$\liminf_{x \to \infty} \frac{\pi (x + (\log x)^{\lambda}) - \pi(x)}{(\log x)^{\lambda - 1}} \le e^{C_0} \Omega^-(\lambda). \text{ Moreover}$$
$$\Omega^-(\lambda) < e^{-C_0} < \Omega^+(\lambda).$$

Proof of Maier's Theorem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem Robert C. Vaughan

Math 571

Maier's

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • Let $au > \lambda$ and consider the array $\mathfrak{M} = (a_{\scriptscriptstyle {\it UV}})$

$$(1 \leq u \leq P(z)^{\mathcal{A}-1}, 1 \leq v \leq (\mathcal{A} \log P(z))^{ au}, (v, P(z)) = 1)$$

where $a_{uv} = 1$ when $uP(z)^{A-1} + v$ is prime and 0 otherwise.

Proof of Maier's Theorem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem Robert C. Vaughan

Math 571

Maier's

Background

The Buchstat Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • Let $au > \lambda$ and consider the array $\mathfrak{M} = (a_{uv})$

$$1 \leq u \leq P(z)^{\mathcal{A}-1}, 1 \leq v \leq (A \log P(z))^{\tau}, (v, P(z)) = 1$$

where $a_{uv} = 1$ when $uP(z)^{A-1} + v$ is prime and 0 otherwise.

• By Lemma 8 (Gallagher), the number of non-zero entries in the *v*-th column is

$$\pi(2P(z)^{A}, P(z), v) - \pi(P(z)^{A}, P(z), v)$$
$$= \frac{P(z)^{A}}{\phi(P(z))A\log P(z)} (1 + O(\exp(-A/\kappa))) \quad (3)$$

Robert C. Vaughan

Background

The Buchstat Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • We need to know the number of rows with non-zero entries.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Background

The Buchstab Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • We need to know the number of rows with non-zero entries.

• That is the number of v with $1 \le v \le (A \log P(z))^{\tau}, (v, P(z)) = 1)$, so the number

 $\Phi\big((A\log P(z))^\tau,z\big)$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Background

The Buchstat Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

- We need to know the number of rows with non-zero entries.
- That is the number of v with $1 \le v \le (A \log P(z))^{\tau}, (v, P(z)) = 1)$, so the number

 $\Phi\big((A\log P(z))^\tau,z\big)$

where Φ is as in:

Theorem 9 (Buchstab)

Let $\Phi(x, y)$ denote the number of positive integers $n \le x$ composed entirely of prime numbers $p \ge y$, and let $\omega(u)$ be Buchstab's function. Then

$$\Phi(x,y) = \frac{\omega(u)x}{\log y} - \frac{y}{\log y} + O\left(\frac{x}{(\log x)^2}\right)$$

uniformly for $1 \le u \le U$ and all $y \ge 2$. Here $u = (\log x)/\log y$, i.e. $y = x^{1/u}$.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 - の Q ()・

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

Thus the total number of non-zero entries in the array is

$$\frac{P(z)^{A}\Phi((A\log P(z))^{\tau}, z)}{\phi(P(z))A\log P(z)}(1 + O(\exp(-A/\kappa))) = \frac{P(z)^{A-1}(A\log(P(z)))^{\tau}\omega\left(\frac{\tau\log(A\log P(z))}{\log z}\right)}{A\log P(z)\prod_{p\leq z}(1 - 1/p)}(1 + O(")).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

æ

990

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • Thus the total number of non-zero entries in the array is $\frac{P(z)^{A}\Phi((A \log P(z))^{\tau}, z)}{\phi(P(z))A \log P(z)} (1 + O(\exp(-A/\kappa))) =$

$$\frac{P(z)^{A-1} (A \log(P(z)))^{\tau} \omega \left(\frac{\tau \log \left(A \log P(z)\right)}{\log z}\right)}{A \log P(z) \prod_{p \le z} (1 - 1/p)} (1 + O(")).$$

• Moreover, by the prime number theorem and Mertens,

$$\log P(z) = \vartheta(z) = z + O(z/\log z),$$

$$\log(A \log P(z)) = (\log z) \left(1 + O\left((\log A)(\log z)^{-1}\right)\right)$$

$$\prod_{p \le z} (1 - 1/p) = \frac{e^{-C_0}}{\log z} \left(1 + O\left(\frac{1}{\log z}\right)\right), \text{ so}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

Robert C. Vaughan

Background

The Buchstal Function ŀ

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem Thus the total number of non-zero entries in the array is

$$\frac{P(z)^{A}\Phi((A \log P(z))^{\tau}, z)}{\phi(P(z))A \log P(z)} (1 + O(\exp(-A/\kappa))) = \frac{P(z)^{A-1}(A \log(P(z)))^{\tau}\omega\left(\frac{\tau \log(A \log P(z))}{\log z}\right)}{A \log P(z) \prod_{p \le z} (1 - 1/p)} (1 + O(")).$$

• Moreover, by the prime number theorem and Mertens,

$$\log P(z) = \vartheta(z) = z + O(z/\log z),$$

$$\log(A \log P(z)) = (\log z) \left(1 + O\left((\log A)(\log z)^{-1}\right)\right)$$

$$\prod_{p \le z} (1 - 1/p) = \frac{e^{-C_0}}{\log z} \left(1 + O\left(\frac{1}{\log z}\right)\right), \text{ so}$$

• $\omega(\tau \log(A \log P(z)) / \log z) = \omega(\tau)(1 + O(\log A / \log z)))$

・ロト ・ 同ト ・ ヨト ・ ヨト

= nar

Robert C. Vaughan

Background

The Buchstal Function ŀ

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem Thus the total number of non-zero entries in the array is

$$\frac{P(z)^{A}\Phi((A\log P(z))^{\tau}, z)}{\phi(P(z))A\log P(z)} (1 + O(\exp(-A/\kappa))) = \frac{P(z)^{A-1}(A\log(P(z)))^{\tau}\omega\left(\frac{\tau\log(A\log P(z))}{\log z}\right)}{A\log P(z)\prod_{p\leq z}(1-1/p)} (1 + O(")).$$

• Moreover, by the prime number theorem and Mertens,

$$\log P(z) = \vartheta(z) = z + O(z/\log z),$$

$$\log(A \log P(z)) = (\log z) \left(1 + O\left((\log A)(\log z)^{-1}\right)\right)$$

$$\prod_{p \le z} (1 - 1/p) = \frac{e^{-C_0}}{\log z} \left(1 + O\left(\frac{1}{\log z}\right)\right), \text{ so}$$

- $\omega(\tau \log(A \log P(z)) / \log z) = \omega(\tau)(1 + O(\log A / \log z)))$
- and the total number of non-zero entries in the array is

$$\frac{P(z)^{A-1}(A\log(P(z)))^{\tau}e^{C_0}\omega(\tau)}{A\log P(z)} (1 + O(\exp(-A/\kappa))).$$

Robert C. Vaughan

Background

The Buchsta Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • The total number of non-zero entries in the array is

$$\frac{P(z)^{A-1}(A\log(P(z)))^{\tau}e^{C_0}\omega(\tau)}{A\log P(z)}\big(1+O\big(\exp(-A/\kappa)\big)\big).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Background

The Buchsta Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • The total number of non-zero entries in the array is

$$\frac{P(z)^{A-1}(A\log(P(z)))^{\tau}e^{C_0}\omega(\tau)}{A\log P(z)}\big(1+O\big(\exp(-A/\kappa)\big)\big).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

• The total number of rows is $P(z)^{A-1}$.

Robert C. Vaughan

Background

The Buchsta Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • The total number of non-zero entries in the array is

$$\frac{P(z)^{A-1}(A\log(P(z)))^{\tau}e^{C_0}\omega(\tau)}{A\log P(z)}\big(1+O\big(\exp(-A/\kappa)\big)\big).$$

• The total number of rows is
$$P(z)^{A-1}$$
.

• Hence there are rows with $\geq M$ non-zero entries where

$$M = \frac{(A\log(P(z)))^{\tau} e^{C_0} \omega(\tau)}{A\log P(z)} (1 + O(\exp(-A/\kappa)))$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Robert C. Vaughan

Background

The Buchsta Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem • The total number of non-zero entries in the array is

$$\frac{P(z)^{A-1}(A\log(P(z)))^{\tau}e^{C_0}\omega(\tau)}{A\log P(z)}\big(1+O\big(\exp(-A/\kappa)\big)\big).$$

• The total number of rows is
$$P(z)^{A-1}$$
.

• Hence there are rows with $\geq M$ non-zero entries where

$$M = \frac{(A \log(P(z)))^{\tau} e^{C_0} \omega(\tau)}{A \log P(z)} (1 + O\big(\exp(-A/\kappa)\big)\big)$$

• By dividing the primes counted in these rows into N subintervals of length $(A \log(P(z)))^{\tau} N^{-1}$ where $N = \left[(A \log(P(z)))^{\tau-\lambda} \right]$ we find that there are intervals $(X, X + (A \log(P(z)))^{\tau} N^{-1}]$ containing $\geq \frac{(A \log(P(z)))^{\lambda} e^{C_0} \omega(\tau)}{A \log P(z)} (1 + O(\exp(-A/\kappa)))$ primes where $P(z)^A \leq X \leq 2P(z)^A + (A \log P(z))^{\tau}$.

人口 医水黄 医水黄 医水黄 化口水

Sac

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

Intervals
$$(X, X + (A \log(P(z)))^{\tau} N^{-1}]$$
, with
 $N = \left[(A \log(P(z)))^{\tau-\lambda} \right]$, containing
 $\geq \frac{(A \log(P(z)))^{\lambda} e^{C_0} \omega(\tau)}{A \log P(z)} (1 + O(\exp(-A/\kappa)))$ primes
where $P(z)^A \leq X \leq 2P(z)^A + (A \log P(z))^{\tau}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Robert C. Vaughan

Background

The Buchsta Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

Intervals
$$(X, X + (A \log(P(z)))^{\tau} N^{-1}]$$
, with
 $N = \left[(A \log(P(z)))^{\tau-\lambda} \right]$, containing
 $\geq \frac{(A \log(P(z)))^{\lambda} e^{C_0} \omega(\tau)}{A \log P(z)} (1 + O(\exp(-A/\kappa)))$ primes
where $P(z)^A \leq X \leq 2P(z)^A + (A \log P(z))^{\tau}$.

• The length of such intervals is as most

$$(A \log P(z))^{\lambda} \leq (\log X)^{\lambda}.$$

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

Intervals
$$(X, X + (A \log(P(z)))^{\tau} N^{-1}]$$
, with
 $N = \left[(A \log(P(z)))^{\tau-\lambda} \right]$, containing
 $\geq \frac{(A \log(P(z)))^{\lambda} e^{C_0} \omega(\tau)}{A \log P(z)} (1 + O(\exp(-A/\kappa)))$ primes
where $P(z)^A \leq X \leq 2P(z)^A + (A \log P(z))^{\tau}$.

• The length of such intervals is as most

$$(A \log P(z))^{\lambda} \leq (\log X)^{\lambda}.$$

Moreover

$$A \log P(z) = \log X + O(1)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

Robert C. Vaughan

Background

The Buchstal Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem

Intervals
$$(X, X + (A \log(P(z)))^{\tau} N^{-1}]$$
, with
 $N = \left[(A \log(P(z)))^{\tau-\lambda} \right]$, containing
 $\geq \frac{(A \log(P(z)))^{\lambda} e^{C_0} \omega(\tau)}{A \log P(z)} (1 + O(\exp(-A/\kappa)))$ primes
where $P(z)^A \leq X \leq 2P(z)^A + (A \log P(z))^{\tau}$.

• The length of such intervals is as most

$$(A \log P(z))^{\lambda} \leq (\log X)^{\lambda}.$$

Moreover

$$A \log P(z) = \log X + O(1)$$

• Thus it follows that there are arbitrarily large X such that

$$egin{aligned} &\pi(X+(\log X)^{\lambda})-\pi(X)\ &\geq e^{\mathcal{C}_0}\omega(au)(\log X)^{\lambda-1}ig(1+Oig(\exp(-A/\kappa)ig)ig). \end{aligned}$$

イロト 不同 トイヨト イロト

= 900

Robert C. Vaughan

Background

The Buchsta Function

Exceptional Zeros

Distribution of Primes

Proof of Maier's Theorem • In the opposite direction, there are rows with at most

$$\frac{(A\log(P(z)))^{\tau}e^{C_0}\omega(\tau)}{A\log P(z)}\big(1+O\big(\exp(-A/\kappa)\big)\big)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ● ●

non-zero entries.

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem In the opposite direction, there are rows with at most

$$\frac{(A\log(P(z)))^{\tau}e^{C_0}\omega(\tau)}{A\log P(z)}\big(1+O\big(\exp(-A/\kappa)\big)\big)$$

non-zero entries.

• The choice $N = \left[\frac{(A\log(P(z)))^{\tau}}{\left(\log\left(2P(z)^{A} + (A\log P(z))^{\tau}\right)\right)^{\lambda}}\right]$ produces intervals $\left(X, X + \frac{(A\log(P(z)))^{\tau}}{N}\right]$ of length at least $\left(\log\left(2P(z)^{A} + (A\log P(z))^{\tau}\right)\right)^{\lambda} \ge (\log X)^{\lambda}$ containing $\le e^{C_{0}}\omega(\tau)(\log X)^{\lambda-1}(1 + O(\exp(-A/\kappa)))$ primes.

・ロト ・ 同ト ・ ヨト ・ ヨト

Robert C. Vaughan

Background

The Buchstal Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem In the opposite direction, there are rows with at most

$$\frac{(A\log(P(z)))^{\tau}e^{C_0}\omega(\tau)}{A\log P(z)}\big(1+O\big(\exp(-A/\kappa)\big)\big)$$

non-zero entries.

- The choice $N = \left\lfloor \frac{(A \log(P(z)))^{\tau}}{\left(\log \left(2P(z)^{A} + (A \log P(z))^{\tau}\right)\right)^{\lambda}} \right\rfloor$ produces intervals $\left(X, X + \frac{(A \log(P(z)))^{\tau}}{N}\right]$ of length at least $\left(\log \left(2P(z)^{A} + (A \log P(z))^{\tau}\right)\right)^{\lambda} \ge (\log X)^{\lambda}$ containing $\le e^{C_{0}} \omega(\tau)(\log X)^{\lambda-1}(1 + O(\exp(-A/\kappa)))$ primes.
- Thus it follows that there are arbitrarily large X such that

$$egin{aligned} &\pi(X+(\log X)^\lambda)-\pi(X)\ &\leq e^{\mathcal{C}_0}\omega(au)(\log X)^{\lambda-1}(1+O(\exp(-A/\kappa))). \end{aligned}$$

The theorem now follows.

も日本 (中本) (山本) (日本) (日本)

Robert C. Vaughan

Background

The Buchstab Function

Exceptiona Zeros

Distribution of Primes

Proof of Maier's Theorem

- H. Cramér, On the order of magnitude of the difference between consecutive prime numbers, Acta Arithmetica, 2(1936), 23–46.
- Yu. V. Linnik, A remark on the least quadratic non-residue, C. R. (Doklady) Acad. Sci. URSS (N.S.) 36(1942), 119–120.
- H. Maier, Primes in short intervals, Michigan Math. J. 32(1985), 221–225
- H. L. Montgomery & R. C. Vaughan, The large sieve, Mathematika, 20(1973), 119–134.
- H. L. Montgomery & R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press, 2007.
- D. K. L. Shiu, Strings of congruent primes, J. London Math. Soc. (2)61(2000), 359-373.