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the twin prime conjecture, namely that there are infinitely
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A famous unsolved problem concerning prime numbers is
the twin prime conjecture, namely that there are infinitely
many pairs of primes which differ by 2.

Since the average spacing of primes p < x is log x, this
suggests that there are considerable local oscillations in
the primes.

This has motivated a large body of work concerned with
investigating the possibility of gaps between primes which
are significantly smaller than the average gap.

Since 2004 a very powerful theory has been developed.
This modern theory is motivated by the following
observations.
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® Consider a k—tuple hy, ho, ..., hg of distinct non—negative

integers for which it is believed that for infinitely many
integers n the n+ hy, ..., n+ hy are simultaneously prime.

Suppose we use a sieving technique to remove most n for
which n+ hy,...,n+ hg are not all prime. Whilst it may
not be possible to establish that, for each of the remaining
n, the members of the k—tuple n+ hy,...,n+ hy are all
prime there is a better chance of finding several primes in
many of the k—tuples.
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integers for which it is believed that for infinitely many
integers n the n+ hy, ..., n+ hy are simultaneously prime.

Suppose we use a sieving technique to remove most n for
which n+ hy,...,n+ hg are not all prime. Whilst it may
not be possible to establish that, for each of the remaining
n, the members of the k—tuple n+ hy,...,n+ hy are all
prime there is a better chance of finding several primes in
many of the k—tuples.

In its simplest form, suppose we are looking for primes in,
say [x,x + y]. Since the expected number of primes is
about y/ log x, if we pick an integer at random from the
interval it is almost surely composite.
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Consider a k—tuple hy, hy, ..., hi of distinct non—negative
integers for which it is believed that for infinitely many
integers n the n+ hy, ..., n+ hy are simultaneously prime.

Suppose we use a sieving technique to remove most n for
which n+ hy,...,n+ hg are not all prime. Whilst it may
not be possible to establish that, for each of the remaining
n, the members of the k—tuple n+ hy,...,n+ hy are all
prime there is a better chance of finding several primes in
many of the k—tuples.

In its simplest form, suppose we are looking for primes in,
say [x,x + y]. Since the expected number of primes is
about y/ log x, if we pick an integer at random from the
interval it is almost surely composite.

But suppose we use a sieve to remove multiples of small
primes to the extent that the number of remaining
elements is about 2y/ log x.
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Consider a k—tuple hy, hy, ..., hi of distinct non—negative
integers for which it is believed that for infinitely many
integers n the n+ hy, ..., n+ hy are simultaneously prime.

Suppose we use a sieving technique to remove most n for
which n+ hy,...,n+ hg are not all prime. Whilst it may
not be possible to establish that, for each of the remaining
n, the members of the k—tuple n+ hy,...,n+ hy are all
prime there is a better chance of finding several primes in
many of the k—tuples.

In its simplest form, suppose we are looking for primes in,
say [x,x + y]. Since the expected number of primes is
about y/ log x, if we pick an integer at random from the
interval it is almost surely composite.

But suppose we use a sieve to remove multiples of small
primes to the extent that the number of remaining
elements is about 2y/ log x.

Now if we pick an element at random from this sifted set,
then we can expect that it is prime about half the time.
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® As it stands just averaging over intervals does not work
very well. But it turns out that averaging over suitable
k-tuples of integers does.

Definition 1

Let h = hy, ..., he be a k—tuple of distinct non—negative
integers and let v,(h) denote the number of different residue
classes modulo p among the hy, ..., hi. If vp(h) < p for every
p, then h is called admissible.
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® As it stands just averaging over intervals does not work
very well. But it turns out that averaging over suitable
k-tuples of integers does.

Definition 1

Let h = hy, ..., he be a k—tuple of distinct non—negative
integers and let v,(h) denote the number of different residue
classes modulo p among the hy, ..., hi. If vp(h) < p for every
p, then h is called admissible.

® |t is clear that if h is inadmissible, then there can only be
a finite number of n for which the n+ hy,...,n+ hy are
simultaneously prime.

Conjecture 2 (The prime k—tuple conjecture)

It is conjectured that if h is admissible, then there are infinitely
many n such that n+ hy,...,n -+ hx are simultaneously prime.
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® |t is useful to establish that there are admissible sets with
fairly small largest element.

Theorem 3

Suppose that k > 2 and the primes p1, ..., px satisfy

k < p1 <...< pk. Then any translate of the k—tuple p forms
an admissible set. In particularh ={0,po — p1,...,px — p1} is
an admissible set and p) can be chosen so that

pk < klog k + kloglog k + O(k).
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® |t is useful to establish that there are admissible sets with
fairly small largest element.

Theorem 3

Suppose that k > 2 and the primes p1, ..., px satisfy

k < p1 <...< pk. Then any translate of the k—tuple p forms
an admissible set. In particularh ={0,po — p1,...,px — p1} is
an admissible set and p) can be chosen so that

pk < klog k + kloglog k + O(k).

® We remark for future reference that 7(105) = 27 and
7(743) = 132 so that one can take k = 105 and there is
an admissible 105—tuple with largest element
743 — 107 = 636.
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Suppose that k > 2 and the primes p1, ..., px satisfy

k < p1 < ... < pg. Then any translate of the k—tuple p
forms an admissible set. In particular

h={0,p» — p1,...,px — p1} is an admissible set and py
can be chosen so that px < klog k + kloglog k + O(k).
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Suppose that k > 2 and the primes p1, ..., px satisfy

k < p1 < ... < pg. Then any translate of the k—tuple p

forms an admissible set. In particular

h={0,p» — p1,...,px — p1} is an admissible set and py
can be chosen so that px < klog k + kloglog k + O(k).

Proof The last part of the theorem follows from the prime
number theorem. To prove the first part, suppose on the
contrary that there is a g > 1 such that every residue class
modulo g contains a p;. Then g < k < p1. On the other
hand there is a j such that p; =0 (mod q) and so

pi =q < k.



Math 571 ® One can consider applying the Hardy-Littlewood method

Chapter 8 . . .
souEd'Zg Gaps to this question. Suppose that n is such that
in the Primes
Ff/‘;'fgr;ai' hi < hy < -+ < hyg, n+hj:pj, n < x.

Preliminaries
to the modern
theory



Math 571
Chapter 8
Bounded Gaps
in the Primes

Robert C.
Vaughan

Preliminaries
to the modern
theory

® One can consider applying the Hardy-Littlewood method
to this question. Suppose that n is such that

h <h <---<he, n+hj=p;, n<x.
® Then with logarithmic weights we consider
R(x;h) = > (logp1) .- - (log px)

p1<p2<...<px <x+hy
Pk—pj=hx—h;

and

S(a) = 3" (log p)e(cwp) M)

p<N

where N = | x + hg].
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One can consider applying the Hardy—Littlewood method
to this question. Suppose that n is such that

hi <hy<---<he, n+hj=p;, n<x.

Then with logarithmic weights we consider

R(x;h) = > (logp1) .- - (log px)

p1<p2<...<px <x+hy

Pk—pj=hy—h;
and
S(a) = 3" (log p)e(cwp) 1)
p<N
where N = | x + hy].
Then
R(x,h) =
k—1
S(—on — -+ — 1) [ (S(e)e(e(hi — b)) dex.
k=1 j=1
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® Also, there is no real loss in generality in supposing that
hy = 0.
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By the way, it is often more convenient to rearrange the
equations p; = n + h; connecting the p; into the form

pj—p1=hi—h (2<j<k).

Also, there is no real loss in generality in supposing that
hy = 0.

Suppose that we can replace each S(a) by its expected
approximation when « is “close” to a rational number
with a “small” denominator and the contribution from the
remaining « is relatively “small”. We are deliberately
rather imprecise as this is purely speculative.
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® Thus if P = N° for some small § > 0 we would hope to
obtain something of the form R(x,h) ~ Jx

* cg(a1+ -+ ak-1) = (@l — hy)
Z Z ) H Cq(aj)e<q)

g<P a j=1

where >~" is over a (mod g) with (a1,...,ak-1,9) =1
and J =

k—1

/uk_l T(=B1 = = Bier) [T T(8))e(Bj(hu — by))dB

Jj=1

and

N
= Z e(fm

m=1
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Thus if P = N° for some small § > 0 we would hope to
obtain something of the form R(x,h) ~ Jx

* cq ar+ -+ ak— 1) l . aj(hk — hj)
Z Z ) H cq(aj)e(q)

g<P a j=1

where >~" is over a (mod g) with (a1,...,ak-1,9) =1
and J =

/uk_l T(=B1 = = Bier) [T T(8))e(Bj(hu — by))dB

It is believed generally that this should hold.



o J—

k—1
/uk—l T(=f1 = = Bi1) H T(ﬁf)e(ﬁj(hk - hj)) g
j=1
and N
T(B) =) e(Bm).
m=1

DA
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o | —
k—1

L TR = B TTTEe( b~ 1) dp
Jj=1
and
N
T(B) = Z e(Bm).
m=1
® The number J is the number of my,..., m, with

1§mj§ N and mj:mk+hj—hk, so that m; is
determined by my and so J is the number of my with
he — hy < mg < N+ hy :X—|—O(1).
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k—1

L TR = B TTTEe( b~ 1) dp
Jj=1
and
N
T(B) = Z e(Bm).
m=1
® The number J is the number of my,..., m, with

1§mj§ N and mj:mk+hj—hk, so that m; is
determined by my and so J is the number of my with
he — hy < mg < N+ hy :X—|—O(1).

® Hence J = x + O(h).
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o | —
k—1

T B LT~ h)dp
Jj=1
and
N
T(B) = Z e(Bm).
m=1
® The number J is the number of my,..., m, with

1§mj§ N and mj:mk+hj—hk, so that m; is
determined by my and so J is the number of my with
he — hy < mg < N+ hy :X—|—O(1).

® Hence J = x + O(h).

J Thus it is expected that R(x; h) xS(h; P) where

=" f(gih) and f(g:h) =

q<P

v cq(—ay — -
2 &

a q)

k—1

.k— ak—1) H Cq(aj)e(M),

j=1 9
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® |t is readily verified that f is a multiplicative function of gq.
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® |t is readily verified that f is a multiplicative function of gq.

® Moreover when g = pt with t > 2, since
(a1,...,ak-1,q) =1, for at least one j we have p{ aj, and

socp( aj) = 0.
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=) " f(g;h) and f(q;h) =

q<P

aj hk—h)

* cq(—a1 — *ak 1) k
Z ¢( ch aj)e q ).

a

It is readily verified that f is a multiplicative function of q.

Moreover when g = pt with t > 2, since
(a1,...,ak-1,q) =1, for at least one j we have p{ aj, and
SO Cpt ( ;) = 0.

Thus f has its support on the squarefree numbers.
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and f has its support on the squarefree numbers.
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* &(h;P) =) f(qg;h) and f(q;h) =

q<P
* —g{ — - —a,_ k=1 a:(h, — h:
za: Cq( ai ¢(q)k dk 1) Jl:[l cq(aj)e( J( kq J))

and f has its support on the squarefree numbers.

® Now consider the case g = p.

® Then (a1,...,ak—1,p) =1 holds for all a with 1 < a; < p
except a1 = - = ax_1 = p.
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&(h;P) = > f(g;h) and f(q;h) =
q<P

“q(an— - —a) 7T o 3= hy)
Z o(q)* ch(aj) ( )

a

and f has its support on the squarefree numbers.

Now consider the case g = p.

Then (ay,...,ak—1,p) =1 holds for all a with 1 < a; < p
except a1 = - = ax_1 = p.

If we sum over all a with 1 < a; < p we obtain pk 1N
where N is the number of solutions of r; = r + h; — hy
(mod p) with 1 < r; < p—1. Thus r;j is determined by ry,
and r, # 0 or hy — hj for any j. Thus N = p —vp(h). The
term with a; = ... = a,_1 = p contributes (p — 1)¥ and
so f(p;h) =

(p—vp(h))p** — (p—1)* _ (1 —vp(h)/p)
(p— 1) (1-1/p)k

-1
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q<P

* cq(—a1 — —ak DT e, (a)e (L= 10)
Z ¢ H q )-

a =1

f is multiplicative, has its support on the squarefree
numbers and f(p; h) =

(p—wp(M))p* ™ = (p=1)* _ (1—wp(h)/p)
(p—1)* (1-1/p)* '
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Z f(g;h) and f(g; h) =

q<P

ccg(—a1— = a) T1 v 2l — hy)
Z Qb(CI)k J];Il Cq(aj)e( q )

a

f is multiplicative, has its support on the squarefree
numbers and f(p; h) =

(p—wp(M))p* ™ = (p=1)* _ (1—wp(h)/p)
(p—1)* (1-1/p)* '

® When pt D = [];<; j<k |hj — hi| we have vp(h) = k.
Thus f(p; h) < p~2. Hence G(h; P) converges absolutely
to &(h) as P — oo where &(h) = 3"72, f(q; h)

om0 ()

p

and &(h) < (loglog(3D))* < (loglog(3 max |h;|)).
J
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® Suppose the h; are distinct.
e If h is inadmissible, then &(h) = 0.
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Suppose the h; are distinct.

If h is inadmissible, then &(h) = 0.

If h is admissible, then we have v,(h) < min(k, p — 1) and
so 1 —wvp(h)/p>1/p when p < k and is > 1 — k/p when
p > k.
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We have
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p

Suppose the h; are distinct.
If h is inadmissible, then &(h) = 0.

If h is admissible, then we have v,(h) < min(k, p — 1) and
so 1 —wvp(h)/p>1/p when p < k and is > 1 — k/p when
p > k.

Thus there is a positive number C(k) such that, when the
h; are distinct, h is admissible if and only if

C(k) < &(h).
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We have

oI -2)

p

Suppose the h; are distinct.
If h is inadmissible, then &(h) = 0.

If h is admissible, then we have v,(h) < min(k, p — 1) and
so 1 —wvp(h)/p>1/p when p < k and is > 1 — k/p when
p > k.

Thus there is a positive number C(k) such that, when the
h; are distinct, h is admissible if and only if

C(k) < &(h).

This suggests a conjecture.
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Suppose that h is admissible. Then, as x — 0o,

R(x; h) ~ x&(h).
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® This suggests a conjecture.

Conjecture 4

Suppose that h is admissible. Then, as x — oo,
R(x; h) ~ x&(h).
® This is highly speculative, of course, and establishing this

is well beyond what can be done in the current state of
knowledge.
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® This suggests a conjecture.
Conjecture 4

Suppose that h is admissible. Then, as x — oo,

R(x; h) ~ x&(h).

® This is highly speculative, of course, and establishing this
is well beyond what can be done in the current state of
knowledge.

® The likelihood of discovering primes in the k—tuple
n—+ hy,...,n+ hg depends on the avoidance of the zero
residue class modulo p for all primes p, so in other words
h needs to be admissible.
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® This suggests a conjecture.
Conjecture 4

Suppose that h is admissible. Then, as x — oo,

R(x; h) ~ x&(h).

® This is highly speculative, of course, and establishing this
is well beyond what can be done in the current state of
knowledge.

® The likelihood of discovering primes in the k—tuple
n—+ hy,...,n+ hg depends on the avoidance of the zero
residue class modulo p for all primes p, so in other words
h needs to be admissible.

® A measure of this is the singular series G(h) and we can
expect that this will arise naturally in the analysis.
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® This suggests a conjecture.
Conjecture 4

Suppose that h is admissible. Then, as x — oo,

R(x; h) ~ x&(h).

This is highly speculative, of course, and establishing this
is well beyond what can be done in the current state of
knowledge.

The likelihood of discovering primes in the k—tuple

n—+ hy,...,n+ hg depends on the avoidance of the zero
residue class modulo p for all primes p, so in other words
h needs to be admissible.

A measure of this is the singular series G(h) and we can
expect that this will arise naturally in the analysis.

We can also deduce from our discussion above and the
next theorem that there is a plentiful supply of admissible
k—tuples.
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® Counting admissible k-tuples in a box.
Theorem 5 (Gallagher)

Suppose that k > 2 and H is the set of k—tuples h of distinct
integers hy, ..., hx with 1 < hj < H, and let A be the subset of
those h which are also admissible. Then

Y &(h) = H* + O(H*1*9).
heA
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® Counting admissible k-tuples in a box.
Theorem 5 (Gallagher)

Suppose that k > 2 and H is the set of k—tuples h of distinct
integers hy, ..., hx with 1 < hj < H, and let A be the subset of
those h which are also admissible. Then

Y &(h) = H* + O(H*1*9).
heA

® |n view of the observation above that if h € H is
inadmissible, then &(h) = 0, it suffices to prove the
conclusion with A replaced by H.
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® Counting admissible k-tuples in a box.

Theorem 5 (Gallagher)

Suppose that k > 2 and H is the set of k—tuples h of distinct
integers hy, ..., hx with 1 < hj < H, and let A be the subset of
those h which are also admissible. Then

Y &(h) = H* + O(H*1*9).
heA

® |n view of the observation above that if h € H is
inadmissible, then &(h) = 0, it suffices to prove the
conclusion with A replaced by H.
Cx

® When v,(h) = k, f(q) = f(q; h) satisfies |f(p; h)| < o2

C
and otherwise |f(p; h)| < ?k for some Cj.



Math 571 . . . .
Cha:pterg ® Counting admissible k-tuples in a box.

Bounded Gaps

in the Primes Theorem 5 (Ga“agher)

Robert C.
Vaughan . o o
: Suppose that k > 2 and H is the set of k—tuples h of distinct

isiia = integers hy, ..., hx with 1 < hj < H, and let A be the subset of

theory those h which are also admissible. Then

Y &(h) = H* + O(H*1*9).
heA

® |n view of the observation above that if h € H is
inadmissible, then &(h) = 0, it suffices to prove the
conclusion with A replaced by H.
C
® When v,(h) = k, f(q) = f(q; h) satisfies |f(p; h)| < p—g

C
and otherwise |f(p; h)| < ?k for some Cj.

® Then |[f(g;h)| < q*2C,°:(q)(D, q) <c %D, q).



® Then |f(q;h)| < q‘zC‘k"(q)(D, q) <. qs_z(D7 q) where As
above, D = [;<;jcy [hj — hil, so that D < HKk=1)/2,
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FRitE ® Then |f(g;h)| < q? CZJ(C’)(D, q) <« qa_z(D, q) where As
_ . . k(k—1)/2
o C above, D = [[y<;j<y |hj — hil, so that D < H*(k=1)/2,
® For convenience we introduce the parameter Q@ > 1 which
s is at our disposal. Then
theory
. -2
Sl <Y Y @
>Q rlD  ¢>Q
(D,q)=r

<Y oty < (D).

r|D t>Q/r
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® Then [f(g;h)| < q_2CZJ(q)(D, q) <- ¢° (D, q) where As

above, D = [];;_;< [hj — hi|, so that D < Hk(k=1)/2

® For convenience we introduce the parameter Q@ > 1 which
is at our disposal. Then

SIf(gh) <> r > g2

g>Q

® Hence

r|D a>Q
(D,q)=r

<Y Y < (D).

r|D t>Q/r

Y If(gh) < @H.

>Q
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Then |f(q;h)| < q_2CZJ(q)(D, q) <. ¢°2(D, q) where As
above, D = [];;_;< [hj — hi|, so that D < Hk(k=1)/2

For convenience we introduce the parameter Q@ > 1 which
is at our disposal. Then

SIf(gh) <> r > g2

q>Q r|D q>Q
(D,q)=r
<Y Y < (D).
r|D t>Q/r
Hence
D If(gih)| < QTHE. (2)
qg>Q

We take Q@ = H and sum over the elements of H to obtain
the bound <« Hk—1t2¢,
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® The case k = 2 is special so we treat that first. Then

)R -
f(q'h)_qS(q)? Z e(a(h1 — h2)/q) and so

heH 1

D flaih) = ggq)z hz > Z a(hy — h2)/q).
<H ;é

(a.)=1
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® The case k = 2 is special so we treat that first. Then

f(q;h) = 1(q)? Z e(a(hy — h2)/q) and so

¢(q)* =
(a,9)=1
q
S Aam =50 S 3 Y elalh ko)
heH (z)(q) hh<H a=1 m<H
= (2.0)=1 hZh,

® The innermost sum is < ||a/q||~! and we have

71 _
> lla/gll ™t < glogg.
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® The case k = 2 is special so we treat that first. Then

f(g;h) = wa)” Z e(a(hy — h2)/q) and so

$(q)* =
(a,9)=1
S (g = MD° 5~ 5 3 elath ~ /o)
; ¢>(Q)2 1 2)/ 4
heH h<H (aq:1: ;é

® The innermost sum is < ||a/q||~! and we have
4o lla/al < gloga.
® Thus Z f(1;h) = H? + O(H), since f(1;h) =1 and

heH
cardH = H? + O(H), and we have

Z Z f(g;h) < HQ®, so Q = H gives case k =2

heH 1<q<Q
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* Now suppose k > 3, and write g(g; h) = ¢(q)*f(g; h)

k—1
= Z* cg(—a1 — - —ak-1) H cq(aj)e(
a J=1

aj(hk — hy)

q

).
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* Now suppose k > 3, and write g(g; h) = ¢(q)*f(g; h)

q

k-1
- Z* cg(—ar—-—a1) [] cq(aj)e(M).
a =1

® Then |g(q;h)| < g"(q) where
g (@)= Y leg(ar) . cqlar-1)cq(—ar — - — ax1)]
(a,9)=1

and this is also a multiplicative function of g with its
support on the square free numbers.



Math 571
Chapter 8
Bounded Gaps
in the Primes

Robert C.
Vaughan

Preliminaries
to the modern
theory

* Now suppose k > 3, and write g(g; h) = ¢(q)*f(g; h)

k-1
- Z* cg(—ar—-—a1) [] cq(aj)e(M).
a =1

q
® Then |g(g;h)| < g*(q) where
g (@)=Y leglar)-. cqlar—1)cg(=ar = - = ax1)|

a
(a,q)=1

and this is also a multiplicative function of g with its
support on the square free numbers.

® Thus

_ - g"(p)

he[l,H]F\H 1<q<Q p<Q
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® Thus

. - g*(p)
ST Aah < H] (1+(p_1)k).

he[1,H]F\H 1<q<Q pP<Q
where
g ()= Y lep(a). - colar-1)cp(—ar — -+ — a1)).

(a,p)=1
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Thus

> % fam<n (1 28,

he[LH]F\H 1<9<Q p<Q (p
where
g(P)= Y lep(ar).. . colair)epl—ar — - — a1)l.
(ap)=1
Consider the k numbers ay,...,ax_1,—a1 — -+ — 3k_1.

When (a, p) =1 at least two of these numbers are not
multiples of p. Moreover in g*(p) the terms with exactly j
of the a1,...,ak_1,a1 + -+ ax_1 divisible by p
contribute (p — 1) and since the

al,...,ak_1,a1 + -+ + ak_1 are linearly dependent the
number of such terms is at most (f)(p — 1)k1+,
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® Thus

> % fam<n (1 28,

he[LH]F\H 1<9<Q p<Q (p
where
g(P)= Y lep(ar).. . colair)epl—ar — - — a1)l.
(ap)=1
Consider the k numbers ay,...,ax_1,—a1 — -+ — 3k_1.

When (a, p) =1 at least two of these numbers are not
multiples of p. Moreover in g*(p) the terms with exactly j
of the a1,...,ak_1,a1 + -+ ax_1 divisible by p
contribute (p — 1) and since the

al,...,ak_1,a1 + -+ + ak_1 are linearly dependent the
number of such terms is at most (f)(p — 1)k1+,

® Hence g*(p) < 2%(p — 1) ! and

Yo > fgh) < HQR

he[1,H]F\H 1<q<Q
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Consider Z g(g; h) where g > 1 and g(g; h)

he[1,H]k
* hi — hj)
= Z cq(—ar — -+ —ak-1) ch (aj)e )
a q
At least two of a1,...,ak_1,—a1 — -+ —ax_1 are Z0

(mod q). If there are at least two a; # 0, then pick two
and call them by, by. List the rest as bs, ..., bx_1. Note
—a1 — - —ak_1=—by — - — bi_1. If only one of the
aj £ 0, then call it by, and put bp = —a; — -+ — a,_1.
Then any of the other a; can be rewritten —b;y — by — s
(mod g) where s is the sum of the remaining a¢. Hence
k—2 cq(b1)] <= [cq(b2)]
2, elaih) < Z [bu/al Z ba/all *

he[1,H]k

k—1
> lcq(br + -+ + be-1)| [ ] leq(by)
j=3

bs,...,bx_1€[1,q]F3
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k—1
to the modern Z ‘Cq(b]_ + te + bkfl)‘ H ’Cq(bj)
j=3

theory
be[1,q]%—3

where b = bs, ..., bx_1.
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® Hence

|cq(b1) | cq(b2)]
g:h) < HF2
2 glah) Z Tby/al Z Tba/all ™

he[1,H]k

k—1
> eqlbr+ -+ bia) T leq(by)
be[L,q]+~3 j=3

where b = bs, ..., bx_1.
q

k-3
® The inner sum does not exceed qS(q)(Z |cq(b)|) :
b=1
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® Hence

Cq b2

k—2 |lcq(b1) |
2, lah)<H Z b1/l

he[1,H]k

be[l,q)k—3

where b = bs, ..., bx_1.

k
® The inner sum does not exceed qS(q)(Z |cq(b)|)

® As |cq(b)] < (g, b) the sum here is

<> ré(q/r) < d(q)g.

rlg

Z |

q

b=1

[b2/all

k—1
Y leglbr+ -+ bea)l [T lea(t)
j=3

-3
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® Hence

|cq(b1) | cq(b2)]
g:h) < HF2
2 glah) Z Tby/al Z Tba/all ™

he[1,H]k

k—1
Y leglbr+ -+ bea)l [T lea(t)
j=3

be[l,q)k—3

where b = bs, ..., bx_1.

il k-3
® The inner sum does not exceed qS(q)(Z |cq(b)|)
b=1
® As |cq(b)] < (g, b) the sum here is
<Y ré(q/r) < d(q)a.
rlg
® Similarly

q/r-1

bg Hb/q” —Z Z la/(q/r)|| 7t < d(q)qlogq.

rlg a=1
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® Hence
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k—1
S eqlbr -+ )| [T lealby)
j=3

be[l,q]k—3

< H*2d(q)*q*(log 9)*¢(q)d(q)* 3¢ .



Math 571
Chapter 8

e primee  ® Hence

Robert C. |C b]_ | ‘C b2

Vaughan h Hk 2 9 9 X
g 2, S Z lbu/al Z b2/l

Preliminaries
to the modern
theory

k—1
S eqlbr -+ )| [T lealby)
j=3

be(1,q]%—3

< H*2d(q)*q*(log 9)*¢(q)d(q)* 3¢ .

® Therefore

Y > f(g, h) < H2QME

he[1,H]k 1<q<Q
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® Hence

k—2 |cq(b1) | |cq(b2)]
2 slah)<H Z Ten/al Z Tea/all

he[1,H]

k—1
S eqlbr -+ )| [T lealby)
j=3

be(1,q]%—3

< H*2d(q)*q*(log 9)*¢(q)d(q)* 3¢ .

® Therefore

Y > f(g, h) < H2QME

he[1,H]k 1<q<Q

® The term g = 1 contributes H* and so Q = H gives the
theorem



® The principal idea is to use the Selberg sieve to enhance
the chances of finding primes.
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Theorem
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i";hz Pt”'c"es ® The starting point for the Selberg upper bound sieve is

Vaughan Z (Z )\q>2.

acA g<R
qla
® One is planning to minimise this under the assumptions 1.
Maynard's
Theorem )\]_ =1 and 2. that
Ay = Z 1
acA
d|a
Xg(d)

can be approximated by — where g is multiplicative.
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The principal idea is to use the Selberg sieve to enhance

the chances of finding primes.

The starting point for the Selberg upper bound sieve is
2

S ()

acA g<R

qla
One is planning to minimise this under the assumptions 1.

A1 =1 and 2. that
Ay = 21

acA
d|a

Xg(d)

can be approximated by — where g is multiplicative.

The minimising choice of A\ is given by

_ 5(R.q) p
Ao = #(4) S(R,1) 11 <p — g(ﬁ))

plq

where S(R,q) = Z pu(r)? pf(ggp)
r<R/q,(r,q)=1 plr
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Vaughan p|q

g(p)
where S(R,q) = Z p(r)® p—glp)
r<R/q,(r,q)=1 plr
Maynard's

Theorem
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e Ao = 1a) S(R,1) 11 <p - g(p)>
Vaughan p|q
where S(R,q) = Z pu(r)? f(pg)
o r<R/q,(r,q)=1 olr P8P
Theorem ® Typically this is applied when the sieve has dimension k,
e.g.

Zg(P)lolgjp = klogy + O(1).

p<y
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?:l;ESEFC’lriGr:epss A, — M(q)S(Ra q) H < p >
ober . q o S R 1 —
fobert € (R.1) 5 \P—&(p)
where S(R,q) = Z pu(r)? f(pz)
o r<R/q,(r,q)=1 olr P8P
Theorem ® Typically this is applied when the sieve has dimension k,
e.g.

log p
Zg(p)T = klogy + O(1).
p<y
® Under this kind of condition one might expect that

S(R.q) ~ Cllog R/q)} [ 2—E12
plq
and so A4 could be replaced by

~\logk(R/q) logg\*
Ag = 1(q) gt R 1(q) (1 IogR>




a2t ® We expect that S(R, q) ~ C(log R/q)k H ng) and
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Robert C. so A\g could be replaced by

Vaughan k(R/ ) | )

log q ( ogq )
Ay = p(q) 8 \N9) 1_

Maynard's

Theorem
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® We expect that S(R, q) ~ C(log R/q)k H ng) and

p
plg

so A\g could be replaced by

(0] k (0] k
Ag = M(q)il ;gog(f,/?q) = 1(q) (1 - L:g)

® This is correct, and whilst there is some loss in precision in
the final conclusion there is one significant advantage,
namely that this choice of A\q can be applied effectively to
any sieving question where the dimension is k.
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® We expect that S(R, q) ~ C(log R/q)k H ng) and

p
plg

so A\g could be replaced by

(0] k o k
Ag = /JJ(Q)iI ;gog(f,/?q) = 1(q) <1 - L:g)

This is correct, and whilst there is some loss in precision in
the final conclusion there is one significant advantage,
namely that this choice of A\q can be applied effectively to
any sieving question where the dimension is k.

Let 1p denote the characteristic function of the set of
primes PP and write Z = Hfle(n + h;). Then the idea of
Goldston, Pintz and Yildinm is to construct the expression

S <len+h )( 3 A)

N<n<2N a<R
q|Z(n;h)
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We expect that S(R, q) ~ C(log R/q)k H ng) and

p
plg

so A\g could be replaced by

(0] k o k
Ag = /JJ(Q)iI ;gog(f,/?q) = 1(q) <1 - L:g)

This is correct, and whilst there is some loss in precision in
the final conclusion there is one significant advantage,
namely that this choice of A\q can be applied effectively to
any sieving question where the dimension is k.

Let 1p denote the characteristic function of the set of
primes PP and write Z = Hfle(n + h;). Then the idea of
Goldston, Pintz and Yildinm is to construct the expression

S <len+h )( 3 A)

N<n<2N a<R
q|Z(n;h)

If this is positive, then it follows that there are n such that
there are at least |p] + 1 primes amongst the n + h;.



: 2
NSnZ§2N <J§1 e+ h) = p) ( Z )\q)

q<R
q|Z(n;h)
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[Theorem e A wrinkle introduced by Goldston, Pintz and Yildirm is to

use a more general \q of the form

o= e (1259)

where f is at our disposal.
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)3 (zlw+h (X n)
N<n<2N g<R
, q|Z(n;h)
Maynard's
[Theorem e A wrinkle introduced by Goldston, Pintz and Yildirm is to

use a more general \q of the form

o= e (1259)

where f is at our disposal.

® Following Maynard we will use a more sophisticated
version of this.
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A notation that given a k—tuple d of positive integers d
Vaughan denotes dj ... dx and given another one r, then d|r means

that dj|rj for each j. We also use [d, €] to denote the
k—tuple lem[dy, e1], . .., lem|[dk, ex].

Maynard's

Theorem
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® |et n+ h denote the k—tuple n+ hy,...,n+ hy and let d

denote the k—tuple dy, ..., dx. We generally use the
notation that given a k—tuple d of positive integers d
denotes dj ... dx and given another one r, then d|r means
that dj|rj for each j. We also use [d, €] to denote the
k—tuple lem[dy, e1], . .., lem|[dk, ex].

One wrinkle is to do some initial sieving for small primes
so as to simplify some later expressions and s simple way
to do this is to restrict our attention to a given residue
class a modulo g where

g=]] p. Q=logloglogN (3)
p<Q

and N is a large integer parameter
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® |et n+ h denote the k—tuple n+ hy,...,n+ hy and let d

denote the k—tuple dy, ..., dx. We generally use the
notation that given a k—tuple d of positive integers d
denotes dj ... dx and given another one r, then d|r means
that dj|rj for each j. We also use [d, €] to denote the
k—tuple lem[dy, e1], . .., lem|[dk, ex].

One wrinkle is to do some initial sieving for small primes
so as to simplify some later expressions and s simple way
to do this is to restrict our attention to a given residue
class a modulo g where

g=]] p. Q=logloglogN (3)
p<Q

and N is a large integer parameter

When h is admissible we can suppose that there is an a
modulo g such that for 1 < j < k we have (a+ hj,q) = 1.
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® |et n+ h denote the k—tuple n+ hy,...,n+ hy and let d

denote the k—tuple dy, ..., dx. We generally use the
notation that given a k—tuple d of positive integers d
denotes dj ... dx and given another one r, then d|r means
that dj|rj for each j. We also use [d, €] to denote the
k—tuple lem[dy, e1], . .., lem|[dk, ex].

One wrinkle is to do some initial sieving for small primes
so as to simplify some later expressions and s simple way
to do this is to restrict our attention to a given residue
class a modulo g where

g=]] p. Q=logloglogN (3)
p<Q

and N is a large integer parameter

When h is admissible we can suppose that there is an a
modulo g such that for 1 < j < k we have (a+ hj,q) = 1.
To see that this holds observe that it holds for each prime
divisor of g and then apply the Chinese Remainder
Theorem.
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° g= H p, @ =logloglog N and N is a large integer

pP<Q
parameter, and when h is admissible there is an a modulo

g such that for 1 < j < k we have (a+ hj,q) = 1.
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° g= H p, @ =logloglog N and N is a large integer

pP<Q
parameter, and when h is admissible there is an a modulo

g such that for 1 < j < k we have (a+ hj,q) = 1.

The immediate effect of this can be seen via the heuristic
argument based on the Hardy-Littlewood method which
we saw earlier. If one supposes in addition that n = a
modulo g, then the singular series takes the shape

-T2

for large N.
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® Thus Maynard was lead to consider

3 (lewh )(ZAd))

N<n<2N j=1 d<R
n=a (mod q) d|n+h
(d,q)=1

® In the first instance we might presume to take
A(d) = u(d)g(d)

for some suitable g.



Math 571 ® Thus Maynard was lead to consider
Chapter 8

Bounded Gaps
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e S (Lo o) ¥ @)

N<n<2N j=1 d<R
n=a (mod q) d{n+h
(d,q)=1
Maynard’s ® In the first instance we might presume to take

corem A(d) = p(d)g(d)

for some suitable g.

® However when diagonalising the quadratic forms in the A
and trying to keep control of the support for the d it
transpires that it is natural to suppose that if d is
squarefree and (d, g) = 1, then

,u log log ry
A(d d)d Z <IogR IogR)' )
d|r
(r.q)=1
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e If d is squarefree and (d, q) = 1, then

Ad)

(@d 3 %

d|r

(r,q)=1

¢(f

l

logn
log R

gy

log ry
log R

)
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log ry log rk>
A(d d)d ( .
Mgl Z qS(r log R log R
Theorem d|l’
(r,q)=1

® |t is further supposed that

suppf = R ={x € [0,1] i x; +-- - x < 1}.
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Maynard's
Theorem

e If d is squarefree and (d, q) = 1, then

u log r
A(d) d)d Z (Iog R’
d|r
(r,q)=1

® |t is further supposed that

suppf =R = {x € [0,1]% : xq + -~

Iog i
"logR )"

* Xk < 1}.

® This is equivalent to r1 ... r < R, which gives natural

control of the variables.
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N<n<2N j=1 d<R
n=a (mod q) d|n+h
(d,q)=1
bl and if d is squarefree and (d, q) = 1, then take
,u log Iog Ik
A(d d)d . (6
Z <Iog R’ log R) (6)
d|r
(r,q)=1

We further suppose that F is a class of “smooth” f
satisfying

suppf = R ={x € [0,1]  :x1 +---x <1}. (7)
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To repeat, we consider

S (lewh ><Z)\> (5)

N<n<2N N j=1 d<R
n=a (mod q) d|n+h
(d,q)=1

and if d is squarefree and (d, q) = 1, then take
,u log log ry
A d)d Z <IogR IogR)' (6)
d|r
(r.q)=1

We further suppose that F is a class of “smooth” f
satisfying

suppf = R ={x € [0,1]  :x1 +---x <1}. (7)

There are two major tasks to be undertaken. The first is
to obtain a good approximation to (5) with (6) for a wide
class of f in F.



N<n<2N

k 2
£ (le(n”f)—p)( > )
Jj=1
n=a (mod q)

d<R
d|n+h
(d,q)=1

<O < Fr <=

«=»

Q>
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. - > (len+h o) (X @)

in the Primes N<n<2N j= 1 d<R
Robert C. n=a (mod q) d|n+h
Vaughan (d,q):l

® This means good approximations S*(f) and T*(f) to

k
S(F) =Y Si(f)
The Setup j=1
where
2
SO=5="Y  Lh+m)( > N)
N<n<2N d<R
n=a (mod q) d|n+h
(d.q)=1
2
TiH=T= > (X @)
N<n<2N d<R



® Thus we obtain

) <2k:1(n+h >( > A(d))
Ty

d<R
d[n+h
(d,g)=1

~ S*(f) — pT*(f).

«O> 4 Fr «=Er =)

Q>
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Thus we obtain

3 (ill(n—kh )(ZA)

N<n<2N J d<R
n=a (mod q) d|n+h
(dvq):]-

~ S*(f) = pT*(f).

® \We want this to be positive, but with p as large as

possible.
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Robert C.
Vaughan
k
3 ( 12(n + hy) )(Z)\ )

N<n<2N N j=1 d<R

n=a (mod q) din+h

(d,q)=1

The Setup ~ S*(f) — pT*(f)

® \We want this to be positive, but with p as large as
possible.

® This means that the second task is to choose f to
maximise the ratio
5*(f)
T(f)
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® To approximate

S(=5= S Berm)( X A

N<n<2N d<R
n=a (mod q) d|n+h
(d,q)=1

it is natural to use the Bombieri—Vinogradov theorem.
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Robert C.
N<n<2N d<R
Vaugh - -
suenan n=a (mod q) d|n+h
(d,q)=1

it is natural to use the Bombieri—Vinogradov theorem.

® We define the level 6 of distribution for the prime numbers
to be the assumption that for every sufficiently small
positive § and every A > 0 we have

Z (max sup | li(y)

yim,a) — ——=| <54 x(log x
s (Bm=1y<x l ) ¢(m) ( )

The Setup

—A
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Chapter 8
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in the Primes S}(f):SJ: Z n+h < Z )\ )
b, N<n<2N d<R
n=a (mod q) d|n+h
(d,q)=1
it is natural to use the Bombieri—Vinogradov theorem.
® We define the level 6 of distribution for the prime numbers
to be the assumption that for every sufficiently small
positive § and every A > 0 we have

li(y)

The Setup

—A
max sup |7(y; m,a) — <54 X(logx)™".
m%“s (a,m)= 1y<x ¢(m)
® The Bombieri-Vinogradov theorem tells us that 6 = % is

permissible.
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To approximate

S(H=S= > Len+h)( Y Ad )

N<n<2N d<R
n=a (mod q) d|n+h
(d,q)=1

it is natural to use the Bombieri—Vinogradov theorem.

We define the level 6 of distribution for the prime numbers
to be the assumption that for every sufficiently small
positive § and every A > 0 we have

Z (max sup | li(y)

~A
yim,a) — ——| <54 x(logx)™".
s (Bm=1y<x m ) ¢(m) (log x)

The Bombieri—Vinogradov theorem tells us that 8 = % is
permissible.

However it is useful to be able to see any consequence of
any 0 > 1/2, especially the Elliott—Halberstam conjecture
(6=1).
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To approximate

S(H=S= > Len+h)( Y Ad )

N<n<2N d<R
n=a (mod q) d|n+h
(d,q)=1

it is natural to use the Bombieri—Vinogradov theorem.

We define the level 6 of distribution for the prime numbers
to be the assumption that for every sufficiently small
positive § and every A > 0 we have

Z (max sup | li(y)

~A
yim,a) — ——| <54 x(logx)™".
s (Bm=1y<x m ) ¢(m) (log x)

The Bombieri—Vinogradov theorem tells us that 8 = % is
permissible.

However it is useful to be able to see any consequence of
any 0 > 1/2, especially the Elliott—Halberstam conjecture
(6=1).

Moreover we will see that any # > 0 is good enough for
bounded gaps.
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Vaughan interested in

> am) <Y a(m) | D M)

(m,P)=1 deD
The Setup d\m
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Robert C. ® For some squarefree P and non-negative a(m) we are
e interested in

2

> alm) <> a(m) | Yo Ad)

(m,P)=1 deD
The Setup d\m
® For a divisor closed subset of the divisors of P we rewrote

this as
DSOS MDA > a(m).

m
deD ecD [d,e]|m



Math 571
Chapter 8
Bounded Gaps
in the Primes

Robert C.
Vaughan

The Setup

Let me remind you of the way in which the Selberg sieve
worked.

For some squarefree P and non-negative a(m) we are
interested in
2

Y. alm) <y a(m) | X Ad)
(m,P)=1 m deD

dlm
For a divisor closed subset of the divisors of P we rewrote

this as
DSOS MDA > a(m).

m
deD ecD [d,e]|m

We also supposed that for d € D and some p € M we
have

S a(m) = Xp(d) + Ra.

[d,e]|m
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Let me remind you of the way in which the Selberg sieve
worked.

For some squarefree P and non-negative a(m) we are
interested in
2

> alm) <> a(m) | Yo Ad)
(m,P)=1 m deD
dlm
For a divisor closed subset of the divisors of P we rewrote
this as
DSOS MDA > a(m).

deD eeD m
[d.e]lm
We also supposed that for d € D and some p € M we
have
> a(m) = Xp(d) + Ra.

[d,e]|m

| changed from f to p here for notational convenience,



® Then the main term becomes

deD ecD

X33 o(ld, eDA@)Ae).
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® \We were able to diagonalise this as

i p)

XY TTSA2 ) | S
: l|rr
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® \We were able to diagonalise this as

o p)

XY ng(p(”) S (A
! l|rr

® \We then applied the invertible mapping

w(l) = p(A(r):

v
I\r
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Then the main term becomes

® \We were able to diagonalise this as

XY ng(p(”) S (A
! l|rr

o p)

We then applied the invertible mapping
w(l) =Y p(NA(r).

r

I\r

® Note that at this stage A can be pretty arbitrary, and
certainly does not have to be optimal.
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Then the main term becomes

X3S plld, eDADACe).

deD eeD

We were able to diagonalise this as

1 —p(p) A7
XEI: Hip(p) %:p( )A(r)

pl!

We then applied the invertible mapping

w(l) = p(A(r).
I|rr
Note that at this stage A can be pretty arbitrary, and
certainly does not have to be optimal.

We want to carry this out for S;(f) and T(f). There are
some differences of detail, but not of principle.



° Si(f) =

2
> (3 @
N<n<2N >
n=a (mod q) "
(d.q)=1

<O < Fr <=
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® \When we looked at k dimensional sieves previously we
would have considered d|(n+ h1)...(n+ hx). Now we are
being more prescriptive in that we assume some control
WSy over (d,n+ hy) = dj. Thus we suppose that d|n+ h.
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T S e Si(f)= Y p(n+h) ( > Ad )

Ropert © N<n<2N d<R
€ n=a (mod q) din+h
(d,q)=1

® \When we looked at k dimensional sieves previously we
would have considered d|(n+ h1)...(n+ hx). Now we are
being more prescriptive in that we assume some control
WSy over (d,n+ hy) = dj. Thus we suppose that d|n+ h.
® | believe this was done to give better control over the d; in
the later analysis, but | do not think it loses anything of
consequence.



Math 571
Chapter 8
Bounded Gaps
in the Primes

Robert C.
Vaughan

The Setup

S(H= > 1x n+h(Z)\ )

N<n<2N d<R
n=a (mod q) din+h
(d,q)=1

When we looked at k dimensional sieves previously we
would have considered d|(n+ h1)...(n+ hx). Now we are
being more prescriptive in that we assume some control
over (d,n+ hy) = dj. Thus we suppose that d|n+ h.

| believe this was done to give better control over the d; in
the later analysis, but | do not think it loses anything of
consequence.

Since we have to deal with T(f) as well, we are pretty
much forced to choose A(d) corresponding to a
k-dimensional sieve, although in S;(f) since one of the
variables is prescribed to be prime we would only need a
k — 1-dimensional sieve.
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® \We have

S(F)= >

N<n<2N
n=a (mod q)

N<n<2N

n=a (mod q)
n+h;eP

1e(n+ )Y M)’

d<R
d|n+h
(d,q)=1
2
> @)
d<R
d|n+h

d=1,(d,q)=1
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Robert C.

Py N<n<2N d<R
EEEAE n=a (mod q) d|n+h
(d,q)=1
2
- 3 ( > /\(d)) .
N<n<2N d<R
n=a (mod q) d|n+h
The Setup nJthE]P dJ:].,(d,q):].

® Thus although we gain a (log N)~! by using
Bombieri-Vinogradov, we do not get anything small for
the sum over d; so we lose back something like a log R.
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in the Primes S_](f) = Z n =+ h ( Z )\(d )
I?/oberrt] C. N<n<2N d<R
EEEAE n=a (mod q) d|n+h
(d,q)=1
2
- ¥ ( 3 /\(d)) .
N<n<2N d<R
n=a (mod q) d|n+h
The Setup nJthE]P dJ:].,(d,q):].

® Thus although we gain a (log N)~! by using
Bombieri-Vinogradov, we do not get anything small for
the sum over d; so we lose back something like a log R.

® On the other hand, since the prime factors p of the d
satisfy p > Q = logloglog N, any factors like

Hp —kp
pld

are going to be close to 1, at least on average and so
won't differ in any important way from the k — 1 _version,
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® Recall that we plan to take

with

_ w(r)? . (logn log rk
Ad) = u(d)d zr: o0 f(|ogR"“’ IogR>
(o)t

suppf:R:{xe[0,1]k:x1+~--—|—xk§1}.
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VA o(r) \logR’" "~ "logR
(r, q) 1
with

suppf =R ={x € [0,1]* : xq + -+ + x < 1}.

The Setup

® |n the 1-dimensional sieve we had f = 1, and showing that

p(r)? _ Z u R

(d)log

== o) SRig © d
dir (sd) 1

was relatively easy.
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(r, q) 1
with

suppf =R ={x € [0,1]* : xq + -+ + x < 1}.

The Setup

® |n the 1-dimensional sieve we had f = 1, and showing that

p(r)? _ u R
log —
(d)log
< <R/d
dir (s d)=1
was relatively easy.
® Now we need to entertain the possibility that f will be
more complicated and we need to apply partial

summation, maybe in more than one dimension.
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Robert C. >\ d E : f | R | R
Vaughan ) Og Og
(r, q) 1
with

suppf =R ={x € [0,1]* : xq + -+ + x < 1}.

The Setup

® |n the 1-dimensional sieve we had f = 1, and showing that

p(r)? _ u R
log —
(d)log
< <R/d
dir (s d)=1
was relatively easy.
® Now we need to entertain the possibility that f will be
more complicated and we need to apply partial

summation, maybe in more than one dimension.
® \We need to set up some notation.



® Let R; denote the set of k—tuples t1,....t;_1, tj 1,
with t € R for some t;.

R %
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Chapter 8
FRitE ® Let R; denote the set of k—tuples t1,....tj_1,tj41,...,tk
Fs/zbuzﬁai- with t € R for some t;.
® We define F to be the class of functions f, not identically
0, defined on R such that for each j, given
tt = t1y s tj—1, Gjp, - o Bk with t; > 0 and
tp+ -+ tj_1+ tjy1 + -+t < 1 the function
The Setup fi(tj) = f(t) is absolutely continuous on

[0,1—t1—-'-—tj_l—tj+1—-~~—tk].
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® Let R; denote the set of k—tuples t1,....tj_1,tj41,...,tk

with t € R for some t;.

We define F to be the class of functions f, not identically
0, defined on R such that for each j, given

th = t1y s tj—1, Gjp, - o Bk with t; > 0 and

tp+ -+ tj_1+ tjy1 + -+t < 1 the function

fi(tj) = f(t) is absolutely continuous on
[0,1—t1—-'-—tj_l—tj+1—-~~—tk].

Given an f € F it is useful first to extend its definition to
[0,1]% by taking it to be 0 outside R and then to define a
suitable metric.

k 1
F=suplF(t) + 3 sup /
0

f
a(t)' dt;.
teR = t*ER; 81‘1
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Chapter 8 Theorem 6 (Maynard)

Bounded Gaps
in the Primes

A Let k > 2. Suppose the primes have level of distribution 6 and
VEITAIETD N > No(d). Let R = Ngfé, and @, g, R and f € F be as
above. Assume h is admissible and that for each j,

(a+hj,q)=1. Let J = / f(t)?dt,

[0,1]
1 2
Maynard one l_[ = / </ f(t)dtj> dt]_ .o dtjfldtj+1 o dtk,
[0,1=-1 \Jo
k
_ (1+0(1))é(q)“N(log R)**
S(f) - qk+1 log N Z IJ

J=1

and T(f) = (1+ o(1))¢(g)*N(log R)

s, JasN — oco. In

k.
particular iii)) = (1+0o(1)) <Z - 6) lelf



® The proof is divided into several stages. Fortunately the
treatments of S(f) and T(f) are similar.
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® The proof is divided into several stages. Fortunately the
treatments of S(f) and T(f) are similar.

® Initially we do not assume anything about the A(d) apart
from supposing that the A\(d) are general real valued
functions with support satisfying di ... dy = d < R,
(d,q) =1 and d squarefree.
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treatments of S(f) and T(f) are similar.

® Initially we do not assume anything about the A(d) apart
from supposing that the A\(d) are general real valued
functions with support satisfying di ... dy = d < R,
(d,q) =1 and d squarefree.

® Of course, then (d;, d;) =1 when i # j.

Maynard one
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The proof is divided into several stages. Fortunately the
treatments of S(f) and T(f) are similar.

Initially we do not assume anything about the A\(d) apart
from supposing that the A\(d) are general real valued
functions with support satisfying di ... dy = d < R,
(d,q) =1 and d squarefree.

Of course, then (d;, dj) =1 when i # j.

We begin with the diagonalisation process, and it is useful
to define the multiplicative function ¢2(n) by

¢2(p) = p— 2 and ¢o(p") = 0 when t > 2.
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The proof is divided into several stages. Fortunately the
treatments of S(f) and T(f) are similar.

Initially we do not assume anything about the A\(d) apart
from supposing that the A\(d) are general real valued
functions with support satisfying di ... dy = d < R,
(d,q) =1 and d squarefree.

Of course, then (d;, dj) =1 when i # j.

We begin with the diagonalisation process, and it is useful
to define the multiplicative function ¢2(n) by

¢2(p) = p— 2 and ¢o(p") = 0 when t > 2.

Then the diagonalisation process can be summarised by
the following lemma
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Lemma 7

>~
~—~

d)
(d)’

53(F) = u(Nga(r) S

d
r|d

-

where zj indicates that the summation variable is a k—tuple,
say d, which is restricted by d; = 1, and let

Maynard one

w(r) = u(r)o(n) 0 2D,
r(\id
W) ) ud), K
Then Sy =30 o and ==3d) =37 2.
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Math 571

50 = 10el) S 2,
rld
Ad) = () (d) %” o,
) =)0 S ML) and A(d) = 0> -
rld djr

® |n the k dimensional case this looks familiar and the kK — 1
dimensional case does not look too bad. However the use
of k-tuples d, etc., makes for some complications.



® This is Mobius inversion. Consider E ;"JE:))
2
r

djr
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e . . i kj(r)
® This is Mobius inversion. Consider J
Z $2(r)
d|r

® and substitute in the definition of I€j to obtain

3wt Z” E
d\r r\s d| Is
_ 2 ;Ejgu(d) > )

ult

Note that the s = dt are square free, the t; are pairwise
coprime, and hence the u; are pairwise coprime and so are
the d;. Also (t,d) = 1. Thus the u; are free to range over
a complete set of divisors of t;.
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® This is Mobius inversion. Consider Z/ SJE:))
2
r

d|r
® and substitute in the definition of I€j to obtain

3wt Z” E
d\r r\s d| Is
_ 2 ;Ejgu(d) > )

ult

Note that the s = dt are square free, the t; are pairwise
coprime, and hence the u; are pairwise coprime and so are
the d;. Also (t,d) = 1. Thus the u; are free to range over
a complete set of divisors of t;.

® Alsosj=1,s0d; =t =1



.. vy . . . i Ki(r
S ® This is M&bius inversion. Consider E i)
Bounded Gaps r ¢2(r)
in the Primes d‘r
f/zbuegf;ai- ® and substitute in the definition of I€j to obtain
E lr Z” S
d\r r\s d| |s
i A(dt)
= Tﬂ(d) Z p(u)-
o Zt o(de)" " 2
aynard one

ult

Note that the s = dt are square free, the t; are pairwise
coprime, and hence the u; are pairwise coprime and so are
the d;. Also (t,d) = 1. Thus the u; are free to range over
a complete set of divisors of t;.

® Alsosj=1,s0d; =t =1

® The sum over u; is 0 unless t; = 1. Thus it all collapses

p(d)
down to ¢(d)A(d).




. e . . i Ki(r
S ® This is Maobius inversion. Consider E (1)

Bounded Gaps r ¢2(r)
in the Primes d|r
Ff/illegrﬁai' ® and substitute in the definition of I€j to obtain

3wt Z” E
d\r r\s d| Is
_ 2 ;Ejgu(d) > )

ult

Maynard one

Note that the s = dt are square free, the t; are pairwise
coprime, and hence the u; are pairwise coprime and so are
the d;. Also (t,d) = 1. Thus the u; are free to range over
a complete set of divisors of t;.

® Alsosj=1,s0d; =t =1

® The sum 02/23 u; is 0 unless t; = 1. Thus it all collapses

L

down to ¢(d)A(d).

® The other inversion formula follows in the same way.
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® The core of the proof is the following lemma.

Lemma 8
Let

K; = max|k;(r)|, K = max|x(r)|.
r r

Then

B N i ki(r)?
Si(f) = ¢(q)log N > <Z>Jz(r)

r

and

/Qr2
=g S5

+o<

o

K?¢(q)* 2N(log R

gc1Q

).

K2N(log R)X

q@

)k2>



Chapter 8
Bounded Gaps
in the Primes

Robert C. . = N . ﬁj(r)2
Vaughan S/(f) - d)(q) |Og N ZJ ¢2(r)

KP9(q)*"2N(log R)*~2
+0 ( / g<-1Q

Math 571 ® let K; = max’,&g;j(r)’7 K= mrax‘/f(r)‘_ Then
r

r

k(r)? K2N(log R)*
Maynard ons and T(f) = NZ ¢((f)) +0 <E7Qg)>'

Q

r
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® Let Kj = max|kj(r)], K = max|k(r)|. Then
r r

2

' . N j ﬁj(l‘)
50 = Saiogh 2= on()
o (Kfas(q)k—zlv(log R)k-2>

g-1Q

N r(r)? <K2N(Iog R)k>
and T(f) = — +to L= ).
(N=3230 aQ
® If x(r) were normalised so that x(r) = (log R)~¥, then we
would have

Z¢ = (logR) Y w0 (g R)

rn..nk<R
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Math 571 ® Let K; = max|r;(r)], K = max|k(r)|. Then
r r

Robert C. N j /ﬁ}'(r)2
aughan S f - J
o 1) = S logh 2= on(r)
Lo [y T Nllog R
g 1Q
N r(r)? <K2N(Iog R)k>
aynard one d T f = — O - S .
o nd TN =250 aQ
® If x(r) were normalised so that x(r) = (log R)~¥, then we
would have
,u fl —k
Z ~ (logR)™ Z ~ (log R)
¢ rn..nk<R I’1

()2
o Likewise ZJ /;J((rr)) ~ (log R)!™%. So we are in the right
—~ 2

ballpark!
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® Consider first

S = > 1e(n+h) ( 3 )\(d)

Robert C.
Vaughan

N<n<2N d<R
n=a (mod q) din+h
(d,q)=1

. We need to insert the information about distribution into
residue classes and in the main term replace A(d) by «;(d).

Maynard one
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® Consider first

S(Hh= S 1p(n+h) ( 3 )\(d)

N<n<2N d<R
n=a (mod q) din+h
(d,q)=1

. We need to insert the information about distribution into
residue classes and in the main term replace A(d) by «;(d).

® Squaring out we obtain

ST OMdA) > 1p(n+ hy).
e N<n§2N
di=¢j=1 [E,e]|n—&(—jh
n=a mod q



® Squaring out we obtain

Sif)= > MdAe) Y 1p(n+h)
de N<n<2N
di=¢j=1 [d.e]n-+h

n=a mod q

«O> «Fr «=>»

«E)»

DA
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Squaring out we obtain

SiF)= > Ad)Ae) > 1p(n+h).
de N<n<2N
di=¢j=1 [d,e]|n+h
n=a mod q
We recall that for A(d) # 0 we have d squarefree and
(d,q) = 1. Therefore (d,,d,) =1 when u # v. Likewise
for e. Also if p|n+ h, and p|n+ h,, then p|h, — h, and
this is impossible since p > logloglog N > max |h, — h,|.
Thus, when u # v, ([dy, ed], [dv, ev]) = 1, whence
(du,ev) = 1. Since d; = ¢ = 1 we have [d}, gj] = 1.
Hence in the inner sum we are left with the system of
congruences n = —h; (mod [d;, &]) i #j and n= a
(mod q).
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Squaring out we obtain

SiF)= > Ad)Ae) > 1p(n+h).
de N<n<2N
di=¢j=1 [d,e]|n+h
n=a mod q
We recall that for A(d) # 0 we have d squarefree and
(d,q) = 1. Therefore (d,,d,) =1 when u # v. Likewise
for e. Also if p|n+ h, and p|n+ h,, then p|h, — h, and
this is impossible since p > logloglog N > max |h, — h,|.
Thus, when u # v, ([dy, ed], [dv, ev]) = 1, whence
(du,ev) = 1. Since d; = ¢ = 1 we have [d}, gj] = 1.
Hence in the inner sum we are left with the system of
congruences n = —h; (mod [d;, &]) i #j and n= a
(mod q).

® Then the innermost sum can be rewritten as

E 1.
N+h;<p<2N+h;
p=h;—h; mod [d;,e] (i#))
p=a+h; mod q



[ ] Thug

S(f)= > AMd)Ae) 5
de
dj=ej=1

N+hj<pS2N+hj

p=hj—h; mod [d;.e] (i)
p=a+h; mod q

(o B =

«E>»

Q>



Math 571 ® Thus
Chapter 8

Bounded Gaps

in the Primes Sj(f) = E A(d))\(e) E 1
i<z
dj:ej:]- thj*h,‘ mod [d,‘,e,‘] (175_])
p=a+h; mod q

® We have (a+ hj,q) =1 and (hj — hj,de) = 1(i # j).

Maynard one



Math 571 ® Thus
Chapter 8

Bounded Gaps

in the Primes Sj(f) — Z A(d))\(e) Z 1.
de

Robert C.
Vaughan s N+hj<p§2N+hj
dj=¢j=1 p=hj—h; mod [d;,ej] (i#))
p=a+h; mod q

® We have (a+ hj,q) =1 and (hj — hj,de) = 1(i # j).
2N+h; gy

k
o Let m=q[[ldi el X = — and

Maynard one i=1 N+hj |Og t

li(x)
¢(m)

E= Z* IA(d)A(e)] max  sup |m(x;m,b)—
d,e

(b,m)=1 x<2N+H

where >"" indicates the restrictions d; = ¢; = 1 and
(du,ev) =1 when u # v, and H = max; h;.



Math 571 o Th us
Chapter 8

Bounded Gaps
in the Primes _
e S = 3 Ad)Ae) 3 1.
obert C.
Vaughan d,e N+hj<p§2N+hj
dj=¢j=1 p=hj—h; mod [d;,ej] (i#))
p=a+h; mod q

® We have (a+ hj,q) =1 and (hj — hj,de) = 1(i # j).

k 2N+hi gy
® let m= qH[d,-, el Xj = — and

Maynard one i=1 N+hj |Og t

li(x)
¢(m)

m(x; m, b) —

E= : A(d)\(e)| max su
zd; ADX )|(bvm):1x§2Nﬂ-H

where >"" indicates the restrictions d; = ¢; = 1 and
(du,ev) =1 when u # v, and H = max; h;.

® Then
51 =% 5 250+ o(e)
d,e

m



® We need to bound the A\(d). Recall that by Lemma 7

p(d) | j kj(r)
o)W = ?@(r)

«O>» «Fr «Z» «E>»

DA



Math 571 ® We need to bound the A(d). Recall that by Lemma 7

Chapter 8

Bounded G .
in the Primee :u(d) ’{J'(r)
M) \(d) =
Robert C. ¢(d) ( ) ZJ ¢2(r)
Vaughan d\r
® Hence
- Kju(r)?
< J
2 M) < max, o(d) 2; N
d|r
Maynard one (d q)_l
e S P
7 92(d) S 02(9)
(s,dg)=1
6(d) < 1 >“
< K; max H 1+ ——
b2(d )Q<p§R p—2
pld

< Kj(log R)k71.



Math 571 ® We need to bound the A(d). Recall that by Lemma 7

Chapter 8

Bounded G .
n the Primes :u(d) _ ’{J'(r)
Robert C. ¢(d) )\(d) - ZJ ¢2(r)
Vaughan d\r
® Hence
- Kju(r)®
Ty MO < max o) 7 =0
d|r
Maynard one (d q)—l
e S s
7 92(d) S 02(9)
(s,dg)=1
¢(d) < 1 >k1
<K; max H 1+ —
ZIC N -2
ptd

< Kj(log R)k71.
e Similarly max IA(d)| < K(log R) .



® Recall the error

max

E=Y" |A(d),\(e)l(
de

5L|p
b,m)=1 x<2N+H

m(x:m _1i(x)
(' ,b) ¢(m)

<O «Fr «=)H»

«=»

Q>
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Recall the error

li(x)
E= d)\(e)] max su w(x; m, b) —
Z A ’(b,m)=1x§2NErH ( ) B(m)

Maynard one

Here m/q depends on the d, e. We need to know how
many times the same m can arise.



® Now consider the number of ways that the modulus m/q
can arise in E.

«Or «Fr o«

it
.
it
v
[y
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Veuggian can arise in E.

® In other words, how many choices of di,...,dk, e1,..., €k
give rise to m?

Maynard one
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¢ Now consider the number of ways that the modulus m/q
can arise in E.

® In other words, how many choices of di,...,dk, e1,..., €k
give rise to m?

® Since (d,,e,) =1 for all u # v, it follows that m/q, and
so m, is squarefree.
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Now consider the number of ways that the modulus m/q
can arise in E.

In other words, how many choices of di,...,d, e1,..., e
give rise to m?

Since (dy,e,) =1 for all u # v, it follows that m/q, and
so m, is squarefree.

Also as d ... di| TT/_,[di, &]] = m/q and d; = 1 the
number of possibilities for d is at most dx(m/q), and
likewise for e.



Math 571
Chapter 8
Bounded Gaps
in the Primes

Robert C.
Vaughan

Maynard one

Now consider the number of ways that the modulus m/q
can arise in E.

In other words, how many choices of di,...,d, e1,..., e
give rise to m?

Since (dy,e,) =1 for all u # v, it follows that m/q, and
so m, is squarefree.

Also as d ... di| TT/_,[di, &]] = m/q and d; = 1 the
number of possibilities for d is at most dx(m/q), and
likewise for e.

Thus E < Kf(log R)?KE’ where E' =

li(x)
m)2d,(m)®> max  su w(x; m, b) — .
m<zq:R2u( \ehlm) (b,m)=1 xgszJrH ( ) ¢(m)
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e We have E < sz(log R)?KE" where E' =

>

m<qR?

p(m)?di(m)®> max  sup
(b,m)=1 x<2N+H

w(x; m, b) —

li(x)

¢(m)



Math 571 e We have £ < sz(log R)?KE" where E' =

Chapter 8
Bounded Gaps
in the Primes

li(x)
2 2

Robert C. E m)“d,(m)* max  su w(x; m, b) — .
Vaughan m<qR2 'u( ) k( ) (b’m):l X§2NF:-H ( ) gb(m)

® The extra factor dx(m)? is a minor irritant in the
application of the Bombieri-Vinogradov theorem or
equivalents and we deal with it by applying the
Cauchy-Schwarz inequality.

Maynard one



Math 571 e We have £ < sz(log R)?KE" where E' =

Chapter 8

l.30unded 'Gaps
|nRch PFIZIGS Z ( )2d ( )2 ( b) h(X)
obert C. w(m)=di(m)® max  sup |w(x;m,b)— .
Vaughan ) (b’m):l x<2N+H ’ ¢(m)
m<gR
® The extra factor dx(m)? is a minor irritant in the
application of the Bombieri-Vinogradov theorem or
equivalents and we deal with it by applying the
— Cauchy-Schwarz inequality.
aynard one

® Thus E' < (E1E»)Y? where

li(x)
¢(m)

7(x; m, b) —

Ei = E max  sup
b,m)=1
quRQ( ;m)=1 x<2N+H

and £, =

li(x)
¢(m) |

Z p(m)?di(m)* max  sup

7(x; m, b) —
m<aR? (b,m)=1 x<2N+H




* E' < (E1E)Y? and E;

D

m<qR?

p(m)?de(m)* max  sup |m(x;m,b) — li(x)
(b,m)=1 x<2N+H

o(m) )

A= N =

Q>
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IR

m<qR?

® Crudely we have

Maynard one

max sup
(b,m)=1 x<oN+H

m)4 max  sup
(b,m)=1 x<2N+H

7(x; m, b) —

7(x; m, b) —

li(x)
¢(m)

N

m.

li(x)
¢(m) |
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Chapter 8 o F' < (EE 1/2 and B> =
BoundZd rGaps E - ( 1 2) 2
in the Primes

Vaughan Z p(m)?di(m)* max  sup

I
7(x; m, b) — i(x)
m<aR? (b;m)=1x<oN4H

¢(m) |

® Crudely we have

li(x) N
max  sup |mw(x;m,b) — —.
N (b,m)=1 x<2N+H o(m) m
aynard one
® Thus B, <N > pu(m)>die(m)*m™
m<qR?

<N ] ( ><< N(log N)~*

p<qR?
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Chapter 8 ° I < 1/2 _
Boundzd rGaps E — ( E]. E2) a nd E2
in the Primes

Vaughan Z p(m)?di(m)* max  sup

7(x; m, b) — li(x)
(b,m)=1 x<2N+H

¢(m)|

m<qR?
® Crudely we have
li N
max  sup |mw(x;m,b) — i(x) —.
Maynard one (b7m):1 x<2N+H ¢(m) m
® Thus B, <N > pu(m)>die(m)*m™
m<qR?
k4 4
<N I (14 =) < N(logN)
p<qR? p
[ ]

Hence, by our assumption that the level of distribution is 0
and the choice of R = N3~ we have E < KfN(Iog N)~—A
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® Thus we have established that

5()=x3" A(f;()jf)) + O(K?N(log N) )
de

k 2N+hy gy

where m = qH[d,-, el Xj = /

~ logt'
i1 N-+h; g

Q = logloglog N, g = HPSQ p, H = max; h; and
indicates the restrictions dj = ¢f = 1 and (dy, e/) =

when u # v.

*

1



Math 571 ® Thus we have established that

Chapter 8
Bounded 'Gaps * A(d))\(e) 2 —A
in the Primes 5 f =X E _— O K2N(I N
Robert C. J( ) / (b(m) + ( ! ( Og ) )
Vaughan de
wherem:qH[d,‘,ei], XJ:/ T
pale N+h; |Og t

*

Q = logloglog N, g = HPSQ p, H = max; h; and
indicates the restrictions d; = ¢f = 1 and (dy,e,) =1
Maynard one When u # V.

® |t remains to deal with the main term S;(f).
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® Thus we have established that

5()=x3" A(f;()jf)) + O(K?N(log N) )
de

k 2N+hy gy

where m = qH[d,-, el Xj = /

~ logt'
i1 N-+h; g

Q = logloglog N, g = HPSQ p, H = max; h; and
indicates the restrictions dj = ¢f = 1 and (dy, e/) =

when u # v.
® |t remains to deal with the main term S;(f).
® \We want to diagonalise it.

*

1



Math 571
Chapter 8
Bounded Gaps
in the Primes

Robert C.
Vaughan

Maynard one

® Thus we have established that
* A(d)A
)= x5 M ok og )
d.e

k 2N+hy gy

where m = qH[d,-, el Xj = /

P Nth logt’
Q = logloglog N, g = HPSQ p, H=max; hj and > "
indicates the restrictions d; = ¢f = 1 and (dy,e,) =1
when u # v.
® |t remains to deal with the main term S;(f).
® \We want to diagonalise it.
® |f we had kK = j = 2, then the sum would just be

d1 )\(el)
Z ¢> [dlvel]

and we could imitate the Selberg sieve.
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Thus we have established that
* A(d)A
)= x5 M ok og )
d.e

k 2N+hy gy

where m = qH[d,-, el Xj = /

P Nth logt’
Q = logloglog N, g = HPSQ p, H=max; hj and > "
indicates the restrictions d; = ¢f = 1 and (dy,e,) =1
when u # v.
It remains to deal with the main term S;(f).
We want to diagonalise it.
If we had k = j = 2, then the sum would just be

Z dl )\(e]_)
¢> [dlv 61]
and we could imitate the Selberg sieve.

With this in mind, it is desirable to rid ourselves of the
condition that (d,, e,) =1 when u # v,
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® \We have to deal with Z* M where

)

m = qH[d,,e,] q=1l,<qp, and 37" indicates the

restrlctlons di =€ =1and (dy,e,) =1 when u # v.
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Robert C. de

Vaughan

m = qH[d,,e,] q=1l,<qp, and 37" indicates the

restrlctlons di =€ =1and (dy,e,) =1 when u # v.

® |t is desirable to rid ourselves of the condition that
(du,ev) =1 when u # v.

Maynard one
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in the Primes (m)
d,e
Robert C.
Vaughan

m = qH[d,,e,] q=1l,<qp, and 37" indicates the

restrlctlons di =€ =1and (dy,e,) =1 when u # v.
® |t is desirable to rid ourselves of the condition that
(du,ev) =1 when u # v.

Meynard one ® That this is possible without undue effect on the main
term is due to the prior sieving resulting from the choice of
the residue class a modulo g. Thus any primes p which
can potentially divide (d,, e,) satisfy p > Q.
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We have to deal with Z* M

where
)

m = qH[d,,e,] q=1l,<qp, and 37" indicates the

restrlctlons di =€ =1and (dy,e,) =1 when u # v.

It is desirable to rid ourselves of the condition that
(du,ev) =1 when u # v.

That this is possible without undue effect on the main
term is due to the prior sieving resulting from the choice of
the residue class a modulo g. Thus any primes p which
can potentially divide (d,, e,) satisfy p> Q.

é(m) _ o((di,e))
Now H¢ iei]) & ([d,,e,]) — p(d)o(e)
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Chapter 8

* A(d)A(e)

ounded Gaps [} |
Bounded Gap: We have to deal with Z (m) where
de
Robert C.
Vaughan
m = qH[d,, &i], = [l,<gp, and 3" indicates the
restrlctlons di =€ =1and (dy,e,) =1 when u # v.
® |t is desirable to rid ourselves of the condition that
(du,ev) =1 when u # v.
Maynard one

® That this is possible without undue effect on the main
term is due to the prior sieving resulting from the choice of
the residue class a modulo g. Thus any primes p which
can potentially divide (d,, e,) satisfy p> Q.

. ow— _ o((di, &)
N H¢ ineil) & ([d,,e,]) o(di)dler)

1
® Hence ¢(m) = d)¢ g¢ dl7el




k
Math 571 « Md)\(e
Bocu:zztdeerps ® Z (Qﬁ()m()) Where m = qH[d,, e,'], q= HPSQ p, and
in the Primes d,e i=1
b, > indicates the restrictions d; = ¢; = 1 and (d,, e,) =1
when u # v, and
1 1
= o((dj, ei
otm) = atayatayote) L)

Maynard one
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BOCU:ZQtdeerps ) Z (¢2mg ) where m = qH[dla ei]' q= HPSQ P, and
in the Primes d,e i=1

Robert € > indicates the restrictions d; = ¢; = 1 and (d,, e,) =1

when u # v, and
1 1
= o((di, e
5m ~ a@aaae L o)

i
® Also p—1=1+ (p—2), so for squarefree | we have

Maynard one d)(/) = Z ¢2(t)‘

t|/



k
Math 571 * )\(d))\(e)
B ° Z 7¢(m) where m = qH[di, e, g = Hng p, and
in the Primes d,e i=1
Robert € > indicates the restrictions d; = ¢; = 1 and (d,, e,) =1

when u # v, and

! = H¢ dhel)

1751

® Also p—1=1+ (p—2), so for squarefree | we have

Maynard one d)(/) = Z ¢2(t)

t|/

® Hence ¢((dj, €i)) Z ¢2(n

nj|d;,n;|e;
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* A(d)A -
® zd: W where m = ql_Il[diaei]v q= HPSQ p, and

> indicates the restrictions d; = ¢; = 1 and (d,, e,) =1
when u # v, and

! = H¢ dhel)

1751

® Also p—1=1+ (p—2), so for squarefree | we have
o(1) = éa(t)

t|/

® Hence ¢((dj, €i)) Z ¢2(n

ni|d;,n;|e;
® \We substitute this in the main term and invert the order
of summation to obtain

o\ n *)\d
Z ¢(m) Z/(b )Z (d)

de

n|d n|e



¢ * A(d)A(e n « A(d)\(e
R -y 2Me) i deln) > (DA pere

Bounded Gaps de (;5 m

in the Primes

Robert C.
Vaughan

m = QH[di, &), = [l,<gp. and 3" indicates the
i=1
restrictions dj = ¢j = 1 and (dy,e,) =1 when u # v

Maynard one
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Vaughan
m = QH[d/, e, 9 =[,<qp and >~* indicates the
i=1
restrictions dj = ¢j = 1 and (dy,e,) =1 when u # v

® We now begin to deal with (dy,e,) =1 for u # v. We
replace it by Z w(suy)-

Maynard one Sle|dU7su\/|ev
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. N Ad)A(e) $2(n) <=+ A(d)A(e)
2 ~gtm) E o(a) Z o(d)a(e) "
n|d n|e

m = qH[d,-, &), = [l,<gp. and 3" indicates the
i=1
restrictions dj = ¢j = 1 and (dy,e,) =1 when u # v
® We now begin to deal with (dy,e,) =1 for u # v. We
replace it by Z w(suy)-
Suv|du,Suv| ey

® There are various observations with regard to the s,,.
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* A(d)A(e) $2(n) <=+ A(d)A(e)
2 ~gtm) an¢(q)2 o(d)a(e) "
n|d,nje

m = QH[di, &), = [l,<gp. and 3" indicates the
i=1
restrictions dj = ¢j = 1 and (dy,e,) =1 when u # v

We now begin to deal with (dy,e,) =1 for u # v. We
replace it by Z w(suy)-

Suv|du,suv|ev

There are various observations with regard to the s, .
We have n,|d,, so (ey, n,) = 1. Hence (s, n,) = 1.
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* A(d)A(e) $2(n) <=+ A(d)A(e)
2 ~gtm) an¢(q)2 o(d)a(e) "
n|d,nje

m = QH[di, &), = [l,<gp. and 3" indicates the
i=1
restrictions dj = ¢j = 1 and (dy,e,) =1 when u # v

We now begin to deal with (dy,e,) =1 for u # v. We
replace it by Z w(suy)-

Suv|du,suv|ev

There are various observations with regard to the s, .
We have n,|d,, so (ey, n,) = 1. Hence (s, n,) = 1.
Likewise (su, ny) = 1.
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* A(d)A(e) $2(n) <=+ A(d)A(e)
2 ~gtm) an¢(q)2 o(d)a(e) "
n|d,nje

m = QH[di, &), = [l,<gp. and 3" indicates the
i=1
restrictions dj = ¢j = 1 and (dy,e,) =1 when u # v

We now begin to deal with (dy,e,) =1 for u # v. We
replace it by Z w(suy)-

Suv|du,suv|ev

There are various observations with regard to the s, .
We have n,|d,, so (ey, n,) = 1. Hence (s, n,) = 1.
Likewise (su, ny) = 1.

Also, when w # v, we have s, |e, and (e,, e,) = 1.
Hence(suy, Suw) = 1.



= A(d)A(e) ¢2(n) A(d)A(e)
Math 571 o Where
BOCUEdzs 'Gzps % ¢ m 2 ¢(q) Z d ¢ e

n|d n|e

m = qH[d,-, &), = [l,<gp. and 3" indicates the
i=1
restrictions dj = ¢j = 1 and (dy,e,) =1 when u # v
® We now begin to deal with (dy,e,) =1 for u # v. We
replace it by Z w(suy)-
Maynard one Suv|du7$uv|ev

® There are various observations with regard to the s,,.

Robert C.
Vaughan

e We have nyl|d,, so (e, n,) = 1. Hence (su, ny) = 1.

o Likewise (syy,ny) = 1.

® Also, when w # v, we have s,,|e, and (e,,e,) = 1.
Hence(suy, Suw) = 1.

o Likewise, when w # u, (suy,Sw) = 1 and so in summary

(suv, nu) = (Suv, nv) = (suw Suw) = (SUVa sWV) =1



; * AM(d)A(e
Chapter 8 ® Thusvia Y plsw) D Ald)A(e) _

?::E:Egri(;r:ep: Suv|du,suv|ev de
Robert C. . . .
aughan ¢2 n T )\ d
Vaugh ZJ ( ) Z ( H M(Suv)> ZJ 9 ZJ
n ¢(q) Suv u;év d ¢( ) °
uFv n|d nle
5UV|du SUV‘ev

with ET: (S”"’ n“nv) = (Suva Suw) = (Suva Swv) =1

Maynard one
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® Thus via Z 1i(su),s Z* Ald)A(e)

Suv|du,suv|ev de ¢(m)
i ¢2(n) T i A(d) .
S0 T (M) (27565) (5
n|d nle
Suv|dy Suv|ev

with ET: (SUV7 nunv) = (suw Suw) = (SUV7 Swv) =1
® This is not yet a diagonal form, but it is progress.

Ae)

¢(e)

)
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Bounded Gaps
in the Primes

Vaughan ¢>2  A(d) i Ae)
2 ( 1;[ u(suv)) (2; ¢(d)> (E <z>(e)>

Suv

Suv|du,suv|ev de

nld nle
5uv|du suv‘ev

Wlth ET (Suv, nunv) — (SUV7 SUW) = (SUV’ SWV) =1
® This is not yet a diagonal form, but it is progress.

Haynard ene e \We sub i Z/ w for A, so Z* M

p()oa(r) ~ 2 old) % 2 T g(m)
r|d
=Y e e () mteme
u;év
where @a = a1,...,ax, b= b1,..., by are factors of d, e,

ay = ny H Suv, bv =ny H Suv-

v u
v#u u#v
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5 u#v
;é #
where @a = ay,...,ak, b=by1,..., by,
Maynard one ay = hy H Suvs bV =ny H Suv
v u
v#£u u#v

and ZT (SUV? nUnV) = (SUV75UW) = (Suvaswv) - ]-
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o Thus Y Ald)Ale)

m)

=Y s 2 L e | @)

suv u#v

u;é

where a =ay,...,ak, b= by,..., b,

au:nullsuw bv:nvllsuv
v u
v#£u u#v

and ZT (SUV? nUnV) = (SUV75UW) = (Suvaswv) - ]-

® |n particular a = b = ns where s = Hu;év Suy-
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Thus Z* A(;()ri()e)

=Y s 2 L e | @)

suv u#v

u;é

where a =ay,...,ak, b= by,..., b,

au:nullsuw bv:nvllsuv
v u
v#£u u#v

and ZT (SUV? nUnV) = (SUV75UW) = (Suvaswv) - ]-

® |n particular a = b = ns where s = Hu;év Suy-
® Thus the main term is

Zf o j rj(a)r;(b).

Suv

u;év
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° e main term is : 1 t ) ki(a)k;
The main term is 3 Sror 2 aa(ep @)

Suv

u#v
and ET: (Suw nunv) = (Suwsuw) = (Suvaswv) =1



: : ' 1 top(s)
Math 571 ° Th t na H b
s e main term is 371 s S o ai(a)n(0)

in the Primes n us;évv
F\z/c;llegr;ai. and ET: (Suw nunv) = (Suw suw) = (Suva 5wv) =1

® Since n; = 1 the terms with s > 1 contribute

2

K? di—1(m)p(n)? di(k-1)($)A(s)
¢(q) g,; 2(n) ; $2(s)?

(nvq):]' (s,q):l

<

Maynard one



' 1
Chapter 8 ® The main term is E ZT “(5)2 k;(a)r;(b)

Bounded Gaps n ¢(q)¢2(n) Suv ¢2(S)
in the Primes u;,év
F\z/c;llegr;ai. and ZT: (Suw nunv) = (Suw suw) = (Suw Swv) =1

® Since n; = 1 the terms with s > 1 contribute

K? die_1(n)p(n)? di(k—1)(5)(5)
CHD 2 el = mer

(nvq):]' (s,q):l

Maynard one

® The inner sum is

B k(kl)) 1
A 1+p1:[Q<1+ (b-27) < Qlog@
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. : ' 1 tou(s) .
The main term is znj (@520 Z ¢2(5)2/<;J(a) i(b)

Suv

u#v
and ZT: (Suw nunv) = (Suwsuw) = (Suvaswv) =1
Since nj = 1 the terms with s > 1 contribute

2

K? di—1(m)p(n)? di(k-1)($)A(s)
CHD 2 el = mer

s>1
(n,q)=1 (s,q)=1
The inner sum is Kk — 1) .
< -1+ 14+~ <
11 (p—2)? ) Qlog Q

P>Q
and the sum over n is

< [ @+k=1)/(p—2)) < (¢(q)(logR)/q)" .

Q<p<R



Math 571
Chapter 8
Bounded Gaps
in the Primes

Robert C.
Vaughan

Maynard one

. NV 1 Fopls) oy
The main term is znj gb(q)qﬁg(n)z ¢2(5)2/<;J(a) i(b)

Suv

u#v
and ZT: (Suw nunv) = (Suwsuw) = (Suvaswv) =1
Since nj = 1 the terms with s > 1 contribute

2

K? di—1(m)p(n)? di(k-1)($)A(s)
CHD 2 el = mer

s>1
(nvq):]' (s,q):l
The inner sum is Kk — 1) .
< -1+ 14+~ <
1 (p—2)2 ) Qlog Q

P>Q
and the sum over n is

< J] @+ (k=1)/(p—2)) < (6(q)(log R)/q)**.
Q<p<R

Thus the total contribu%ion fio_rg the telr(rff with
Ki#(q)* *(log R)
gkc-1Q '

s =]l,zy 50w >1is



2";“}57; ® For the terms with s = 1 we have a = b = n. Thus the
apter

Bounded Gaps main term becomes

in the Primes
Vo > G N (szgb(q)k_z(log R)k—1>

¢(q)p2(n) g 1Q

n

Maynard one
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® For the terms with s = 1 we have a = b = n. Thus the
main term becomes

| rj(n)? KP6(q) < 2(log R)**
> S ( #1Q )

n

® Recall that this is multiplied by

2N+h; do N N
L Y
N+h loga  logN (log N)




g'hathf?é ® For the terms with s = 1 we have a = b = n. Thus the
apter

Eounded Gaps main term becomes
s LW KPo(q)“*(log R)**
— ¢(q)¢2(n) g 1@

® Recall that this is multiplied by
2N+h; do N N
/ - Noto ( : )
N+h loga  logN (log N)

2

. /-{J'(n)2 I{JZ dk—l(n) I’<J .
an o@)da(m) < 3(q) ; phin(n) < ¢(q)(|og R)

Maynard one

® Since

the complete main term is seen to be

N 2 k;(n)? +O(NKﬁcb(q)H(logR)“)
e '

log N (q)p2(n) g1 Q(log N)



® This completes the proof of the approximation for §;.

«O> «Fr «=>»
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® This completes the proof of the approximation for S;.

® The proof of the approximation for T(f) is essentially the
same, except that we do not use Bombieri's theorem and
we do not have the restriction that d; = 1 to contend with.
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in the Primes T
F:b c same, except that we do not use Bombieri's theorem and
Vaughan we do not have the restriction that d; = 1 to contend with.

® Thus on the initial application of the Chinese Remainder
Theorem the main term is

N
m

and the error term is O(1).

Maynard one
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® This completes the proof of the approximation for S;.

The proof of the approximation for T(f) is essentially the
same, except that we do not use Bombieri's theorem and
we do not have the restriction that d; = 1 to contend with.
Thus on the initial application of the Chinese Remainder
Theorem the main term is

N

m

and the error term is O(1).
Since
max IA(d)] < K(log R)*
we see that the total contribution arising from this error is
< K2R?(log R)*—2

which is acceptable since R = N?/279.
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® This completes the proof of the approximation for S;.

The proof of the approximation for T(f) is essentially the
same, except that we do not use Bombieri's theorem and
we do not have the restriction that d; = 1 to contend with.
Thus on the initial application of the Chinese Remainder
Theorem the main term is

N

m

and the error term is O(1).
Since
max IA(d)] < K(log R)*

we see that the total contribution arising from this error is
< K2R?(log R)*—2

which is acceptable since R = N?/279.

Then just as the function ¢ now plays the role that ¢,
played earlier, so the x; is replaced by its understudy &.
The process of replacing A by « is identical, as is the
elimination of the restriction (d,, e,) = 1.
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® To summarize, we have established Lemma 8.

Let
K = max (P, K = max]s(r)].
Then
N i ki(r)?
(f) = j
500 = Salogh 2= on(r)
K?$(q)*>N(log R)* 2
+0 ( S 10
and

)
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We have initially defined s and &; in terms of A.

() = (o) 3 2D
r(|jd
H(r) = u(r r @ | =
i(r) = )@”z;qﬁ(d) (=1,....k),

rid

where Zj indicates that the summation variable is a
k—tuple, say d, which is restricted by d; =1



Math 571

Gy ® We have initially defined s and x; in terms of A.
ounded Gaps
in the Primes

obert C. )\ d

Rt (1) = (o) 0 2.

r(|jd
i A(d .
/ﬁj(l’) :M(I’)¢2(r)z¢gd; (J = 1,...,/(),
d

rid

Maynard one

where Zj indicates that the summation variable is a
k—tuple, say d, which is restricted by d; =1

® |In Lemma 7 we showed they are invertible.
p(d)  kj(r) p(d) k(1)
—=Ad) = and Ald) = —.
@)D= 2 Gy e T =30
dir dfr
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Bounded Gaps

in the Primes

Vaughan k(r) = u(ro(r) > A(dd).
r(|jd
5i(1) = 1(N)a(1) Edj 2D U=t

rid

Maynard one
where >/ indicates that the summation variable is a
k—tuple, say d, which is restricted by d; =1

® |In Lemma 7 we showed they are invertible.

pd), o ) ) s ()
¢(d))\(d)_?¢2(f) 47 A dZw)'

® Thus as in the Selberg sieve, rather than choosing first A,
we can instead choose «, and then the values of A, and so
kj, will follow.




(d) “0) ), (1)
" A =350 and @ =30

djr d|r

«O>» «Fr «Z» «E>» = Q>
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Bounded Gaps H

in the Primes ° iu(d) )\(d) — H(I’) and lu(d) )\(d) — E v Hj(r) .
s d Zdrlr ot el

® You may recall that it was asserted in (4) that we would

choose

,u log 1 Iog Ik
d)d .
Z < logR’" "’ log R)
Maynard one d|l’

(r,q)=1
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Bounded Gaps
in the Primes ° M(d))\ d — H(r) and lu(d))\ d —
I?/oberrt]c. d ( ) zr: (r) d)( ) ( )
aughan d||’
® You may recall that it was asserted in (
choose
M log r1
d)d

Z <Iog R’

Maynard one d|l’

(r.q)=1

Kj(r)

ba(r)

>

dir

4) that we would

Iog ri
"log R

)

® The motivation for this was the knowledge that this can

be achieved by simply taking

log

log ri

K(r) = f<

logR™™""

log R

)



® It is useful to have an estimate for x; in terms of k.

«Or «Fr o«

DA
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Vaughan
r|d

Maynard one
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ds|s d

@ ‘
\_/

Vaughan
r|d

® Thus k;(r) = p(r)ea(r Z(bs)zj’u @)
r|s

r|d\s

Maynard one
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ds|s d

It is useful to have an estimate for «; in terms of x

@ ‘
\_/

Vaughan
r|d

Thus kj(r) = p(r)pa(r Z¢ s)z,u )
r|s

r|d\s

Write e; = d;/r; and t; = s;/ri. Then the inner sum is

Maynard one

ue)ef r)ru(t/m
Z| BEGEODR

eJ':].
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Bounded Gaps

e A= u@d 5 s )3
ds|s d

Vaughan

K.
A(d

@ ‘
\_/

r|d

Thus r;(r) = p(r)ea(r Z(bs)z,u
r|s

r|d\s
Write e; = d;/r; and t; = s;/ri. Then the inner sum is

ue)ef r)ru(t/m
Z BEGEODR

e|t

ej'—l

e Using rt(=s) for nty, ..., rctk,

= ) S 0
90 = e 2" e



= ) 5 ey A
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r(bz f)z rt

® The t > tj contrlbute




ro(r) p(t)o(t;)u(t;)
Math 571 (52
S, T zt:/{”(rt) ALY
in the Primes ® The t > t; contribute

Robert C.

Vaughan k . 1 w(n) n 2
<K Z M Z ( gb)(n)zﬂ( )
ti<R n>1
(tj,q)=1 <"7q)=1
. k—1 1
® The inner sum |s—l+H 1—&—@ < Q. and
Maynard one p> Q p
q
we have Z M H (q ) log R.
<R QR<p <R

(tj,q) 1
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Kj(r) = r(b(i()z) Z K(rt)

t

The t > t; contribute

<K Z

o Z

ti<R n>1
1 (n7q)=1

(t,9)=

The inner sum is —1 + H

we have Z M

)
"2 5 O

where v =n,...

p>Q

< Il 55

Q<p <R

/

p(t)o(t) ()
ot

(k = 1)) ()

Ko(q)log R

¢(n)?

#(a)

q

(

,I}'_l, tj, f:j+1, e

T

qQ

)

(1 + (pk__11)2> < Q!

log R.

and

=1+ 0(1/Q) it follows when r; =1,
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® The final step of the proof of Maynard's theorem is to
obtain smooth approximations to the main terms.
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® The final step of the proof of Maynard's theorem is to
obtain smooth approximations to the main terms.
® We already did this for the Selberg sieve, i.e. k =1.
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® The final step of the proof of Maynard's theorem is to
obtain smooth approximations to the main terms.

® We already did this for the Selberg sieve, i.e. k =1.

® \We adopt the expedient of establishing a one—dimensional
approximation and applying it k—times.
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The final step of the proof of Maynard's theorem is to
obtain smooth approximations to the main terms.

We already did this for the Selberg sieve, i.e. k = 1.

We adopt the expedient of establishing a one—dimensional
approximation and applying it k—times.

Suppose that g : [0,1] — R. Then we call g [—piecewise
absolutely continuous on [0, 1] when there is a partition
ap=0<a <...<a=1of [0,1] sothatforl <j</
1. gi(aj-1) = XJ;jnjl+g(X) & g(aj) = Xﬂg}_g(X) exist,
2. g is absolutely continuous on [aj_1, aj] when we replace
g(aj—1) and g(aj) by g+(aj—1) and g_(a;) respectively.
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The final step of the proof of Maynard's theorem is to
obtain smooth approximations to the main terms.

We already did this for the Selberg sieve, i.e. k = 1.

We adopt the expedient of establishing a one—dimensional
approximation and applying it k—times.

Suppose that g : [0,1] — R. Then we call g [—piecewise
absolutely continuous on [0, 1] when there is a partition
ap=0<a <...<a=1of [0,1] sothatforl <j</
1. gi(aj-1) = XJ;jnjl+g(X) & g(aj) = Xﬂg}_g(X) exist,
2. g is absolutely continuous on [aj_1, aj] when we replace
g(aj—1) and g(aj) by g+(aj—1) and g_(a;) respectively.
We define G(/, G) to be the class of /—-piecewise absolutely
continuous functions g on [0, 1] such that

sup |g(v !+/ g’ (v)]dv < G.
velo,1]
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The final step of the proof of Maynard's theorem is to
obtain smooth approximations to the main terms.

We already did this for the Selberg sieve, i.e. k = 1.

We adopt the expedient of establishing a one—dimensional
approximation and applying it k—times.

Suppose that g : [0,1] — R. Then we call g [—piecewise
absolutely continuous on [0, 1] when there is a partition
ap=0<a <...<a=1of [0,1] sothatforl <j</
1. gi(aj-1) = XJ;jnjl+g(X) & g(aj) = Xﬂg}_g(X) exist,
2. g is absolutely continuous on [aj_1, aj] when we replace
g(aj—1) and g(aj) by g+(aj—1) and g_(a;) respectively.
We define G(/, G) to be the class of /—-piecewise absolutely
continuous functions g on [0, 1] such that

sup |g(v !—I—/g )dv < G.
velo,1]

In practice it suffices that g’ is continuous except for at
most one x in [0,1] where g and g’ have jump
discontinuities.
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® \We establish
Lemma 9

Suppose 1 : N — R is multiplicative, supported on the
squarefree numbers, that 0 < n(p) < 2. 1(2) < 2 and there is a

1 C
C > 0 such that, whenever p > C, |n(p) — ‘ < —. Suppose
p|~p

also g € G(I,G) and m € N. Then Z n(n)g<|°g n) _

= log x
(n,m)=1
A /lg(v)dvlogx—i— 0 IG<1+Z logp) I1 <1 + 1)
"o plm & plm p

where A, = <Z5(m'77) mlt?[? (1+n(p)) (1 - ;) We also have

Am < ¢(m)/m.
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® Although there is nothing very deep in this, the generality
creates a lot of detail.
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Then ) n(n)g<:Z§:):

n<x
(n,m)=1
1 log p 1
Am/ g(v)dviogx+O[IG(1+) ) 11 I+
0
plm plm

Although there is nothing very deep in this, the generality
creates a lot of detail.

® We proceed first to look at the special case when g is

identically 1. Of course n(n) is itself fairly general, but it
is close to 1/n, and we use this. The fact that the support
is just the squarefree numbers is a further complication.



® We extend 7 to a totally multiplicative function n*(n) by

n*(P*) = n(p)~.

«O> «Fr «=>»
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We extend 7 to a totally multiplicative function n*(n) by

7*(p*) = n(p)~.

Now we compare n*(n) with the function 1/n.

To this end let p be the multiplicative function with

p(p*) = n(p)* "t (n(p) —1/p) (k> 0).

Then, for some positive constant Cy, |p(p*)| <

Cl
pk+1 !

k

and
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We extend 7 to a totally multiplicative function n*(n) by

7*(p*) = n(p)~.

Now we compare n*(n) with the function 1/n.

To this end let p be the multiplicative function with

p(p*) =n(p)* ' (n(p) — 1/p)

Then, for some positive constant Cy, |p(p*)| <

k
Z Zn uuk Zn
u=0
7 (p¥). Thus 7" (n )ZZV ("/ )

vin

(k >0).

k

pk+1

and

u 1 u—1-k _

p
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We extend 7 to a totally multiplicative function n*(n)
() = n(p).

Now we compare n*(n) with the function 1/n.
To this end let p be the multiplicative function with

p(p*) = n(p)* "t (n(p) —1/p) (k> 0).
k

Then, for some positive constant Cy, |p(p )| < pk+1'

by

and

zk: Zn u u k Zn u lpu—l—k:

u=0
" (p"). Thus n*(n ):Zv (n/ )

vin

We now use the “Rankin trick” to estimate Z lp(w)

w>y
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® To this end let p be the multiplicative function with

p(p*) = n(p)* "t (n(p) —1/p) (k> 0).

k
and

® Then, for some positive constant Cy, |p(p¥)| <
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pk+1

k

° Z Zn u u k Zn u lpu—l—k:
u=0
7 (p). Thusﬁ()zzv ("/)

vin

® We now use the “Rankin trick” to estimate Z lp(w)
w>y

® Let 0<7<1 Then Y [p(w)| <y " Z w’|p(w
w>y



Ck .
° |P(Pk)| < pk_-li-l, Z |p(W)| <

Z w’|p(w)]
w=1

<O < Fr <=

«=»

Q>
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o]
Mo (k)] < M,Zm W) <y TS wlp(w)]
w=1

in the Primes w>y
. ® The sum here converges because
obert C.
Vaughan

IT(1+ 3 P loteh)l) < [T (1+ Yoot ct).
P k=1 p k=1

® Hence E p(z) = D(m)+ O(y™ ") where D(m) =
z<y
(z,m)=1

H(l—i—Zn p)~1/p)) = Hll_‘;(/s.

pim k=1 ptm

Maynard one
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Mo (k)] < M,Zm W) <y TS wlp(w)]
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. ® The sum here converges because
obert C.

Vaughan 00 oo
IT(1+ > e Io(e))) < T (1+ > pk*2cl).
P k=1 p k=1

® Hence Z p(z) = D(m) + O(y™") where D(m) =

(z?%;l
N k—1 . _ 1-1/p
ym(1+;n<p> (1) —1/p)) = i
® Therefore Z n*(v) = Z % Z p(z) =
S
) %( (m)+0(w'xT)= DEVm)+O(1).

w<x w<x
(w,m)=1 (w,m)=1



® Therefore Z n*(v)z Z

D(m)
v<x 2 ”
(v,m)=1

+0(1).
(w,m)=1

A= N =

Q>
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® Therefore E n*(v) = E (Wm) + 0(1).
v<x w<x
(v,m)=1 (w,m)=1

® The sum here i |s

ZHV Z Z'u (log(x/v) + Go + O(v/x))

u<x/v

= ¢(,;n)(|ogx + Co) — Z u(v)logv + O0(d(m)/x).
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® The sum here i |s

ZHV Z Z'u |0gX/ )+Co+0(v/x))

u<x/v

Maynard one V|m v
* m)
® Hence Z n*(v) = ——=D(m)log x
v<x m
(v,m)=1
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Hence Z n*(v) =

v<x

(v,m)=1

+0

d(m)

X

¢(m)

m

+<1+§:

plm

log p

D(m) log x

JI s

plm



¢(m)

g/lha::t:r?é ® Hence Z n*(v) = TD(m) log x
Bounded Gaps v<x
in the Primes (an;):]-
Robert C.
Vaughan
I 1
+0 (d(m) + <1 +y ogp> I1 <1+ ))
x p p
plm plm
o« Thus S n(m) = S (nn'(n) -
n<x n<x
Maynard one (nJT;):l (n,m):l
Z ,u(u)'r]*(u)2 Z n*(v) = D1(m)log x
u<y/x v<x/u?
(u,m)=1 (v,m)=1
d(m) log p> (1 1>
+ =
+0 ( —+ <1 +> p I1 ;
plm plm
where Ds(m) = ™ p(m) 3" p(u) ()
u=1

(u,m)=1
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where Dl(m)qu(mm)D( ) Z p(u)n*(u)® =
u=1
(u,m)=1
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(n?r%)le
d(m) logp 1
+0 +<1+pzn:7 ) >£[n<1+p>
where Di(m) = ™ D(m) 3" p(u)n () =
u=1
(u,m)=1

d)(mm) [T -7 @ -1/p)1 —n(p)) ! = Am
ptm

® Now we apply this to general g by partial summation.



® Now we apply this to general g € G(/, G).
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® Now we apply this to general g € G(/, G).
® Let E(x) = Z n(n) — Amlog x and choose a; as in the

n<x
(n,m)=1

definition of G(/, G). When x?-1 < n < x%,

| 2

<|Z§Q> — gf(aj) — /:;gjn g/(v)dv except when n = x%
og x

when the two sides differ by < G.
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definition of G(/, G). When x?-1 < n < x%,

lo aj
(Ioii) —e-(3) - Agn g'(v)dv except when n = x¥

when the two sides differlob; < G.

e Multiply by n(n), sum over n € (x%-1, x%], interchange
the order of summation and integration and apply E to get
(Am(log x)(aj — aj-1) + E(x¥) — E(x¥*))g-(aj) + O(G)

Maynard one

_ /:j (Am(log x)(v — aj_1) + E(x") — E(x¥-1))g'(v)dv.

i—1
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® |ntegrate main term by parts to give
3
/ Am(log x)g(v)dv which on summing over j gives the

aJTl
main term.
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definition of G(/, G). When x?-1 < n < x%,

| %
( o8 n> =g (aj) — / g'(v)dv except when n = x%
log x log n

log x

when the two sides differ by < G.

e Multiply by n(n), sum over n € (x%-1, x%], interchange
the order of summation and integration and apply E to get
(Am(log x)(aj — aj-1) + E(x¥) — E(x¥*))g-(aj) + O(G)
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- /aj (Am(log x)(v—aj_1)+ E(x") — E(xaf—l))g’(v)dv.

j—1
® |ntegrate main term by parts to give

3
/ Am(log x)g(v)dv which on summing over j gives the

aJTl
main term.

® [nsert the bound for E from earlier and sum over j.



® \We now complete the proof of Maynard's theorem.
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® We now complete the proof of Maynard’s theorem.

¢ We finally assume that x(r) = f (

some f in F.

log n log ry
log R logR

) for
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We now complete the proof of Maynard’'s theorem.
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We finally assume that x(r) = f (Eig, e IZirRk> for

some f in F.

To simplify some of the formulee we then extend the
definition of f to [0, 1] by taking f to be 0 outside R.

Again we concentrate on S; rather than T.



Math 571
Chapter 8
Bounded Gaps
in the Primes

Robert C.
Vaughan

Maynard one

We now complete the proof of Maynard’'s theorem.

| I
We finally assume that x(r) = f (Eig, e Izerk> for

some f in F.

To simplify some of the formulee we then extend the
definition of f to [0, 1] by taking f to be 0 outside R.

Again we concentrate on S; rather than T.
Recall that xj(r) =0 unless r; =1, (r,q) =1 and r is

- oy N L)
squarefree, in which case j(r) = Z X

()

¢ log logri—1 logt; logrit1 log ry

logR>""" logR "logR’ logR =~ logR

F log R
~oFHaesn)
qQ

/
where v’ =ry,... i 1,8, rj41,.. ., Ik
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We now complete the proof of Maynard’'s theorem.

[ I
We finally assume that x(r) = f (Eig, e Izerk> for
some f in F.

To simplify some of the formulee we then extend the
definition of f to [0, 1] by taking f to be 0 outside R.

Again we concentrate on S; rather than T.
Recall that xj(r) = 0 unless r; =1, (r, q) = 1 and r is

squarefree, in which case £;(r Z plt
t.
¢ log 1 logri—1 logt; logrit1 log ry
logR""""" logR "logR’ logR ' "logR
o (FelaerR)
qQ
where V' =ri, ... rj_1,tj, figy1, ..., fk.

Thus K; <<F¢( )IogR
q
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® kj(r) =0unless r; =1, (r,q) =1 and r is squarefree, in

. e )
which case k;(r) = Z X
~ 9(t)
¢ log 1 logri_1 logt; logrjt1 log ry
logR""""’" logR "logR’ logR '~ "logR
F |
o (Fetalesh)
qQ
¢(q)

and K; < F——log R.
q
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® kj(r) =0unless r; =1, (r,q) =1 and r is squarefree, in

which case k;(r) = Z ) X
— o(t)
¢ log 1 logri_1 logt; logrjt1 log ry
logR""""’" logR "logR’ logR '~ "logR
F log R
o (Fetalesh)
qQ

and K; < F(b(qq) log R.

® Thus, by the last lemma, with n(p) = 1/(p — 1) and
m = qr, when r; =1, (r,q) = 1 and r is squarefree

W“ZU%RW$Oﬂo+o<R&%$ﬁ)

where fj(r) =

/1f<logr17”.7 lOgrj_l,uj, lOgrj_l,..., Iogrk> du;.
0 log R log R log R log R
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® We have kj(r) = (log R)

where fj(r) =

I

log

o(qr) . <F¢>(q) |ogR)
qr i +0 q@Q
logrji_1  logrj_1 log ry

og R’

" log R i logR '~ logR

) de.



q F log R
a1 e We have #;(r) = (log R) X9 £(r) + 0 <¢(q) o€ )
Bounded Gaps qr qQ
in the Primes Where 6(r) —
Robert C.
Vaughan
: /1f log log ri_1 U log ri_1 log ry du
0 logR’""" logR ' logR " logR J
® Thus, by Lemma 8, S;(f) = %Wx
Maynard one lu’ F2¢( ) (log R)
E e o o (FATEGED),

(rq



: Fo(q)log R
Chapta 8 ® We have xj(r) = (log R) ¢(ar) fi(r) + O <¢>(q)og)
l.30unded 'Gaps qr qQ
in the Primes Where E(r) _
Robert C.
Vaughan

1
I log ri_ log rj_ I
/ f<0gr1,..., 8 l,uj, 8 17..., ogrk) du;
0 log R log R log R log R

® Thus, by Lemma 8, S;(f) = %‘gg\f?x

Maynard one lu’ F2¢( ) (log R)
E Home o (FHISEE)

(rq

® We will repeatedly use, without further comment, that if

7(p) < p~2, then we have H (1+7(p)=1+0(1/Q)

P>Q
and so such products can be replaced by 1 in the analysis.

o(r)? (p—1)° .
We have = and each prime factor
Ha(r)r g(p—l)z—l P

of r exceeds @, so thisis 1+ O(Q~1).




o Thus Sj(f) = YNl R)

q*log N
E N() )2+o(
(ra)=1

F2¢(q)*N(log R)*

q1Q ) .

«O> 4 Fr «=Er =)

Q>



Math 571
Chapter 8
Bounded Gaps
in the Primes

Robert C.
Vaughan

Maynard one

o Thus Si(f) = 7¢<q>ﬁg§gﬁ2 X

Zv w24 o <F2¢(q)kN(log R)k> '

qk+1Q

(rq) 1

® As r is squarefree, the general arithmetical factor in the

sum can be rewritten as Hf‘ 1 (r) provided that the sum

over r is restricted to r with (r,, rv) 1 when u # v.



N(log R)?
Math 571 ® Thus Si(f :LX
Chaapter 8 J( ) 2 |0g N
Bounded Gaps
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Robert C. ZJ + O < qk+1Q :
(r, q) 1

® As r is squarefree, the general arithmetical factor in the
sum can be rewritten as Hf‘ 1 (r) provided that the sum
over r is restricted to r with (r,, rv) 1 when u # v.

e If we add in any (ry, r,) > 1, the extra r have a prime

p > Q such that p|r, and p|r, for some u # v.

Vaughan

Maynard one
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Thus Sj(f) = 7¢(q>gvlg§gf)2 X

- p(r 2, o <F2¢(q)kN(log R)k>'

qk+1Q

(r,q)—l

As r is squarefree, the general arithmetical factor in the
sum can be rewritten as Hf‘ 1 (r) provided that the sum
over r is restricted to r with (r,, rv) 1 when u # v.

If we add in any (ry, r,) > 1, the extra r have a prime
p > Q such that p|r, and p|r, for some u # v.

Therefore the total error introduced is <

k—1
Nlog R F? F2¢(q)*N logk R
et S (i)«

n<R
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Thus Sj(f) = 7¢(q>gvlg§gf)2 X

i u(r

(r,q)—l

F26(q)*N(log R)*
+o( cb(qng(Qg )>'

As r is squarefree, the general arithmetical factor in the

sum can be rewritten as ]k,

(i)

ri

provided that the sum

over r is restricted to r with (r,, rv) 1 when u # v.
If we add in any (ry, r,) > 1, the extra r have a prime
p > Q such that p|r, and p|r, for some u # v.
Therefore the total error introduced is <

dopeins 2(sh)

n<R

F2¢(q)*Nlog" R
qk+lQ

Thus the sum in the main term can be replaced by

(

> o [T
ra)=1 B
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Thus S;(f) =

q?log N

p(ri)

#(q)N(log R)?

2

o

F2¢(q)*N(log R)*

qk+1Q

).
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e Thus Sj(f) — #(q)N(log R) X

q%log N
: e u(r)? 2¢(q)*N(log R)*
3 G(r)znlu(ri) +O<F ¢(q3k+l(c;g )>‘

r
(r.g)=1
® Now we apply Lemma 9 to each variable r; in turn, i.e

k — 1 times, with

1

p)=—

n(p) s
and m=gq.
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in the Primes ) k 2 2 k k
e > 1 () F<¢(q)"N(log R)
T/alilglt\ai. Z/ f/(r) H ri + O ( qk+1Q )
r j—
(rg)=1 =
® Now we apply Lemma 9 to each variable r; in turn, i.e
k — 1 times, with
1
n(p) = —
Maynard one p

and m=gq.
® Each time we obtain a factor

ghp>q(1+77(P))(1—1/P) =[Ipso(1-p %) =1+0(1/Q).

Si(f) =

¢(9)*N(log )1, Lo <F2¢(q)"N(|og R)")
qk+1 Iog N J qk+1Q

where /; is as in Theorem 6.
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obert C. et ML) F2¢(q)“N(log R)
o > [+ 0 ( ) ke R
(rg)=1
® Now we apply Lemma 9 to each variable r; in turn, i.e
k — 1 times, with
1
n(p) = —
Maynard one p

and m=gq.
® Each time we obtain a factor

ghp>q(1+77(P))(1—1/P) =[Ipso(1-p %) =1+0(1/Q).

Si(f) =

¢(9)*N(log )1, Lo <F2¢(q)"N(|og R)")
qk+1 Iog N J quQ

where /; is as in Theorem 6.
® This gives the first part of that theorem.
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in the Primes . k 2 2 K K
obert C. et ML) F2¢(q)“N(log R)
o > [+ 0 ( ) ke R
(rg)=1
® Now we apply Lemma 9 to each variable r; in turn, i.e
k — 1 times, with
1
n(p) = —
Maynard one p

and m=gq.
® Each time we obtain a factor

ghp>q(1+77(P))(1—1/P) =[Ipso(1-p %) =1+0(1/Q).

Si(f) =

¢(9)*N(log )1, Lo <F2¢(q)"N(|og R)")
qk+1 Iog N J quQ

where /; is as in Theorem 6.
® This gives the first part of that theorem.
® The second part follows in the same way,
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Theorem 10 (Maynard)

Suppose that when k > 2, we take f € F and then I; = [;(f)

k
< h(f
and J = J(f) are as in Theorem 6. Let p = sup M
rer  J(f)
Then, for k sufficiently large, p > log k — loglog k — 1.
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Bounded Gaps

Theorem 10 (Maynard)

Suppose that when k > 2, we take f € F and then I; = [;(f)
. i ()
and J = J(f) are as in Theorem 6. Let p = sup —2=———~
rer  J(f)
Then, for k sufficiently large, p > log k — loglog k — 1.

[ ]
Corollary 11 (Zhang)

There are bounded gaps in the sequence of primes.

® This is immediate from Theorems 6, 10 and the fact that
there are admissible sets with k elements as provided, for
example, by Theorem 3.
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Bounded Gaps

Theorem 10 (Maynard)

Suppose that when k > 2, we take f € F and then I; = [;(f)

. i ()

and J = J(f) are as in Theorem 6. Let p = sup —2=———~
rer  J(f)

Then, for k sufficiently large, p > log k — loglog k — 1.

Corollary 11 (Zhang)

There are bounded gaps in the sequence of primes.

® This is immediate from Theorems 6, 10 and the fact that
there are admissible sets with k elements as provided, for
example, by Theorem 3.

Corollary 12 (Maynard, Tao)
For each m € N we have liminf, oo (pnsm — pn) < m?e*™.
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Corollary 13 (Maynard)

Let me N and let G = {g1,...,8} be a set of | distinct
non—negative integers. Let M(m, [, G) be the number of
admissible m—tuples contained in G and let N(m, |,G) be the
number of admissible m—tuples h contained in G such that
there are infinitely many n for which each member of the
m—tuple n+ h is prime. Then, for | > ly(m),

™ > M(m, 1,G) > 17 and S 1.9)

————= >, 1
M(m,1,G) ~
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Chapter 8
Bounded Gaps
in the Primes
Robert C. ® de Polignac's conjecture [1849] asserts that every even
aughan . . . o . .
integer is the difference of infinitely many pairs of primes.
That the conjecture holds for a positive proportion of all
even integers follows on taking m =2 and g =2j — 2 in
the previous corollary, for then number of solutions of
g, — 8, = 2d is at most / and so there must be
> [2/1 =1 different differences gj, — g, arising from the

Bounded Gaps admissible pairs counted by N(2,/,G).

Corollary 14

There is an infinite subset D of N with positive lower
asymptotic density such that for each d € D there are infinitely
many pairs of primes p1, p> such that p, — p1 = d.



® |etw= k/ log k

~ log(k/ log k)
1+ &w = eb.

and ¢ be the positive solution to

«O> «Fr «=>»

«E)»
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® |letw = Iogk(/kl/% and £ be the positive solution to
1+ ¢w = €.

® Then ef/¢ > w and, for k sufficiently large,
log k — loglog k < £ < log k.



k/log k

Math 571 ® |letw = and £ be the positive solution to

Chapter 8 IOg(k/ log k)
Bounded G
RS 1+ € = €.
e ® Then e5/§ > w and, for k sufficiently large,
aughan

log k — loglog k < £ < log k.
® Let g:[0,00) — R be defined by

1
gly)={To O=YE®
0 w<y.

Proof of
Theorem 10



k/log k

Math 571 ® |letw = and £ be the positive solution to

Chapter 8 log(k/ log k)
s 146w = ¢,
Robert C ® Then ef/¢ > w and, for k sufficiently large,
aughan
log k — loglog k < £ < log k.
® Let g:[0,00) — R be defined by
1
gly) = {7 0=r==
0 w<y.
® We need to compute various integrals which we denote by
Proof of a, B,’}/, T as fO”OWS.
Theorem 10
o= [ edy =1 5= [ ePdy—; - e
/0 0 £ &et
1

1 1
¢ @t aer
w 2 1 1
"o ete pe

v /0 vg(y)?dy =

\]
Il
c\
8
<
N
PN
<
5
<
|



® \We now take

f(t) = {g[:l'(:l g(kt) tewR,

té¢R.

«O> «Fr «=>»
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T/alilg;ai f‘(t) — Hi:l g(ktl) te 7?’7
0 te¢ R

® Since f is symmetric we have [;(f) = I(f) for every j < k.

kli (f
Thus p > Jk(sc)) and we now proceed to estimate /,(f)

and J(f).

Proof of
Theorem 10
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obert C. k .
T/alilghai f‘(t) — Hi:l g(kt,) te R?
0 te¢ R

® Since f is symmetric we have [;(f) = I(f) for every j < k.

kli (f
Thus p > k(f) and we now proceed to estimate /,(f)

J(f)
and J(f).
e With this choice most of the mass of f is close to the
Broofel axes. g(kt) = letg ~ W. Thus for

t > 1/(k(log k)/2) we have g(kt) < (log k)~1/2.
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We now take

k .
f(t) — {g[izl g(ktl) : ; E?

Since f is symmetric we have /;(f) = I(f) for every j < k.
kli (f

Thus p > Jk((f)) and we now proceed to estimate /,(f)

and J(f).

With this choice most of the mass of f is close to the

axes. g(kt) = letg ~ W. Thus for

t > 1/(k(log k)/2) we have g(kt) < (log k)~1/2.

Thus the boundary condition t; +---+t, <lon R is

relatively unimportant.
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Chapter 8
Tl Geps ® \We now take

in the Primes
rt C. k )
F@Ztleghacn f(t) — Hi:l g(kt,) te R?
0 t¢R.
® Since f is symmetric we have [;(f) = I(f) for every j < k.

kli (f
Thus p > k(f) and we now proceed to estimate /,(f)

J(f)
and J(f).
e With this choice most of the mass of f is close to the
Broofel axes. g(kt) = letg ~ W. Thus for

t > 1/(k(log k)/2) we have g(kt) < (log k)~1/2.
® Thus the boundary condition t; +---+t, <lon R is
relatively unimportant.

® Since we are concerned with only a lower bound for p,
lower and upper bounds for Ix(f) and J respectively will
suffice.



® An upper bound for J(f) is easy. We have

k
ar) < [ Tethkezde = k-ts*
[O)OO)k i=1

«Or «Fr o«
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Chapter 8

?ou;dch’l 'Gaps k

in the Primes

Robert C. J(f) S / Hg(kt,)zdt == k_kﬁk.
Vaughan [O,oo)k i1

® \We can concentrate on a lower bound for /,(f). We want
to let kt, have the full range of its support so restrict the
t1,...,te—1 to kty + -+ + kty_1 < k — w.

Proof of
Theorem 10



Math 571
Chapter 8
Bounded Gaps
in the Primes

Robert C.
Vaughan

Proof of
Theorem 10

An upper bound for J(f) is easy. We have

k
J(f) < / [1 g(ktiy?de = k=¥~
[0,00)F ;21

We can concentrate on a lower bound for /,(f). We want
to let kt, have the full range of its support so restrict the
t1,...,te—1 to kty + -+ + kty_1 < k — w.

Then we define S to be the set of k — 1-tuples

Vi, Yk—1 withy; >0and y1 + -+ yk—1 < k —@.
Thus kI (f) =

1—t;——tp_q 5 k-1
k/ </ g(ktk)dtk> Hg(kt;)zdtl..tk,;[
Ri—1 /0 i=1
k—1
> kka? [ [T atnldy =k ka2t 1 -
S =1

o? = 2 * k—1
where E:kk/s*,[[lg(yi) dy and §* =[0,00) "\ S.
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k—1
® Thus ki (f) > k_kaz/ [1e(i)?dy =k a?p** —E
S =1

o? = 2 * k—1
where E = kk/s iljlg(y,-) dy and §* =[0,00)* "\ S.



Math 571

k—1
& o Thus kig(f) > k_kaz/ [1e(i)?dy =k a?p** —E
S =1

Bounded Gaps
in the Primes

Robert C. 2 k-1
Vaughan where E = ak/ H g(yi)?dy and S* = [0,00) "1\ S.
1-¢tygtes 1 1
.LetO'—’Y/,B— 1 _ et —1—54‘@1—}16
condition y € §* is equivalentto y1 + -+ yx_1 > k—w
and this in turn is equivalent to 2 7%= _
k—w—olk—1 -1
> w — o ) 1, = .
Proof of k - 1 k — 1
Theorem 10 .
For k sufficiently large we have
-o)k-1)-w+1=>(1- 1) k-1)-w+1
— -1)—w =—-|1-— -1)—w
o c -
k k
= =¢ 14 0E?)>0
e+ (o) 9
1
and1—0— 2~ = 71+O(§72)



.0_7/5_1_1

1.1 1
£ et -1
y € 8§ is equivalent to
i+t yket N
I
k—1 o S & +O(€ )

«O> 4 Fr «=Er =)
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1 1

co=7/f=1-2+

£ e -1
y € §* is equivalent to
y1+"'+)/k71 w—1 -1 -2
- - o>l-0c——— = .
k—1 o2l-o— =0
® Thus if y € §*, then
yit-oot+yk-1 ?
AT Tkl 251
< k—1 0> <2
w—1\"1
where ¢ = 1—cr—k1> =¢+0(1)



Math 571 1 1

Bounded Gaps co=9/8=1- 3 + -1

in the Pri i i
in the Primes y c 8* IS equ|va|ent to

Robert C.
Vaughan
y1+"'+)/k71 w—1 -1 -2
e e kI (v
® Thus if y € §*, then
2
<y1+k+;yk1 _ (,> 2>1
Proof of w — 1 -1
Theorem 10 Whel’e C — (1 — 0 — k1> = §+ 0(1)
® Hence E <
a?(? yi+ oo+ Vi1 = 2
kk/ (k—l B ") [strdy
[0,00) i=1

A variant of the “Rankin trick”.



Math 571
Chapter 8
Bounded Gaps
in the Primes

Robert C.
Vaughan

Proof of
Theorem 10

°G=W&C=(

[O,oo)k71

a2c2
kk

k—1
+ Yk-1 o 2
k—1
> 2
= g(y)
0
o 2
W,Tz/‘yg
0
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° UZV/B,CZ(1—U—F>71:£+O(1),E<

—1 =
22 2 k-1
Ckk -7 1 N2 dy.
kK /[o,oo)kl ( k—1 G> 11—{ g(yi)~dy

a:/o y)dy, = / Ydy,

'vz/o yg(y)?dy, T—/O y2g(y)’dy.

2
® \We now square out (% — a)

=

1 9 k—1
Z 2yiy; N y; 20y; 2

- +o
—1)2 —1)2 _
1<iSiek-1 (k—1) - (k—1) k—1

=1

i

and evaluate this with reference to «, etc. Thus E <

022 _9 k—2
kf (k 26/( 3 /8_1 _20_,}/Bk—2+026k—1>.
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w—1

co=a/8 = (1-0- 2= v o),

k—1
00 o 1
_ _ _ 2,0 1 1
04/0 gly)dy =1, 5/0 g(y) d)’*é e’
ol :/o ve(y)’dy, T =/ y2g(y)3dy.

0

E<

012<2ﬁk_3 <k_2 5 7—/8
> Kk

B 202
k1) Tkt 2‘”B+aﬁ>
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Bounded Gaps k — ].
in the Primes
I?/ober; C. /OO ( )d 1 6 o0 ( )2d 1 1
aughan o = gly)ay =1, _/ g8\ y =< — 7z
0 0 £ &et
o 2 > 2 2
v = / vg(y)dy, 7= / y°g(y)dy.
0 0
oz2C2ﬁk_3 k—2 70
E< 2 -2 23
Sk (k—lfy to 7 2008+
® By definition of o,
Thoorem 10 ?PpF 3 (8 —~2)  PPBF

FE TGy SR
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Chapter 8 ° szy/ﬂ,cz(1—0—7>_1:§+O(1),
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Robert C. /OO ( )d 1 6 o ( )2d 1 1
Vaughan o = y y: s —/ gy yzf—ij
0 © 0 g &
> 2 > 2 2
7=/ yg(y)~dy, T:/o y°g(y)dy.
0

Q2B (k-2 5, 1B 22
< —
E< ik <k—1fy +k—1 20’yﬂ+aﬁ>

® By definition of o,
Trawm 10 o PCBT(B ) _ P3P
STTkk—1) S kk—1D)
® We showed above that J(f) < k%3 and
kI (F) > k= ka?pk—t — E




atl — -1
o eo=y/8c=(1-0-2=2) " =¢1 o)

Bounded Gaps k — ].
in the Primes
Robert C. /OO ( )d 1 6 o ( )2d 1 1
Vaughan o = y: s —/ gy y:,_ij
0o &Y 0 ¢ e
o o 2 _ > 2 2
7—/ yg(y)~dy, T—/O y°g(y)dy.
0
?Pp 3 (k=2 , 1B 22
< -2
E< T <k—17 te 1 a’yﬂ—i—aﬂ)
® By definition of o,
Theorem 10 £ < a?C?BK 3 (18 = 4°) - a’Ppk2r
=T kkk—1) Kk —1)

® We showed above that J(f) < k%3 and
Kl () > k% a2pk"1 — E

® Thus C2
“1(7__5T
P <1 B(k—1)>'



w—1\-1 T
Math 571 o (= (1—0—7> :§+O(1),P>571_%’
1
3

Bofl:zz;erGgps k o 1
in the Primes o 5 1 1 1
Robert C. B = gly)dy=—-——=, B =&+ 0(Ek  logk),

Vaughan 0

w 2 1 1
e erte g

Proof of
Theorem 10



w—1\-1 - 2
o (= (10— T7) =64 00, 0> 57 - miyy,
Bounded Gaps
in the Primes o 5 1 1 1 1
Robert C. ﬁ — g(y) dy = < - £ /8 = €+ O(gk |Og k)a
Vaughan 0 g ge

w 2 1 1
“eTetETEs

Iogk(/kl/% and ¢ is the positive root of 1+ éw = €f,

so log k — loglog k < £ = log k — loglog k + O(1),

1

2 _ 2 2 2 1 2

L

Proof of
Theorem 10



w—1\-1 1 C2T
R (R D O Ik
Bounded Gaps
in the Primes o 5 1 1 1 1
Robert C. /B = g(.y) dy =5 75’ /8 = €+ O(Ek |Og k)’
Vaughan 0 g ge
e w 2 1 1
7':/ yzg(y)2dy:§—2—§—2+£—3—@,
® v — Iogk(/kl/% and ¢ is the positive root of 1 + {ww = ef,
so log k — loglog k < £ = log k — loglog k + O(1),
_ _ 1 1 _
¢ =E+0(6), 7 =@ H0(E7?), 7 = L +O(kY).
e ¢ This =7~ (¢4 01)Z = L+ 0(log 2 k)
Bk—1) Kk~ logk &



Bounded Gaps
in the Primes o0

B =&+ O(¢k log k),

© w 2 1 1
= d = — — — PR
T /0 y-g(y)dy 2 a2te B&
bgk(/kl/% and ¢ is the positive root of 1+ éw = €f,
so log k — loglog k < £ = log k — loglog k + O(1),
_ _ 1 1 _
¢ =E+0(6), 7 =@ H0(E7?), 7 = L +O(kY).

w_l

Robert C. /B = g(y)2dy =

Vaughan 0

w_l -1 -1 C2
wosn e (=(1-0-Z=2) =£+0(1), p> 57 - i
1
3

L

Proof of 2
Theorem 10 C T

" T Sy~ O = ok

® Hence, if kK > kg, we have p > pL (1 — ﬂ(f_Tl))

+ O(log™2 k).

> ¢ (1 + O(k—l log k)) (1 — Ioék + O((Iog k)—2)>

> log k — loglog k — 1.



k
L L(f
® |et p=-sup M Then, for k sufficiently large,
rer  J(f)
p > logk —loglog k — 1.
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Vaughan Z':1 J( )

o Let p=sup =~
rer  J(f)
p > log k — loglog k — 1.

® This completes the proof of Maynard's second theorem.
Applied to his first theorem this gives
5(f)

0
sup ——~ > [ = — 6 ) (logk — loglog k — 1).
0 2 > (5 -9) tonk —towton )

. Then, for k sufficiently large,

Proof of
Theorem 10
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l?/oberrt] C. Zk I (f)
aughan A .
[ ] Let p — sup i
rer  J(f)
p > log k — loglog k — 1.
® This completes the proof of Maynard's second theorem.
Applied to his first theorem this gives
5(f) (0 )
sup ——= > | = —9d | (logk — loglog k — 1).
2R 7(r) 7 \g ) llesk loslosk =)
® Thus if the level of distribution 8 > 0, then we can choose
any large k and any admissible k-tuple and deduce that
infinitely often there are bounded gaps in the primes.

. Then, for k sufficiently large,

Proof of
Theorem 10



® We now prove Corollary 12 (Maynard, Tao).

For each m € N we have liminf(ppym — pn) < m?e*™.
n—o0

«O> «Fr «=>»

«E)»

DA



M oL ® We now prove Corollary 12 (Maynard, Tao).
apter

Bounded Gaps For each m € N we have liminf(pp+m — pn) < m2e*™.
in the Primes n—oo
Robert C. ® Let C be chosen so that for every m € N we have
Vaughan
Cme*m
> e2+4m_

4m + log m + log C

Proof of
Theorem 10
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® We now prove Corollary 12 (Maynard,
For each m € N we have liminf(pp+m
n—oo

Tao).

- pn) < m?e*m.

® Let C be chosen so that for every m € N we have

Cme*m

4m + logm+ log C

® Then for k > max(3, Cme*™) we have

so logk —loglogk —1>4m+ 1.

24+4m

log k
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We now prove Corollary 12 (Maynard, Tao).
For each m € N we have liminf(pp+m — pn) < m?e*™.
n—oo

Let C be chosen so that for every m € N we have

k
Then for k > max(3, Cme*™) we have o k

4m

Cme
> e2+4m_

4m + logm+ log C

> e2T4m and

so logk —loglogk —1>4m+ 1.
Thus if C is large enough (> 1 should do actually),

(

1

1
>(Iogk—|og|ogk—1)> m.

4

k
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We now prove Corollary 12 (Maynard, Tao).

For each m € N we have liminf(pp+m — pn) < m?e*™.
n—oo

Let C be chosen so that for every m € N we have

4m
Cme S g2+4m

4m+ logm+log C

k
Then for k > max(3, Cme*™) we have ogk > @2+4m 44

so logk —loglogk —1>4m+ 1.
Thus if C is large enough (> 1 should do actually),

1 1

—— =) (logk —loglogk —1) > m.

<4 k)(og oglogk—1) > m

With level of distribution 6 to be % and § = % as in the
deduction of Zhang's theorem we see p > m and so any
admissible k—tuple h is such that there are infinitely many
n such that the k-tuple n + h contains at least m primes.
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We now prove Corollary 12 (Maynard, Tao).
For each m € N we have liminf(pp+m — pn) < m?e*™.
n—oo

Let C be chosen so that for every m € N we have

Cme*m

24+4m
> e .
4m+ logm+log C

k
Then for k > max(3, Cme*™) we have ogk > @2+4m 44

so logk —loglogk —1>4m+ 1.
Thus if C is large enough (> 1 should do actually),

1 1
(4_k> (logk — loglogk — 1) > m.

With level of distribution 8 to be % and § = % as in the
deduction of Zhang's theorem we see p > m and so any
admissible k—tuple h is such that there are infinitely many
n such that the k-tuple n + h contains at least m primes.
By Gallagher’'s Theorem there is a an admissible k—tuple
of diameter < klog k < m?e*™.
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