> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Math 571 Chapter 8 Bounded Gaps in the Primes

Robert C. Vaughan

April 6, 2023

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • A famous unsolved problem concerning prime numbers is the twin prime conjecture, namely that there are infinitely many pairs of primes which differ by 2.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- A famous unsolved problem concerning prime numbers is the twin prime conjecture, namely that there are infinitely many pairs of primes which differ by 2.
- Since the average spacing of primes p ≤ x is log x, this suggests that there are considerable local oscillations in the primes.

Robert C. Vaughan

Preliminaries to the modern theory

- Maynard's Theorem
- The Setup
- Maynard one
- Bounded Gaps
- Proof of Theorem 10

- A famous unsolved problem concerning prime numbers is the twin prime conjecture, namely that there are infinitely many pairs of primes which differ by 2.
- Since the average spacing of primes p ≤ x is log x, this suggests that there are considerable local oscillations in the primes.
- This has motivated a large body of work concerned with investigating the possibility of gaps between primes which are significantly smaller than the average gap.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Preliminaries to the modern theory

- Maynard's Theorem
- The Setup
- Maynard one
- Bounded Gaps
- Proof of Theorem 10

- A famous unsolved problem concerning prime numbers is the twin prime conjecture, namely that there are infinitely many pairs of primes which differ by 2.
- Since the average spacing of primes p ≤ x is log x, this suggests that there are considerable local oscillations in the primes.
- This has motivated a large body of work concerned with investigating the possibility of gaps between primes which are significantly smaller than the average gap.
- Since 2004 a very powerful theory has been developed. This modern theory is motivated by the following observations.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 Consider a k-tuple h₁, h₂,..., h_k of distinct non-negative integers for which it is believed that for infinitely many integers n the n + h₁,..., n + h_k are simultaneously prime.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- Consider a k-tuple h₁, h₂,..., h_k of distinct non-negative integers for which it is believed that for infinitely many integers n the n + h₁,..., n + h_k are simultaneously prime.
- Suppose we use a sieving technique to remove most n for which n + h₁,..., n + h_k are not all prime. Whilst it may not be possible to establish that, for each of the remaining n, the members of the k-tuple n + h₁,..., n + h_k are all prime there is a better chance of finding several primes in many of the k-tuples.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- Consider a k-tuple h₁, h₂,..., h_k of distinct non-negative integers for which it is believed that for infinitely many integers n the n + h₁,..., n + h_k are simultaneously prime.
- Suppose we use a sieving technique to remove most n for which n + h₁,..., n + h_k are not all prime. Whilst it may not be possible to establish that, for each of the remaining n, the members of the k-tuple n + h₁,..., n + h_k are all prime there is a better chance of finding several primes in many of the k-tuples.
- In its simplest form, suppose we are looking for primes in, say [x, x + y]. Since the expected number of primes is about y / log x, if we pick an integer at random from the interval it is almost surely composite.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Preliminaries to the modern theory

- Maynard's Theorem
- The Setup
- Maynard one
- Bounded Gaps
- Proof of Theorem 10

- Consider a k-tuple h₁, h₂,..., h_k of distinct non-negative integers for which it is believed that for infinitely many integers n the n + h₁,..., n + h_k are simultaneously prime.
- Suppose we use a sieving technique to remove most n for which n + h₁,..., n + h_k are not all prime. Whilst it may not be possible to establish that, for each of the remaining n, the members of the k-tuple n + h₁,..., n + h_k are all prime there is a better chance of finding several primes in many of the k-tuples.
- In its simplest form, suppose we are looking for primes in, say [x, x + y]. Since the expected number of primes is about y / log x, if we pick an integer at random from the interval it is almost surely composite.
- But suppose we use a sieve to remove multiples of small primes to the extent that the number of remaining elements is about 2y/log x.

> Robert C. Vaughan

Preliminaries to the modern theory

- Maynard's Theorem
- The Setup
- Maynard one
- Bounded Gaps
- Proof of Theorem 10

- Consider a k-tuple h₁, h₂,..., h_k of distinct non-negative integers for which it is believed that for infinitely many integers n the n + h₁,..., n + h_k are simultaneously prime.
- Suppose we use a sieving technique to remove most n for which n + h₁,..., n + h_k are not all prime. Whilst it may not be possible to establish that, for each of the remaining n, the members of the k-tuple n + h₁,..., n + h_k are all prime there is a better chance of finding several primes in many of the k-tuples.
- In its simplest form, suppose we are looking for primes in, say [x, x + y]. Since the expected number of primes is about y / log x, if we pick an integer at random from the interval it is almost surely composite.
- But suppose we use a sieve to remove multiples of small primes to the extent that the number of remaining elements is about 2y/log x.
- Now if we pick an element at random from this sifted set, then we can expect that it is prime about half the time.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • As it stands just averaging over intervals does not work very well. But it turns out that averaging over suitable *k*-tuples of integers does.

Definition 1

Let $\mathbf{h} = h_1, \ldots, h_k$ be a *k*-tuple of distinct non-negative integers and let $\nu_p(\mathbf{h})$ denote the number of different residue classes modulo *p* among the h_1, \ldots, h_k . If $\nu_p(\mathbf{h}) < p$ for every *p*, then **h** is called admissible.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • As it stands just averaging over intervals does not work very well. But it turns out that averaging over suitable *k*-tuples of integers does.

Definition 1

Let $\mathbf{h} = h_1, \ldots, h_k$ be a *k*-tuple of distinct non-negative integers and let $\nu_p(\mathbf{h})$ denote the number of different residue classes modulo *p* among the h_1, \ldots, h_k . If $\nu_p(\mathbf{h}) < p$ for every *p*, then **h** is called admissible.

• It is clear that if **h** is inadmissible, then there can only be a finite number of *n* for which the $n + h_1, \ldots, n + h_k$ are simultaneously prime.

Conjecture 2 (The prime *k*-tuple conjecture)

It is conjectured that if **h** is admissible, then there are infinitely many n such that $n + h_1, ..., n + h_k$ are simultaneously prime.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem The Setur

Maynard on

Bounded Gaps

Proof of Theorem 1(• It is useful to establish that there are admissible sets with fairly small largest element.

Theorem 3

Suppose that $k \ge 2$ and the primes p_1, \ldots, p_k satisfy $k < p_1 < \ldots < p_k$. Then any translate of the k-tuple **p** forms an admissible set. In particular $\mathbf{h} = \{0, p_2 - p_1, \ldots, p_k - p_1\}$ is an admissible set and p_k can be chosen so that $p_k < k \log k + k \log \log k + O(k)$.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem The Setup Maynard one Bounded Gap Proof of • It is useful to establish that there are admissible sets with fairly small largest element.

Theorem 3

Suppose that $k \ge 2$ and the primes p_1, \ldots, p_k satisfy $k < p_1 < \ldots < p_k$. Then any translate of the k-tuple **p** forms an admissible set. In particular $\mathbf{h} = \{0, p_2 - p_1, \ldots, p_k - p_1\}$ is an admissible set and p_k can be chosen so that $p_k < k \log k + k \log \log k + O(k)$.

• We remark for future reference that $\pi(105) = 27$ and $\pi(743) = 132$ so that one can take k = 105 and there is an admissible 105-tuple with largest element 743 - 107 = 636.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 Suppose that k ≥ 2 and the primes p₁,..., p_k satisfy k < p₁ < ... < p_k. Then any translate of the k-tuple p forms an admissible set. In particular

 $\mathbf{h} = \{0, p_2 - p_1, \dots, p_k - p_1\}$ is an admissible set and p_k can be chosen so that $p_k < k \log k + k \log \log k + O(k)$.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

- Maynard on
- **Bounded Gaps**

Proof of Theorem 1 Suppose that k ≥ 2 and the primes p₁,..., p_k satisfy k < p₁ < ... < p_k. Then any translate of the k-tuple p forms an admissible set. In particular

 $\mathbf{h} = \{0, p_2 - p_1, \dots, p_k - p_1\}$ is an admissible set and p_k can be chosen so that $p_k < k \log k + k \log \log k + O(k)$.

• Proof The last part of the theorem follows from the prime number theorem. To prove the first part, suppose on the contrary that there is a q > 1 such that every residue class modulo q contains a p_j . Then $q \le k < p_1$. On the other hand there is a j such that $p_j \equiv 0 \pmod{q}$ and so $p_j = q \le k$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • One can consider applying the Hardy–Littlewood method to this question. Suppose that *n* is such that

 $h_1 < h_2 < \cdots < h_k$, $n+h_j = p_j$, $n \leq x$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • One can consider applying the Hardy–Littlewood method to this question. Suppose that *n* is such that

$$h_1 < h_2 < \cdots < h_k$$
, $n+h_j = p_j$, $n \le x$.

• Then with logarithmic weights we consider

$$R(x; \mathbf{h}) = \sum_{\substack{p_1 < p_2 < \dots < p_k \le x + h_k \\ p_k - p_j = h_k - h_j}} (\log p_1) \dots (\log p_k)$$

and

$$S(\alpha) = \sum_{p \le N} (\log p) e(\alpha p) \tag{1}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where $N = \lfloor x + h_k \rfloor$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • One can consider applying the Hardy–Littlewood method to this question. Suppose that *n* is such that

$$h_1 < h_2 < \cdots < h_k, \quad n+h_j = p_j, \quad n \leq x.$$

• Then with logarithmic weights we consider

$$R(x; \mathbf{h}) = \sum_{\substack{p_1 < p_2 < \dots < p_k \le x + h_k \\ p_k - p_j = h_k - h_j}} (\log p_1) \dots (\log p_k)$$

and

$$S(\alpha) = \sum_{p \le N} (\log p) e(\alpha p) \tag{1}$$

where $N = \lfloor x + h_k \rfloor$.

• Then

 $R(x,\mathbf{h}) = \int_{\mathfrak{U}^{k-1}} S(-\alpha_1 - \cdots - \alpha_{k-1}) \prod_{j=1}^{k-1} (S(\alpha_j)e(\alpha_j(h_k - h_j))) d\alpha.$

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • By the way, it is often more convenient to rearrange the equations $p_j = n + h_j$ connecting the p_j into the form

$$p_j-p_1=h_j-h_1 \quad (2\leq j\leq k).$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 10 • By the way, it is often more convenient to rearrange the equations $p_j = n + h_j$ connecting the p_j into the form

1

$$p_j-p_1=h_j-h_1 \quad (2\leq j\leq k).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sar

• Also, there is no real loss in generality in supposing that $h_1 = 0$.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1 • By the way, it is often more convenient to rearrange the equations $p_j = n + h_j$ connecting the p_j into the form

$$p_j-p_1=h_j-h_1 \quad (2\leq j\leq k).$$

- Also, there is no real loss in generality in supposing that $h_1 = 0$.
- Suppose that we can replace each S(α) by its expected approximation when α is "close" to a rational number with a "small" denominator and the contribution from the remaining α is relatively "small". We are deliberately rather imprecise as this is purely speculative.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 Thus if P = N^δ for some small δ > 0 we would hope to obtain something of the form R(x, h) ~ J×

$$\sum_{q \leq P} \sum_{\mathbf{a}}^* \frac{c_q(a_1 + \dots + a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\left(\frac{a_j(h_k - h_j)}{q}\right)$$

where \sum^* is over **a** (mod q) with $(a_1, \ldots, a_{k-1}, q) = 1$ and J =

$$\int_{\mathfrak{U}^{k-1}} T(-\beta_1 - .. - \beta_{k-1}) \prod_{j=1}^{k-1} T(\beta_j) e(\beta_j(h_k - h_j)) d\beta$$

and

$$T(\beta) = \sum_{m=1}^{N} e(\beta m).$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 Thus if P = N^δ for some small δ > 0 we would hope to obtain something of the form R(x, h) ~ J×

$$\sum_{q \leq P} \sum_{\mathbf{a}}^* \frac{c_q(a_1 + \dots + a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\left(\frac{a_j(h_k - h_j)}{q}\right)$$

where \sum^* is over **a** (mod q) with $(a_1, \ldots, a_{k-1}, q) = 1$ and J =

$$\int_{\mathfrak{U}^{k-1}} T(-\beta_1 - .. - \beta_{k-1}) \prod_{j=1}^{k-1} T(\beta_j) e\big(\beta_j (h_k - h_j)\big) d\beta$$

and

$$T(\beta) = \sum_{m=1}^{N} e(\beta m).$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• It is believed generally that this should hold.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

$$\int_{\mathfrak{U}^{k-1}} T(-\beta_1 - .. - \beta_{k-1}) \prod_{j=1}^{k-1} T(\beta_j) e\big(\beta_j (h_k - h_j)\big) d\beta$$

and

• J =

$$T(\beta) = \sum_{m=1}^{N} e(\beta m).$$

ヘロト 人間 ト 人造 ト 人造 ト

æ

990

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1

$$\int_{\mathfrak{U}^{k-1}} T(-\beta_1-\ldots-\beta_{k-1}) \prod_{j=1}^{k-1} T(\beta_j) e\big(\beta_j(h_k-h_j)\big) d\beta$$

and

 $I \equiv$

$$T(\beta) = \sum_{m=1}^{N} e(\beta m).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• The number J is the number of m_1, \ldots, m_k with $1 \le m_j \le N$ and $m_j = m_k + h_j - h_k$, so that m_j is determined by m_k and so J is the number of m_k with $h_k - h_1 < m_k \le N + h_k = x + O(1)$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

- The Setu
- Maynard one
- Bounded Gaps

Proof of Theorem 1

$$\int_{\mathfrak{U}^{k-1}} T(-\beta_1-\ldots-\beta_{k-1}) \prod_{j=1}^{k-1} T(\beta_j) e\big(\beta_j(h_k-h_j)\big) d\beta$$

and

 $I \equiv$

$$T(\beta) = \sum_{m=1}^{N} e(\beta m).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• The number J is the number of m_1, \ldots, m_k with $1 \le m_j \le N$ and $m_j = m_k + h_j - h_k$, so that m_j is determined by m_k and so J is the number of m_k with $h_k - h_1 < m_k \le N + h_k = x + O(1)$.

• Hence
$$J = x + O(h_k)$$
.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

- The Setu
- Maynard one
- Bounded Gaps
- Proof of Theorem 1

$$\int_{\mathfrak{U}^{k-1}} T(-\beta_1-..-\beta_{k-1}) \prod_{j=1}^{k-1} T(\beta_j) e\big(\beta_j(h_k-h_j)\big) d\beta$$

and

I =

$$T(\beta) = \sum_{m=1}^{N} e(\beta m).$$

- The number J is the number of m_1, \ldots, m_k with $1 \le m_j \le N$ and $m_j = m_k + h_j h_k$, so that m_j is determined by m_k and so J is the number of m_k with $h_k h_1 < m_k \le N + h_k = x + O(1)$.
- Hence $J = x + O(h_k)$.
- Thus it is expected that $R(x; \mathbf{h}) \sim x\mathfrak{S}(\mathbf{h}; P)$ where $\mathfrak{S}(\mathbf{h}; P) = \sum_{q \leq P} f(q; \mathbf{h})$ and $f(q; \mathbf{h}) =$

$$\sum_{\mathbf{a}}^{*} \frac{c_q(-a_1-\cdots-a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\left(\frac{a_j(h_k-h_j)}{q}\right).$$

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

•
$$\mathfrak{S}(\mathbf{h}; P) = \sum_{q \leq P} f(q; \mathbf{h}) \text{ and } f(q; \mathbf{h}) =$$

$$\sum_{\mathbf{a}}^* \frac{c_q(-a_1-\cdots-a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\left(\frac{a_j(h_k-h_j)}{q}\right).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

•
$$\mathfrak{S}(\mathbf{h}; P) = \sum_{q \leq P} f(q; \mathbf{h}) \text{ and } f(q; \mathbf{h}) =$$

$$\sum_{\mathbf{a}}^* \frac{c_q(-a_1-\cdots-a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\left(\frac{a_j(h_k-h_j)}{q}\right).$$

• It is readily verified that f is a multiplicative function of q.

イロト 不同 トイヨト イヨト

3

Sac

Robert C. Vaughan

Preliminaries to the modern theory

- Maynard's Theorem
- The Setup
- Maynard one
- Bounded Gaps
- Proof of Theorem 1

•
$$\mathfrak{S}(\mathbf{h}; P) = \sum_{q \leq P} f(q; \mathbf{h}) \text{ and } f(q; \mathbf{h}) =$$

$$\sum_{\mathbf{a}}^* \frac{c_q(-a_1-\cdots-a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\left(\frac{a_j(h_k-h_j)}{q}\right).$$

- It is readily verified that f is a multiplicative function of q.
- Moreover when $q = p^t$ with $t \ge 2$, since $(a_1, \ldots, a_{k-1}, q) = 1$, for at least one j we have $p \nmid a_j$, and so $c_{p^t}(a_j) = 0$.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

- The Setup
- Maynard one
- Bounded Gaps
- Proof of Theorem 1

•
$$\mathfrak{S}(\mathbf{h}; P) = \sum_{q \leq P} f(q; \mathbf{h}) \text{ and } f(q; \mathbf{h}) =$$

$$\sum_{\mathbf{a}}^* \frac{c_q(-a_1-\cdots-a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\left(\frac{a_j(h_k-h_j)}{q}\right).$$

- It is readily verified that f is a multiplicative function of q.
- Moreover when q = p^t with t ≥ 2, since

 (a₁,..., a_{k-1}, q) = 1, for at least one j we have p ∤ a_j, and so c_{p^t}(a_j) = 0.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Thus f has its support on the squarefree numbers.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\mathfrak{S}(\mathbf{h}; P) = \sum_{q \leq P} f(q; \mathbf{h})$ and $f(q; \mathbf{h}) =$

$$\sum_{\mathbf{a}}^* \frac{c_q(-a_1-\cdots-a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\big(\frac{a_j(h_k-h_j)}{q}\big)$$

・ロット (雪) (キョット (日)) ヨー

Sac

and f has its support on the squarefree numbers.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\mathfrak{S}(\mathbf{h}; P) = \sum_{q \leq P} f(q; \mathbf{h}) \text{ and } f(q; \mathbf{h}) =$

$$\sum_{\mathbf{a}}^* \frac{c_q(-a_1-\cdots-a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\big(\frac{a_j(h_k-h_j)}{q}\big)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

and f has its support on the squarefree numbers.

• Now consider the case q = p.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\mathfrak{S}(\mathbf{h}; P) = \sum_{q \leq P} f(q; \mathbf{h}) \text{ and } f(q; \mathbf{h}) =$

$$\sum_{\mathbf{a}}^* \frac{c_q(-a_1-\cdots-a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\big(\frac{a_j(h_k-h_j)}{q}\big)$$

and f has its support on the squarefree numbers.

- Now consider the case q = p.
- Then (a₁,..., a_{k-1}, p) = 1 holds for all a with 1 ≤ a_j ≤ p except a₁ = ··· = a_{k-1} = p.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\mathfrak{S}(\mathbf{h}; P) = \sum_{q \leq P} f(q; \mathbf{h}) \text{ and } f(q; \mathbf{h}) =$

$$\sum_{\mathbf{a}}^* \frac{c_q(-a_1-\cdots-a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\big(\frac{a_j(h_k-h_j)}{q}\big)$$

and f has its support on the squarefree numbers.

- Now consider the case q = p.
- Then $(a_1, \ldots, a_{k-1}, p) = 1$ holds for all **a** with $1 \le a_j \le p$ except $a_1 = \cdots = a_{k-1} = p$.
- If we sum over all **a** with $1 \le a_j \le p$ we obtain $p^{k-1}N$ where N is the number of solutions of $r_j \equiv r_k + h_j - h_k$ (mod p) with $1 \le r_j \le p - 1$. Thus r_j is determined by r_k , and $r_k \not\equiv 0$ or $h_k - h_j$ for any j. Thus $N = p - \nu_p(\mathbf{h})$. The term with $a_1 = \ldots = a_{k-1} = p$ contributes $(p-1)^k$ and so $f(p; \mathbf{h}) =$

$$\frac{(p-\nu_p(\mathbf{h}))p^{k-1}-(p-1)^k}{(p-1)^k} = \frac{(1-\nu_p(\mathbf{h})/p)}{(1-1/p)^k} - 1.$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\mathfrak{S}(\mathbf{h}; P) = \sum_{q \leq P} f(q; \mathbf{h}) \text{ and } f(q; \mathbf{h}) =$

$$\sum_{\mathbf{a}}^* \frac{c_q(-\mathsf{a}_1 - \cdots - \mathsf{a}_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(\mathsf{a}_j) e\big(\frac{\mathsf{a}_j(\mathsf{h}_k - \mathsf{h}_j)}{q}\big).$$

f is multiplicative, has its support on the squarefree numbers and $f(p; \mathbf{h}) =$

$$\frac{(\rho-\nu_{\rho}(\mathbf{h}))\rho^{k-1}-(\rho-1)^{k}}{(\rho-1)^{k}}=\frac{(1-\nu_{\rho}(\mathbf{h})/\rho)}{(1-1/\rho)^{k}}-1.$$

・ロット (雪) (キョット (日)) ヨー

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

•
$$\mathfrak{S}(\mathbf{h}; P) = \sum_{q \leq P} f(q; \mathbf{h}) \text{ and } f(q; \mathbf{h}) =$$

$$\sum_{\mathbf{a}}^* \frac{c_q(-a_1-\cdots-a_{k-1})}{\phi(q)^k} \prod_{j=1}^{k-1} c_q(a_j) e\big(\frac{a_j(h_k-h_j)}{q}\big).$$

f is multiplicative, has its support on the squarefree numbers and $f(p; \mathbf{h}) =$

$$\frac{(p-\nu_p(\mathbf{h}))p^{k-1}-(p-1)^k}{(p-1)^k}=\frac{(1-\nu_p(\mathbf{h})/p)}{(1-1/p)^k}-1.$$

• When $p \nmid D = \prod_{1 \leq i < j \leq k} |h_j - h_i|$ we have $\nu_p(\mathbf{h}) = k$. Thus $f(p; \mathbf{h}) \ll p^{-2}$. Hence $\mathfrak{S}(\mathbf{h}; P)$ converges absolutely to $\mathfrak{S}(\mathbf{h})$ as $P \to \infty$ where $\mathfrak{S}(\mathbf{h}) = \sum_{q=1}^{\infty} f(q; \mathbf{h})$

$$=\prod_{p}(1+f(p;\mathbf{h}))=\prod_{p}\left(1-\frac{\nu_{p}(\mathbf{h})}{p}\right)\left(1-\frac{1}{p}\right)^{-k}$$

and $\mathfrak{S}(\mathbf{h}) \ll_k (\log \log(3D))^k \ll_k (\log \log(3\max_j |h_j|))^k$.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have

 $\mathfrak{S}(\mathbf{h}) = \prod_{p} \left(1 - \frac{\nu_{p}(\mathbf{h})}{p} \right) \left(1 - \frac{1}{p} \right)^{-k}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have

$$\mathfrak{S}(\mathbf{h}) = \prod_{p} \left(1 - \frac{\nu_{p}(\mathbf{h})}{p} \right) \left(1 - \frac{1}{p} \right)^{-k}$$

人口 医水管 医水管 医子

Ð.

990

• Suppose the h_j are distinct.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have

$$\mathfrak{S}(\mathbf{h}) = \prod_{p} \left(1 - \frac{\nu_{p}(\mathbf{h})}{p} \right) \left(1 - \frac{1}{p} \right)^{-k}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

- Suppose the h_j are distinct.
- If **h** is inadmissible, then $\mathfrak{S}(\mathbf{h}) = 0$.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard on

Bounded Gaps

Proof of Theorem 10 We have

$$\mathfrak{S}(\mathbf{h}) = \prod_{p} \left(1 - rac{
u_p(\mathbf{h})}{p}\right) \left(1 - rac{1}{p}
ight)^{-k}$$

- Suppose the *h_j* are distinct.
- If **h** is inadmissible, then $\mathfrak{S}(\mathbf{h}) = 0$.
- If **h** is admissible, then we have $\nu_p(\mathbf{h}) \leq \min(k, p-1)$ and so $1 \nu_p(\mathbf{h})/p \geq 1/p$ when $p \leq k$ and is $\geq 1 k/p$ when p > k.

イロト 不得 トイヨト イヨト ニヨー

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 10

We have

$$\mathfrak{S}(\mathbf{h}) = \prod_{p} \left(1 - rac{
u_{p}(\mathbf{h})}{p}\right) \left(1 - rac{1}{p}
ight)^{-k}$$

- Suppose the *h_j* are distinct.
- If **h** is inadmissible, then $\mathfrak{S}(\mathbf{h}) = 0$.
- If **h** is admissible, then we have $\nu_p(\mathbf{h}) \leq \min(k, p-1)$ and so $1 \nu_p(\mathbf{h})/p \geq 1/p$ when $p \leq k$ and is $\geq 1 k/p$ when p > k.
- Thus there is a positive number C(k) such that, when the h_j are distinct, **h** is admissible if and only if

$$C(k) < \mathfrak{S}(\mathbf{h}).$$

イロト 不得 トイヨト イヨト ニヨー

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 10

• We have

$$\mathfrak{S}(\mathbf{h}) = \prod_{p} \left(1 - rac{
u_{p}(\mathbf{h})}{p}\right) \left(1 - rac{1}{p}
ight)^{-k}$$

- Suppose the *h_j* are distinct.
- If **h** is inadmissible, then $\mathfrak{S}(\mathbf{h}) = 0$.
- If **h** is admissible, then we have $\nu_p(\mathbf{h}) \leq \min(k, p-1)$ and so $1 \nu_p(\mathbf{h})/p \geq 1/p$ when $p \leq k$ and is $\geq 1 k/p$ when p > k.
- Thus there is a positive number C(k) such that, when the h_j are distinct, **h** is admissible if and only if

$$C(k) < \mathfrak{S}(\mathbf{h}).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• This suggests a conjecture.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setur

Maynard on

Bounded Gaps

Proof of Theorem 1 • This suggests a conjecture.

Conjecture 4

Suppose that **h** is admissible. Then, as $x \to \infty$,

 $R(x; \mathbf{h}) \sim x\mathfrak{S}(\mathbf{h}).$

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard on

Bounded Gaps

Proof of Theorem 10 • This suggests a conjecture.

Conjecture 4

Suppose that **h** is admissible. Then, as $x \to \infty$,

 $R(x; \mathbf{h}) \sim x\mathfrak{S}(\mathbf{h}).$

• This is highly speculative, of course, and establishing this is well beyond what can be done in the current state of knowledge.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 10 • This suggests a conjecture.

Conjecture 4

Suppose that **h** is admissible. Then, as $x \to \infty$,

 $R(x;\mathbf{h}) \sim x\mathfrak{S}(\mathbf{h}).$

- This is highly speculative, of course, and establishing this is well beyond what can be done in the current state of knowledge.
- The likelihood of discovering primes in the k-tuple n + h₁,..., n + h_k depends on the avoidance of the zero residue class modulo p for all primes p, so in other words h needs to be admissible.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

- The Setup
- Maynard one
- Bounded Gaps
- Proof of Theorem 10

• This suggests a conjecture.

Conjecture 4

Suppose that **h** is admissible. Then, as $x \to \infty$,

 $R(x;\mathbf{h}) \sim x\mathfrak{S}(\mathbf{h}).$

- This is highly speculative, of course, and establishing this is well beyond what can be done in the current state of knowledge.
- The likelihood of discovering primes in the k-tuple n + h₁,..., n + h_k depends on the avoidance of the zero residue class modulo p for all primes p, so in other words h needs to be admissible.
- A measure of this is the singular series $\mathfrak{S}(\mathbf{h})$ and we can expect that this will arise naturally in the analysis.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

- The Setup
- Maynard one
- Bounded Gaps
- Proof of Theorem 10

• This suggests a conjecture.

Conjecture 4

Suppose that **h** is admissible. Then, as $x \to \infty$,

 $R(x;\mathbf{h}) \sim x\mathfrak{S}(\mathbf{h}).$

- This is highly speculative, of course, and establishing this is well beyond what can be done in the current state of knowledge.
- The likelihood of discovering primes in the k-tuple n + h₁,..., n + h_k depends on the avoidance of the zero residue class modulo p for all primes p, so in other words h needs to be admissible.
- A measure of this is the singular series $\mathfrak{S}(\mathbf{h})$ and we can expect that this will arise naturally in the analysis.
- We can also deduce from our discussion above and the next theorem that there is a plentiful supply of admissible k-tuples.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard on

Bounded Gaps

Proof of Theorem 1 • Counting admissible *k*-tuples in a box.

Theorem 5 (Gallagher)

Suppose that $k \ge 2$ and \mathcal{H} is the set of k-tuples \mathbf{h} of distinct integers h_1, \ldots, h_k with $1 \le h_j \le H$, and let \mathcal{A} be the subset of those \mathbf{h} which are also admissible. Then

$$\sum_{\mathbf{h}\in\mathcal{A}}\mathfrak{S}(\mathbf{h})=H^k+O(H^{k-1+arepsilon}).$$

イロト 不得 トイヨト イヨト ニヨー

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard on

Bounded Gaps

Proof of Theorem 1 • Counting admissible *k*-tuples in a box.

Theorem 5 (Gallagher)

Suppose that $k \ge 2$ and \mathcal{H} is the set of k-tuples \mathbf{h} of distinct integers h_1, \ldots, h_k with $1 \le h_j \le H$, and let \mathcal{A} be the subset of those \mathbf{h} which are also admissible. Then

$$\sum_{\mathbf{h}\in\mathcal{A}}\mathfrak{S}(\mathbf{h})=H^k+O(H^{k-1+arepsilon}).$$

• In view of the observation above that if $\mathbf{h} \in \mathcal{H}$ is inadmissible, then $\mathfrak{S}(\mathbf{h}) = 0$, it suffices to prove the conclusion with \mathcal{A} replaced by \mathcal{H} .

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard on

Bounded Gaps

Proof of Theorem 1 • Counting admissible *k*-tuples in a box.

Theorem 5 (Gallagher)

Suppose that $k \ge 2$ and \mathcal{H} is the set of k-tuples \mathbf{h} of distinct integers h_1, \ldots, h_k with $1 \le h_j \le H$, and let \mathcal{A} be the subset of those \mathbf{h} which are also admissible. Then

$$\sum_{\mathbf{h}\in\mathcal{A}}\mathfrak{S}(\mathbf{h})=H^k+O(H^{k-1+\varepsilon}).$$

- In view of the observation above that if $\mathbf{h} \in \mathcal{H}$ is inadmissible, then $\mathfrak{S}(\mathbf{h}) = 0$, it suffices to prove the conclusion with \mathcal{A} replaced by \mathcal{H} .
- When $\nu_p(\mathbf{h}) = k$, $f(q) = f(q; \mathbf{h})$ satisfies $|f(p; \mathbf{h})| \le \frac{C_k}{p^2}$ and otherwise $|f(p; \mathbf{h})| \le \frac{C_k}{p}$, for some C_k .

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard on

Bounded Gaps

Proof of Theorem 1 • Counting admissible *k*-tuples in a box.

Theorem 5 (Gallagher)

Suppose that $k \ge 2$ and \mathcal{H} is the set of k-tuples \mathbf{h} of distinct integers h_1, \ldots, h_k with $1 \le h_j \le H$, and let \mathcal{A} be the subset of those \mathbf{h} which are also admissible. Then

$$\sum_{\mathbf{h}\in\mathcal{A}}\mathfrak{S}(\mathbf{h})=H^k+O(H^{k-1+\varepsilon}).$$

- In view of the observation above that if $\mathbf{h} \in \mathcal{H}$ is inadmissible, then $\mathfrak{S}(\mathbf{h}) = 0$, it suffices to prove the conclusion with \mathcal{A} replaced by \mathcal{H} .
- When $\nu_p(\mathbf{h}) = k$, $f(q) = f(q; \mathbf{h})$ satisfies $|f(p; \mathbf{h})| \le \frac{C_k}{p^2}$ and otherwise $|f(p; \mathbf{h})| \le \frac{C_k}{p}$, for some C_k .
- Then $|f(q;\mathbf{h})| \leq q^{-2}C_k^{\omega(q)}(D,q) \ll_{\varepsilon} q^{\varepsilon-2}(D,q).$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Then $|f(q; \mathbf{h})| \leq q^{-2} C_k^{\omega(q)}(D, q) \ll_{\varepsilon} q^{\varepsilon-2}(D, q)$ where As above, $D = \prod_{1 \leq i < j \leq k} |h_j - h_i|$, so that $D \leq H^{k(k-1)/2}$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- Then $|f(q; \mathbf{h})| \leq q^{-2} C_k^{\omega(q)}(D, q) \ll_{\varepsilon} q^{\varepsilon-2}(D, q)$ where As above, $D = \prod_{1 \leq i < j \leq k} |h_j h_i|$, so that $D \leq H^{k(k-1)/2}$.
- For convenience we introduce the parameter $Q \ge 1$ which is at our disposal. Then

$$\sum_{q>Q} |f(q; \mathbf{h})| \ll \sum_{r|D} r \sum_{\substack{q>Q\\(D,q)=r}} q^{\varepsilon-2}$$
$$\ll \sum_{r|D} r^{\varepsilon-1} \sum_{t>Q/r} t^{\varepsilon-2} \ll Q^{\varepsilon-1} d(D).$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- Then $|f(q; \mathbf{h})| \leq q^{-2} C_k^{\omega(q)}(D, q) \ll_{\varepsilon} q^{\varepsilon 2}(D, q)$ where As above, $D = \prod_{1 \leq i < j \leq k} |h_j h_i|$, so that $D \leq H^{k(k-1)/2}$.
- For convenience we introduce the parameter $Q \ge 1$ which is at our disposal. Then

$$\sum_{q>Q} |f(q; \mathbf{h})| \ll \sum_{r|D} r \sum_{\substack{q>Q\\(D,q)=r}} q^{\varepsilon-2}$$
$$\ll \sum_{r|D} r^{\varepsilon-1} \sum_{t>Q/r} t^{\varepsilon-2} \ll Q^{\varepsilon-1} d(D).$$

Hence

$$\sum_{q>Q} |f(q;\mathbf{h})| \ll Q^{\varepsilon-1} H^{\varepsilon}.$$
 (2)

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- Then $|f(q; \mathbf{h})| \leq q^{-2} C_k^{\omega(q)}(D, q) \ll_{\varepsilon} q^{\varepsilon-2}(D, q)$ where As above, $D = \prod_{1 \leq i < j \leq k} |h_j h_i|$, so that $D \leq H^{k(k-1)/2}$.
- For convenience we introduce the parameter Q ≥ 1 which is at our disposal. Then

$$\sum_{q>Q} |f(q;\mathbf{h})| \ll \sum_{r|D} r \sum_{\substack{q>Q\\(D,q)=r}} q^{arepsilon-2} \ \ll \sum_{r|D} r^{arepsilon-1} \sum_{t>Q/r} t^{arepsilon-2} \ll Q^{arepsilon-1} d(D).$$

• Hence

$$\sum_{q>Q} |f(q;\mathbf{h})| \ll Q^{\varepsilon-1} H^{\varepsilon}.$$
 (2)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• We take Q = H and sum over the elements of \mathcal{H} to obtain the bound $\ll H^{k-1+2\varepsilon}$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • The case k = 2 is special so we treat that first. Then $f(q; \mathbf{h}) = \frac{\mu(q)^2}{\phi(q)^2} \sum_{\substack{a=1 \ (a,q)=1}}^{q} e(a(h_1 - h_2)/q) \text{ and so}$

$$\sum_{\mathbf{h}\in\mathcal{H}} f(q;\mathbf{h}) = \frac{\mu(q)^2}{\phi(q)^2} \sum_{h_2 \leq H} \sum_{\substack{a=1\\(a,q)=1}}^{q} \sum_{\substack{h_1 \leq H\\h_1 \neq h_2}} e(a(h_1 - h_2)/q).$$

・ロット (雪) (キョット (日)) ヨー

> Robert C. Vaughan

Preliminaries to the modern theory

- Maynard's Theorem
- The Setup
- Maynard one
- Bounded Gaps
- Proof of Theorem 1

• The case k = 2 is special so we treat that first. Then $f(q; \mathbf{h}) = \frac{\mu(q)^2}{\phi(q)^2} \sum_{\substack{a=1 \ (a,q)=1}}^{q} e(a(h_1 - h_2)/q) \text{ and so}$

$$\sum_{\mathbf{h}\in\mathcal{H}} f(q;\mathbf{h}) = \frac{\mu(q)^2}{\phi(q)^2} \sum_{h_2 \leq H} \sum_{\substack{a=1\\(a,q)=1}}^q \sum_{\substack{h_1 \leq H\\h_1 \neq h_2}} e(a(h_1 - h_2)/q).$$

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sar

• The innermost sum is $\ll ||a/q||^{-1}$ and we have $\sum_{a=1}^{q-1} ||a/q||^{-1} \ll q \log q$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • The case k = 2 is special so we treat that first. Then $f(q; \mathbf{h}) = \frac{\mu(q)^2}{\phi(q)^2} \sum_{\substack{a=1 \ (a,q)=1}}^{q} e(a(h_1 - h_2)/q) \text{ and so}$

$$\sum_{\mathbf{h}\in\mathcal{H}} f(q;\mathbf{h}) = \frac{\mu(q)^2}{\phi(q)^2} \sum_{h_2 \leq H} \sum_{\substack{a=1\\(a,q)=1}}^q \sum_{\substack{h_1 \leq H\\h_1 \neq h_2}} e(a(h_1 - h_2)/q).$$

- The innermost sum is $\ll ||a/q||^{-1}$ and we have $\sum_{a=1}^{q-1} ||a/q||^{-1} \ll q \log q$.
- Thus $\sum_{\mathbf{h}\in\mathcal{H}} f(1;\mathbf{h}) = H^2 + O(H)$, since $f(1;\mathbf{h}) = 1$ and card $\mathcal{H} = H^2 + O(H)$, and we have $\sum_{\mathbf{h}\in\mathcal{H}} \sum_{1 < q \leq Q} f(q;\mathbf{h}) \ll HQ^{\varepsilon}$, so Q = H gives case k = 2

イロト 不得 トイヨト イヨト ニヨー

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Now suppose $k \ge 3$, and write $g(q; \mathbf{h}) = \phi(q)^k f(q; \mathbf{h})$

$$= \sum_{a}^{*} c_{q}(-a_{1}-\cdots-a_{k-1}) \prod_{j=1}^{k-1} c_{q}(a_{j}) e(\frac{a_{j}(h_{k}-h_{j})}{q}).$$

イロト 不得 トイヨト イヨト

3

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1 • Now suppose $k \ge 3$, and write $g(q; \mathbf{h}) = \phi(q)^k f(q; \mathbf{h})$

$$= \sum_{\mathbf{a}}^{*} c_{q}(-a_{1}-\cdots-a_{k-1}) \prod_{j=1}^{k-1} c_{q}(a_{j}) e(\frac{a_{j}(h_{k}-h_{j})}{q}).$$

• Then $|g(q\,;\mathbf{h})|\leq g^*(q)$ where

$$g^*(q) = \sum_{\substack{\mathbf{a} \ (\mathbf{a},q) = 1}} |c_q(a_1) \dots c_q(a_{k-1}) c_q(-a_1 - \dots - a_{k-1})|$$

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

and this is also a multiplicative function of q with its support on the square free numbers.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Now suppose $k \ge 3$, and write $g(q; \mathbf{h}) = \phi(q)^k f(q; \mathbf{h})$

$$= \sum_{\mathbf{a}}^{*} c_{q}(-a_{1}-\cdots-a_{k-1}) \prod_{j=1}^{k-1} c_{q}(a_{j}) e(\frac{a_{j}(h_{k}-h_{j})}{q}).$$

• Then $|g(q\,;\mathbf{h})|\leq g^*(q)$ where

$$g^*(q) = \sum_{\substack{\mathbf{a} \ (\mathbf{a},q)=1}} |c_q(a_1) \dots c_q(a_{k-1})c_q(-a_1 - \dots - a_{k-1})|$$

and this is also a multiplicative function of q with its support on the square free numbers.

• Thus

$$\sum_{\mathbf{h}\in[1,H]^k\setminus\mathcal{H}}\sum_{1\leq q\leq Q}f(q;\mathbf{h})\ll H^{k-1}\prod_{p\leq Q}\left(1+\frac{g^*(p)}{(p-1)^k}\right)$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus

$$\sum_{\mathbf{h}\in[1,H]^k\setminus\mathcal{H}}\sum_{1\leq q\leq Q}f(q;\mathbf{h})\ll H^{k-1}\prod_{p\leq Q}\left(1+\frac{g^*(p)}{(p-1)^k}\right).$$

where

$$g^*(p) = \sum_{\substack{\mathbf{a} \ (\mathbf{a},p)=1}} |c_p(a_1) \dots c_p(a_{k-1})c_p(-a_1 - \dots - a_{k-1})|.$$

ヘロト 人間 ト 人目 ト 人目 ト

æ

990

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus

$$\sum_{\mathbf{h}\in[1,H]^k\setminus\mathcal{H}}\sum_{1\leq q\leq Q}f(q;\mathbf{h})\ll H^{k-1}\prod_{p\leq Q}\left(1+\frac{g^*(p)}{(p-1)^k}\right).$$

where

$$g^*(p) = \sum_{\substack{\mathbf{a} \ (\mathbf{a},p)=1}} |c_p(a_1) \dots c_p(a_{k-1}) c_p(-a_1 - \dots - a_{k-1})|.$$

Consider the k numbers a₁,..., a_{k-1}, -a₁ - ··· - a_{k-1}. When (a, p) = 1 at least two of these numbers are not multiples of p. Moreover in g*(p) the terms with exactly j of the a₁,..., a_{k-1}, a₁ + ··· + a_{k-1} divisible by p contribute (p - 1)^j and since the a₁,..., a_{k-1}, a₁ + ··· + a_{k-1} are linearly dependent the number of such terms is at most (^k_i)(p - 1)^{k-1-j}.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

- The Setup
- Maynard on
- Bounded Gaps
- Proof of Theorem 1

• Thus

$$\sum_{\mathbf{h}\in[1,H]^k\setminus\mathcal{H}}\sum_{1\leq q\leq Q}f(q;\mathbf{h})\ll H^{k-1}\prod_{p\leq Q}\left(1+\frac{g^*(p)}{(p-1)^k}\right).$$

where

$$g^*(p) = \sum_{\substack{\mathbf{a} \ (\mathbf{a},p)=1}} |c_p(a_1) \dots c_p(a_{k-1}) c_p(-a_1 - \dots - a_{k-1})|.$$

- Consider the k numbers a₁,..., a_{k-1}, -a₁ ··· a_{k-1}. When (a, p) = 1 at least two of these numbers are not multiples of p. Moreover in g*(p) the terms with exactly j of the a₁,..., a_{k-1}, a₁ + ··· + a_{k-1} divisible by p contribute (p - 1)^j and since the a₁,..., a_{k-1}, a₁ + ··· + a_{k-1} are linearly dependent the
 - number of such terms is at most $\binom{k}{j}(p-1)^{k-1-j}$.
- Hence $g^*(p) \leq 2^k (p-1)^{k-1}$ and

$$\sum_{\mathbf{h}\in[1,H]^k\setminus\mathcal{H}}\sum_{1\leq q\leq Q}f(q;\mathbf{h})\ll H^{k-1}Q^{\varepsilon}.$$

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Consider $\sum_{\mathbf{h} \in [1,H]^k} g(q;\mathbf{h})$ where q > 1 and $g(q;\mathbf{h})$

$$= \sum_{\mathbf{a}}^{*} c_{q}(-a_{1}-\cdots-a_{k-1}) \prod_{j=1}^{k-1} c_{q}(a_{j}) e(\frac{a_{j}(h_{k}-h_{j})}{q}).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

990

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

ł

Proof of Theorem 1 • Consider $\sum_{\mathbf{h}\in [1,H]^k} g(q;\mathbf{h})$ where q>1 and $g(q;\mathbf{h})$

$$= \sum_{\mathbf{a}}^{*} c_{q}(-a_{1}-\cdots-a_{k-1}) \prod_{j=1}^{k-1} c_{q}(a_{j}) e(\frac{a_{j}(h_{k}-h_{j})}{q}).$$

• At least two of $a_1, \ldots, a_{k-1}, -a_1 - \cdots - a_{k-1}$ are $\not\equiv 0$ (mod q). If there are at least two $a_i \not\equiv 0$, then pick two and call them b_1, b_2 . List the rest as b_3, \ldots, b_{k-1} . Note $-a_1 - \cdots - a_{k-1} = -b_1 - \cdots - b_{k-1}$. If only one of the $a_i \not\equiv 0$, then call it b_1 , and put $b_2 = -a_1 - \cdots - a_{k-1}$. Then any of the other a_i can be rewritten $-b_1 - b_2 - s$ (mod q) where s is the sum of the remaining a_t . Hence

$$\sum_{\mathbf{h}\in[1,H]^k} g(q;\mathbf{h}) \ll H^{k-2} \sum_{b_1=1}^{q-1} \frac{|c_q(b_1)|}{\|b_1/q\|} \sum_{b_2=1}^{q-1} \frac{|c_q(b_2)|}{\|b_2/q\|} \times.$$

$$\sum_{b_3,...,b_{k-1}\in[1,q]^{k-3}} |c_q(b_1+\cdots+b_{k-1})| \prod_{j=3}^{k-1} |c_q(b_j)|.$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Hence

$$\sum_{\mathbf{h}\in[1,H]^k} g(q;\mathbf{h}) \ll H^{k-2} \sum_{b_1=1}^{q-1} \frac{|c_q(b_1)|}{\|b_1/q\|} \sum_{b_2=1}^{q-1} \frac{|c_q(b_2)|}{\|b_2/q\|} \times .$$
$$\sum_{\mathbf{b}\in[1,q]^{k-3}} |c_q(b_1+\dots+b_{k-1})| \prod_{j=3}^{k-1} |c_q(b_j)|$$

ヘロト 人間 ト 人目 ト 人目 ト

Ð.

990

where **b** = $b_3, ..., b_{k-1}$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Hence

$$\sum_{\mathbf{h}\in[1,H]^k} g(q;\mathbf{h}) \ll H^{k-2} \sum_{b_1=1}^{q-1} \frac{|c_q(b_1)|}{\|b_1/q\|} \sum_{b_2=1}^{q-1} \frac{|c_q(b_2)|}{\|b_2/q\|} \times .$$
$$\sum_{\mathbf{b}\in[1,q]^{k-3}} |c_q(b_1+\dots+b_{k-1})| \prod_{j=3}^{k-1} |c_q(b_j)|$$

where **b** = $b_3, ..., b_{k-1}$.

• The inner sum does not exceed $\phi(q) \Big(\sum_{b=1}^{q} |c_q(b)| \Big)^{k-3}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Hence

$$\sum_{\mathbf{h}\in[1,H]^k} g(q;\mathbf{h}) \ll H^{k-2} \sum_{b_1=1}^{q-1} \frac{|c_q(b_1)|}{\|b_1/q\|} \sum_{b_2=1}^{q-1} \frac{|c_q(b_2)|}{\|b_2/q\|} \times .$$
$$\sum_{\mathbf{b}\in[1,q]^{k-3}} |c_q(b_1+\dots+b_{k-1})| \prod_{j=3}^{k-1} |c_q(b_j)|$$

where **b** = $b_3, ..., b_{k-1}$.

• The inner sum does not exceed $\phi(q) \Big(\sum_{b=1}^{q} |c_q(b)| \Big)^{k-3}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

• As
$$|c_q(b)| \le (q, b)$$
 the sum here is
 $\le \sum_{r|q} r\phi(q/r) \le d(q)q.$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Hence

$$\sum_{\mathbf{h}\in[1,H]^{k}} g(q;\mathbf{h}) \ll H^{k-2} \sum_{b_{1}=1}^{q-1} \frac{|c_{q}(b_{1})|}{\|b_{1}/q\|} \sum_{b_{2}=1}^{q-1} \frac{|c_{q}(b_{2})|}{\|b_{2}/q\|} \times$$
$$\sum_{\mathbf{b}\in[1,q]^{k-3}} |c_{q}(b_{1}+\dots+b_{k-1})| \prod_{j=3}^{k-1} |c_{q}(b_{j})|$$
where $\mathbf{b} = b_{3},\dots,b_{k-1}$.

• The inner sum does not exceed $\phi(q) \Big(\sum_{h=1}^{q} |c_q(b)| \Big)^{k-3}$.

• As
$$|c_q(b)| \le (q, b)$$
 the sum here is
 $\le \sum_{r|q} r\phi(q/r) \le d(q)q.$

• Similarly

$$\sum_{b=1}^{q-1} rac{|c_q(b)|}{\|b/q\|} \leq \sum_{r|q} r \sum_{a=1}^{q/r-1} \|a/(q/r)\|^{-1} \ll d(q)q\log q.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 Hence

$$\sum_{\mathbf{h}\in[1,H]^k} g(q;\mathbf{h}) \ll H^{k-2} \sum_{b_1=1}^{q-1} \frac{|c_q(b_1)|}{\|b_1/q\|} \sum_{b_2=1}^{q-1} \frac{|c_q(b_2)|}{\|b_2/q\|} \times.$$

$$\sum_{\mathbf{b} \in [1,q]^{k-3}} |c_q(b_1 + \dots + b_{k-1})| \prod_{j=3}^{k-1} |c_q(b_j)|.$$

 $\ll H^{k-2} d(q)^2 q^2 (\log q)^2 \phi(q) d(q)^{k-3} q^{k-3}.$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= √Q (~

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 Hence $\sum_{q \in [1,1]^k} g(q;\mathbf{h}) \ll H^{k-2} \sum_{q \in [1,1]^k}^{q-1} \frac{|c_q(b_1)|}{\|b_1/q\|} \sum_{q \in [1,1]^k}^{q-1} \frac{|c_q(b_2)|}{\|b_2/q\|} \times .$ $\mathbf{h} \in [\overline{1,H}]^k$ k-1 $\sum |c_q(b_1+\cdots+b_{k-1})| \prod |c_q(b_j)|.$ $\mathbf{b} \in [1, a]^{k-3}$ i=3 $\ll H^{k-2}d(q)^2q^2(\log q)^2\phi(q)d(q)^{k-3}q^{k-3}.$ Therefore

$$\sum_{\mathbf{h}\in [1,H]^k}\sum_{1< q\leq Q} f(q, \mathbf{h}) \ll H^{k-2}Q^{1+arepsilon}.$$

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sar

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Hence

$$\sum_{\mathbf{h}\in[1,H]^k} g(q;\mathbf{h}) \ll H^{k-2} \sum_{b_1=1}^{q-1} \frac{|c_q(b_1)|}{\|b_1/q\|} \sum_{b_2=1}^{q-1} \frac{|c_q(b_2)|}{\|b_2/q\|} \times.$$

$$\sum_{\mathbf{b} \in [1,q]^{k-3}} |c_q(b_1 + \dots + b_{k-1})| \prod_{j=3}^{k-1} |c_q(b_j)|.$$

$$\ll H^{k-2} d(q)^2 q^2 (\log q)^2 \phi(q) d(q)^{k-3} q^{k-3}.$$

Therefore

$$\sum_{\mathbf{h}\in [1,H]^k}\sum_{1\leq q\leq Q}f(q, \mathbf{h})\ll H^{k-2}Q^{1+arepsilon}.$$

イロト 不同 トイヨト イロト

= √Q (~

• The term q = 1 contributes H^k and so Q = H gives the theorem

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

inaynard one

Bounded Gaps

Proof of Theorem 1 • The principal idea is to use the Selberg sieve to enhance the chances of finding primes.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup Maynard o

Bounded Gaps

Proof of Theorem 10

- The principal idea is to use the Selberg sieve to enhance the chances of finding primes.
- The starting point for the Selberg upper bound sieve is

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sac

 $\sum \left(\sum \lambda_q\right)^2.$ $a \in \mathcal{A} \quad q \leq R$ ala

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem

- The principal idea is to use the Selberg sieve to enhance the chances of finding primes.
- The starting point for the Selberg upper bound sieve is

 $\sum_{a\in\mathcal{A}}\Big(\sum_{q\leq R}\lambda_q\Big)^2.$

• One is planning to minimise this under the assumptions 1. $\lambda_1=1$ and 2. that

$$A_d = \sum_{\substack{a \in \mathcal{A} \\ d \mid a}} 1$$

can be approximated by $\frac{Xg(d)}{d}$ where g is multiplicative.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sac

> Robert C. Vaughan

Maynard's Theorem

- The principal idea is to use the Selberg sieve to enhance the chances of finding primes.
- The starting point for the Selberg upper bound sieve is

 $\sum_{a \in \mathcal{A}} \Big(\sum_{q \leq R} \lambda_q\Big)^2.$

w

• One is planning to minimise this under the assumptions 1. $\lambda_1 = 1$ and 2. that

$$A_d = \sum_{\substack{a \in \mathcal{A} \\ d \mid a}} 1$$

can be approximated by $\frac{Xg(d)}{d}$ where g is multiplicative. • The minimising choice of λ_q is given by

$$\lambda_q = \mu(q) \frac{S(R,q)}{S(R,1)} \prod_{p|q} \left(\frac{p}{p-g(p)} \right)$$

where $S(R,q) = \sum_{r \le R/q, (r,q)=1} \mu(r)^2 \prod_{q \ge p \le r} \frac{g(p)}{p-g(p)}.$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

Maynard o

During

Theorem 10

• The minimising choice of λ_q is given by

$$\lambda_q = \mu(q) \frac{S(R,q)}{S(R,1)} \prod_{p|q} \left(\frac{p}{p-g(p)} \right)$$

where $S(R,q) = \sum_{\substack{r \le R/q, (r,q)=1}} \mu(r)^2 \prod_{p|r} \frac{g(p)}{p-g(p)}.$

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

Ð.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • The minimising choice of λ_q is given by

$$\lambda_q = \mu(q) \frac{S(R,q)}{S(R,1)} \prod_{p|q} \left(\frac{p}{p - g(p)} \right)$$

where
$$S(R,q) = \sum_{r \leq R/q, (r,q)=1} \mu(r)^2 \prod_{p|r} \frac{g(p)}{p-g(p)}$$
.

Typically this is applied when the sieve has dimension k, e.g.

$$\sum_{p \le y} g(p) \frac{\log p}{p} = k \log y + O(1).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • The minimising choice of λ_q is given by

$$\lambda_{q} = \mu(q) \frac{S(R,q)}{S(R,1)} \prod_{p|q} \left(\frac{p}{p-g(p)} \right)$$

where
$$S(R,q) = \sum_{r \leq R/q, (r,q)=1} \mu(r)^2 \prod_{p \mid r} \frac{g(p)}{p - g(p)}$$
.

 Typically this is applied when the sieve has dimension k, e.g.

$$\sum_{p \leq y} g(p) \frac{\log p}{p} = k \log y + O(1).$$

Under this kind of condition one might expect that

$$S(R,q) \sim C(\log R/q)^k \prod_{p|q} \frac{p-g(p)}{p}$$

and so λ_q could be replaced by

$$\lambda_q = \mu(q) \frac{\log^k(R/q)}{\log^k R} = \mu(q) \left(1 - \frac{\log q}{\log R}\right)^k$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup Maynard o

Bounded Gaps

Proof of Theorem 10 • We expect that $S(R,q) \sim C(\log R/q)^k \prod_{p \mid q} \frac{p-g(p)}{p}$ and

so λ_q could be replaced by

$$\lambda_q = \mu(q) \frac{\log^k(R/q)}{\log^k R} = \mu(q) \left(1 - \frac{\log q}{\log R}\right)^k$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup Maynard o

Bounded Gaps

Proof of Theorem 10 • We expect that $S(R,q) \sim C(\log R/q)^k \prod_{p|q} \frac{p-g(p)}{p}$ and

so λ_q could be replaced by

$$\lambda_q = \mu(q) \frac{\log^k(R/q)}{\log^k R} = \mu(q) \left(1 - \frac{\log q}{\log R}\right)^k$$

 This is correct, and whilst there is some loss in precision in the final conclusion there is one significant advantage, namely that this choice of λ_q can be applied effectively to any sieving question where the dimension is k.

・ロト ・ 同ト ・ ヨト ・ ヨト

-

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 10 • We expect that $S(R,q) \sim C(\log R/q)^k \prod_{p|q} \frac{p-g(p)}{p}$ and

so λ_q could be replaced by

$$\lambda_q = \mu(q) \frac{\log^k(R/q)}{\log^k R} = \mu(q) \left(1 - \frac{\log q}{\log R}\right)^k$$

- This is correct, and whilst there is some loss in precision in the final conclusion there is one significant advantage, namely that this choice of λ_q can be applied effectively to any sieving question where the dimension is k.
 - Let 1_ℙ denote the characteristic function of the set of primes ℙ and write Z = ∏_{i=1}^k(n + h_i). Then the idea of Goldston, Pintz and Yıldırım is to construct the expression

$$\sum_{N \le n \le 2N} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{q \le R \\ q \mid Z(n;\mathbf{h})}} \lambda_q \right)^2$$

・ロト ・ 一下 ・ ト ・ ト ・ ト ・ ト

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 10 • We expect that $S(R,q) \sim C(\log R/q)^k \prod_{p|q} \frac{p-g(p)}{p}$ and

so λ_q could be replaced by

$$\lambda_q = \mu(q) \frac{\log^k(R/q)}{\log^k R} = \mu(q) \left(1 - \frac{\log q}{\log R}\right)^k$$

- This is correct, and whilst there is some loss in precision in the final conclusion there is one significant advantage, namely that this choice of λ_q can be applied effectively to any sieving question where the dimension is k.
 - Let 1_ℙ denote the characteristic function of the set of primes ℙ and write Z = ∏_{i=1}^k(n + h_i). Then the idea of Goldston, Pintz and Yıldırım is to construct the expression

$$\sum_{N \le n \le 2N} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{q \le R \\ q \mid Z(n;\mathbf{h})}} \lambda_q \right)^2$$

• If this is positive, then it follows that there are *n* such that there are at least $\lfloor \rho \rfloor + 1$ primes amongst the $n + h_j$.

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 $\sum_{N \le n \le 2N} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{q \le R \\ q \mid Z(n;\mathbf{h})}} \lambda_q \right)^2$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Э

Sac

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup Maynard of

Bounded Gaps

Proof of Theorem 1 $\sum_{N \le n \le 2N} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{q \le R \\ q \mid Z(n;\mathbf{h})}} \lambda_q \right)^2$

 A wrinkle introduced by Goldston, Pintz and Yıldırım is to use a more general λ_g of the form

$$\lambda_q = \mu(q) f\left(\frac{\log q}{\log R}\right)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

where f is at our disposal.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup Maynard on Bounded Ga $\sum_{N \le n \le 2N} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{q \le R \\ q \mid Z(n;\mathbf{h})}} \lambda_q \right)^2$

 A wrinkle introduced by Goldston, Pintz and Yıldırım is to use a more general λ_q of the form

$$\lambda_q = \mu(q) f\left(\frac{\log q}{\log R}\right)$$

イロト 不得 トイヨト イヨト ニヨー

Sac

where f is at our disposal.

• Following Maynard we will use a more sophisticated version of this.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup Maynard on Bounded Ga

Proof of Theorem 1 Let n + h denote the k-tuple n + h₁,..., n + h_k and let d denote the k-tuple d₁,..., d_k. We generally use the notation that given a k-tuple d of positive integers d denotes d₁... d_k and given another one r, then d|r means that d_j|r_j for each j. We also use [d, e] to denote the k-tuple lcm[d₁, e₁],..., lcm[d_k, e_k].

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup Maynard or

Bounded Gaps

Proof of Theorem 10

- Let n + h denote the k-tuple n + h₁,..., n + h_k and let d denote the k-tuple d₁,..., d_k. We generally use the notation that given a k-tuple d of positive integers d denotes d₁...d_k and given another one r, then d|r means that d_j|r_j for each j. We also use [d, e] to denote the k-tuple lcm[d₁, e₁],..., lcm[d_k, e_k].
- One wrinkle is to do some initial sieving for small primes so as to simplify some later expressions and s simple way to do this is to restrict our attention to a given residue class *a* modulo *q* where

$$q = \prod_{p \le Q} p, \quad Q = \log \log \log N$$
 (3)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

and N is a large integer parameter

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup Maynard on Bounded Ga

Proof of Theorem 10

- Let n + h denote the k-tuple n + h₁,..., n + h_k and let d denote the k-tuple d₁,..., d_k. We generally use the notation that given a k-tuple d of positive integers d denotes d₁...d_k and given another one r, then d|r means that d_j|r_j for each j. We also use [d, e] to denote the k-tuple lcm[d₁, e₁],..., lcm[d_k, e_k].
- One wrinkle is to do some initial sieving for small primes so as to simplify some later expressions and s simple way to do this is to restrict our attention to a given residue class *a* modulo *q* where

$$q = \prod_{p \le Q} p, \quad Q = \log \log \log N$$
 (3)

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

and N is a large integer parameter

When h is admissible we can suppose that there is an a modulo q such that for 1 ≤ j ≤ k we have (a + h_j, q) = 1.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup Maynard on Bounded Ga Let n + h denote the k-tuple n + h₁,..., n + h_k and let d denote the k-tuple d₁,..., d_k. We generally use the notation that given a k-tuple d of positive integers d denotes d₁... d_k and given another one r, then d|r means that d_j|r_j for each j. We also use [d, e] to denote the k-tuple lcm[d₁, e₁],..., lcm[d_k, e_k].

• One wrinkle is to do some initial sieving for small primes so as to simplify some later expressions and s simple way to do this is to restrict our attention to a given residue class *a* modulo *q* where

$$q = \prod_{p \le Q} p, \quad Q = \log \log \log N$$
 (3)

and N is a large integer parameter

- When h is admissible we can suppose that there is an a modulo q such that for 1 ≤ j ≤ k we have (a + h_j, q) = 1.
- To see that this holds observe that it holds for each prime divisor of q and then apply the Chinese Remainder Theorem.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $q = \prod_{p \leq Q} p$, $Q = \log \log \log N$ and N is a large integer

parameter, and when **h** is admissible there is an *a* modulo q such that for $1 \le j \le k$ we have $(a + h_j, q) = 1$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup Maynard or Bounded G • $q = \prod_{p \leq Q} p$, $Q = \log \log \log N$ and N is a large integer

parameter, and when **h** is admissible there is an *a* modulo *q* such that for $1 \le j \le k$ we have $(a + h_j, q) = 1$.

 The immediate effect of this can be seen via the heuristic argument based on the Hardy-Littlewood method which we saw earlier. If one supposes in addition that n ≡ a modulo q, then the singular series takes the shape

$$\mathfrak{S}(\mathbf{h}) = \prod_{p>Q} \left(1 - \frac{k}{p}\right) \left(1 - \frac{1}{p}\right)^{-k} \sim 1$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

for large N.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

.....

Bounded Gaps

Proof of Theorem 10 • Thus Maynard was lead to consider

$$\sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d}) \right)^2.$$

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus Maynard was lead to consider

$$\sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d}) \right)^2.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

- In the first instance we might presume to take $\lambda(\mathbf{d})=\mu(d)g(\mathbf{d})$

for some suitable g.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • Thus Maynard was lead to consider

$$\sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{d \le R \\ \mathbf{d} \mid n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d}) \right)^2.$$

- In the first instance we might presume to take $\lambda(\mathbf{d})=\mu(d)g(\mathbf{d})$

for some suitable g.

However when diagonalising the quadratic forms in the λ and trying to keep control of the support for the d it transpires that it is natural to suppose that if d is squarefree and (d, q) = 1, then

$$\lambda(\mathbf{d}) = \mu(d)d \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right).$$
(4)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • If d is squarefree and (d, q) = 1, then

$$\lambda(\mathbf{d}) = \mu(\mathbf{d})\mathbf{d} \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right).$$

人口 医水管 医水管 医水管

3

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

- The Setur
- Maynard one
- Bounded Gaps

Proof of Theorem 1 • If d is squarefree and (d, q) = 1, then

$$\lambda(\mathbf{d}) = \mu(\mathbf{d})\mathbf{d} \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right).$$

• It is further supposed that

$$\operatorname{supp} f = \mathcal{R} = \{ \mathbf{x} \in [0,1]^k : x_1 + \cdots + x_k \leq 1 \}.$$

イロト 不同 トイヨト イヨト

3

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

- The Setup
- Maynard one
- Bounded Gaps
- Proof of Theorem 1

• If d is squarefree and (d,q) = 1, then

$$\lambda(\mathbf{d}) = \mu(\mathbf{d})\mathbf{d} \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right).$$

• It is further supposed that

$$\operatorname{supp} f = \mathcal{R} = \{ \mathbf{x} \in [0,1]^k : x_1 + \cdots + x_k \leq 1 \}.$$

イロト 不得 トイヨト イヨト ニヨー

Sac

This is equivalent to r₁...r_k ≤ R, which gives natural control of the variables.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Bounded Gaps

Proof of Theorem 1 • To repeat, we consider

$$\sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d}) \right)^2.$$
(5)

and if d is squarefree and (d, q) = 1, then take

$$\lambda(\mathbf{d}) = \mu(d)d \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right).$$
(6)

We further suppose that \mathcal{F} is a class of "smooth" f satisfying

$$supp f = \mathcal{R} = \{ \mathbf{x} \in [0, 1]^k : x_1 + \cdots + x_k \le 1 \}.$$
 (7)

・ロト ・ 同ト ・ ヨト ・ ヨト

= 900

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup Maynard o

Bounded Gaps

Proof of Theorem 1 • To repeat, we consider

$$\sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d}) \right)^2.$$
(5)

and if d is squarefree and (d, q) = 1, then take

$$\lambda(\mathbf{d}) = \mu(d)d \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right).$$
(6)

We further suppose that \mathcal{F} is a class of "smooth" f satisfying

$$supp f = \mathcal{R} = \{ \mathbf{x} \in [0, 1]^k : x_1 + \cdots + x_k \le 1 \}.$$
 (7)

There are two major tasks to be undertaken. The first is to obtain a good approximation to (5) with (6) for a wide class of f in F.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

 $\left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho\right) \left(\sum_{\substack{\mathbf{d} \leq R \\ \mathbf{d} \mid n+\mathbf{h}}} \lambda(\mathbf{d})\right)^2.$ \sum N < n < 2N $n \equiv a \pmod{q}$ (d,q)=1

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Sac

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

$$\sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d}) \right)^2.$$

• This means good approximations $S^*(f)$ and $T^*(f)$ to

$$S(f) = \sum_{j=1}^{k} S_j(f)$$

where

$$S_{j}(f) = S_{j} = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_{j}) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^{2}.$$
$$T(f) = T = \sum_{\substack{N \le n \le 2N \\ n \equiv a \pmod{q}}} \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^{2}.$$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus we obtain

$$\sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d}) \right)^2$$
$$\sim S^*(f) - \rho T^*(f).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

æ

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus we obtain

$$\sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d}) \right)^2$$
$$\sim S^*(f) - \rho T^*(f).$$

イロト 不同 トイヨト イヨト

3

Sac

 We want this to be positive, but with ρ as large as possible.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus we obtain

$$\sum_{\substack{N < n \leq 2N \\ n \equiv a \pmod{q}}} \left(\sum_{j=1}^{k} \mathbf{1}_{\mathbb{P}}(n+h_j) - \rho \right) \left(\sum_{\substack{d \leq R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d}) \right)^2$$
$$\sim S^*(f) - \rho T^*(f).$$

- We want this to be positive, but with ρ as large as possible.
- This means that the second task is to choose *f* to maximise the ratio

$$\frac{S^*(f)}{T^*(f)}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • To approximate

$$S_j(f) = S_j = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_j) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^2.$$

it is natural to use the Bombieri-Vinogradov theorem.

イロト 不得 トイヨト イヨト

3

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • To approximate

$$S_j(f) = S_j = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_j) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^2.$$

it is natural to use the Bombieri-Vinogradov theorem.

 We define the *level* θ of distribution for the prime numbers to be the assumption that for every sufficiently small positive δ and every A > 0 we have

$$\sum_{m \leq x^{\theta-\delta}} \max_{(a,m)=1} \sup_{y \leq x} \left| \pi(y;m,a) - \frac{\operatorname{li}(y)}{\phi(m)} \right| \ll_{\delta,A} x(\log x)^{-A}.$$

イロト 不得 トイヨト イヨト ニヨー

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

- Maynard one
- Bounded Gaps
- Proof of Theorem 1

• To approximate

$$S_j(f) = S_j = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_j) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^2.$$

it is natural to use the Bombieri-Vinogradov theorem.

 We define the *level* θ of distribution for the prime numbers to be the assumption that for every sufficiently small positive δ and every A > 0 we have

$$\sum_{m \leq x^{\theta-\delta}} \max_{(a,m)=1} \sup_{y \leq x} \left| \pi(y;m,a) - \frac{\operatorname{li}(y)}{\phi(m)} \right| \ll_{\delta,\mathcal{A}} x(\log x)^{-\mathcal{A}}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• The Bombieri–Vinogradov theorem tells us that $\theta = \frac{1}{2}$ is permissible.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

- Maynard one
- Bounded Gaps
- Proof of Theorem 1

• To approximate

$$S_j(f) = S_j = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_j) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^2.$$

it is natural to use the Bombieri-Vinogradov theorem.

 We define the *level* θ of distribution for the prime numbers to be the assumption that for every sufficiently small positive δ and every A > 0 we have

$$\sum_{m \leq x^{\theta-\delta}} \max_{(a,m)=1} \sup_{y \leq x} \left| \pi(y;m,a) - \frac{\operatorname{li}(y)}{\phi(m)} \right| \ll_{\delta,\mathcal{A}} x(\log x)^{-\mathcal{A}}.$$

- The Bombieri–Vinogradov theorem tells us that $\theta = \frac{1}{2}$ is permissible.
- However it is useful to be able to see any consequence of any $\theta > 1/2$, especially the Elliott–Halberstam conjecture ($\theta = 1$).

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

- Maynard one
- Bounded Gaps
- Proof of Theorem 1

• To approximate

$$S_j(f) = S_j = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_j) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^2.$$

it is natural to use the Bombieri-Vinogradov theorem.

 We define the *level* θ of distribution for the prime numbers to be the assumption that for every sufficiently small positive δ and every A > 0 we have

$$\sum_{m \leq x^{\theta-\delta}} \max_{(a,m)=1} \sup_{y \leq x} \left| \pi(y;m,a) - \frac{\operatorname{li}(y)}{\phi(m)} \right| \ll_{\delta,\mathcal{A}} x(\log x)^{-\mathcal{A}}.$$

- The Bombieri–Vinogradov theorem tells us that $\theta = \frac{1}{2}$ is permissible.
- However it is useful to be able to see any consequence of any $\theta > 1/2$, especially the Elliott–Halberstam conjecture ($\theta = 1$).
- Moreover we will see that any θ > 0 is good enough for bounded gaps.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Let me remind you of the way in which the Selberg sieve worked.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- Let me remind you of the way in which the Selberg sieve worked.
- For some squarefree P and non-negative *a*(*m*) we are interested in

$$\sum_{(m,P)=1} a(m) \leq \sum_{m} a(m) \left(\sum_{\substack{d \in \mathcal{D} \\ d \mid m}} \lambda(d) \right)^2.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- Let me remind you of the way in which the Selberg sieve worked.
- For some squarefree P and non-negative *a*(*m*) we are interested in

$$\sum_{(m,P)=1} a(m) \leq \sum_{m} a(m) \left(\sum_{\substack{d \in \mathcal{D} \\ d \mid m}} \lambda(d) \right)^2$$

.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

• For a divisor closed subset of the divisors of *P* we rewrote this as

$$\sum_{d\in\mathcal{D}}\sum_{e\in\mathcal{D}}\lambda(d)\lambda(e)\sum_{\substack{m\\ [d,e]\mid m}}a(m).$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- Let me remind you of the way in which the Selberg sieve worked.
- For some squarefree P and non-negative *a*(*m*) we are interested in

$$\sum_{(m,P)=1} a(m) \leq \sum_{m} a(m) \left(\sum_{\substack{d \in \mathcal{D} \\ d \mid m}} \lambda(d) \right)^2$$

• For a divisor closed subset of the divisors of *P* we rewrote this as

$$\sum_{d\in\mathcal{D}}\sum_{e\in\mathcal{D}}\lambda(d)\lambda(e)\sum_{\substack{m\\ [d,e]\mid m}}a(m).$$

• We also supposed that for $d \in \mathcal{D}$ and some $\rho \in \mathcal{M}$ we have ____

$$\sum_{\substack{m \\ [d,e]|m}} a(m) = X \rho(d) + R_d.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sac

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

- Maynard one
- **Bounded Gaps**

Proof of Theorem 10

- Let me remind you of the way in which the Selberg sieve worked.
- For some squarefree P and non-negative *a*(*m*) we are interested in

$$\sum_{(m,P)=1} a(m) \leq \sum_{m} a(m) \left(\sum_{\substack{d \in \mathcal{D} \\ d \mid m}} \lambda(d) \right)^2$$

• For a divisor closed subset of the divisors of *P* we rewrote this as

$$\sum_{d\in\mathcal{D}}\sum_{e\in\mathcal{D}}\lambda(d)\lambda(e)\sum_{\substack{m\\ [d,e]\mid m}}a(m).$$

• We also supposed that for $d\in \mathcal{D}$ and some $\rho\in \mathcal{M}$ we have

$$\sum_{\substack{m \\ d,e]|m}} a(m) = X\rho(d) + R_d.$$

• I changed from f to ρ here for notational convenience.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • Then the main term becomes

 $X \sum \sum \rho([d, e])\lambda(d)\lambda(e).$ $d \in \mathcal{D} e \in \mathcal{D}$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Then the main term becomes

 $X\sum \sum \rho([d,e])\lambda(d)\lambda(e).$ $d \in \mathcal{D} e \in \mathcal{D}$

• We were able to diagonalise this as

$$X \sum_{l} \left(\prod_{p|l} \frac{1-\rho(p)}{\rho(p)} \right) \left(\sum_{\substack{r \ l|r}} \rho(r) \lambda(r) \right)^2.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • Then the main term becomes

$$X \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{D}}
ho([d, e]) \lambda(d) \lambda(e).$$

• We were able to diagonalise this as

$$X \sum_{l} \left(\prod_{p|l} \frac{1-\rho(p)}{\rho(p)} \right) \left(\sum_{\substack{r \ l|r}} \rho(r) \lambda(r) \right)^2.$$

• We then applied the invertible mapping

$$\omega(l) = \sum_{\substack{r \\ l \mid r}} \rho(r) \lambda(r).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • Then the main term becomes

$$X \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{D}}
ho([d, e]) \lambda(d) \lambda(e).$$

• We were able to diagonalise this as

$$X\sum_{l}\left(\prod_{p\mid l}rac{1-
ho(p)}{
ho(p)}
ight)\left(\sum_{\substack{r\\l\mid r}}
ho(r)\lambda(r)
ight)^{2}.$$

• We then applied the invertible mapping

$$\omega(l) = \sum_{\substack{r \\ l \mid r}} \rho(r) \lambda(r).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

• Note that at this stage λ can be pretty arbitrary, and certainly does not have to be optimal.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • Then the main term becomes

$$X \sum_{d \in \mathcal{D}} \sum_{e \in \mathcal{D}} \rho([d, e]) \lambda(d) \lambda(e).$$

• We were able to diagonalise this as

$$X \sum_{l} \left(\prod_{p \mid l} \frac{1 - \rho(p)}{\rho(p)} \right) \left(\sum_{\substack{r \ l \mid r}} \rho(r) \lambda(r) \right)^2.$$

• We then applied the invertible mapping

$$\omega(l) = \sum_{\substack{r \\ l \mid r}} \rho(r) \lambda(r).$$

- Note that at this stage λ can be pretty arbitrary, and certainly does not have to be optimal.
- We want to carry this out for S_j(f) and T(f). There are some differences of detail, but not of principle.

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$S_j(f) = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_j) \Big(\sum_{\substack{d \le R \\ \mathbf{d} \mid n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^2.$$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

•
$$S_j(f) = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_j) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^2.$$

When we looked at k dimensional sieves previously we would have considered d|(n + h₁)...(n + h_k). Now we are being more prescriptive in that we assume some control over (d, n + h_k) = d_i. Thus we suppose that d|n + h.

イロト 不得 トイヨト イヨト ニヨー

Sar

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$S_j(f) = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_j) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^2.$$

- When we looked at k dimensional sieves previously we would have considered d|(n + h₁)...(n + h_k). Now we are being more prescriptive in that we assume some control over (d, n + h_k) = d_j. Thus we suppose that d|n + h.
- I believe this was done to give better control over the *d_i* in the later analysis, but I do not think it loses anything of consequence.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$S_j(f) = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_j) \Big(\sum_{\substack{d \le R \\ \mathbf{d} \mid n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^2.$$

- When we looked at k dimensional sieves previously we would have considered d|(n + h₁)...(n + h_k). Now we are being more prescriptive in that we assume some control over (d, n + h_k) = d_j. Thus we suppose that d|n + h.
- I believe this was done to give better control over the *d_i* in the later analysis, but I do not think it loses anything of consequence.
- Since we have to deal with *T*(*f*) as well, we are pretty much forced to choose λ(**d**) corresponding to a *k*-dimensional sieve, although in *S_j(f)* since one of the variables is prescribed to be prime we would only need a *k* 1-dimensional sieve.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have

$$S_{j}(f) = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_{j}) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^{2}$$
$$= \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q} \\ n+h_{j} \in \mathbb{P}}} \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ d_{j}=1, (d,q)=1}} \lambda(\mathbf{d})\Big)^{2}.$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Ð.

990

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have

$$S_{j}(f) = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_{j}) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^{2}$$
$$= \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q} \\ n+h_{j} \in \mathbb{P}}} \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ \mathbf{d}_{j}=1, (d,q)=1}} \lambda(\mathbf{d})\Big)^{2}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

 Thus although we gain a (log N)⁻¹ by using Bombieri-Vinogradov, we do not get anything small for the sum over d₁ so we lose back something like a log R.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • We have

$$S_{j}(f) = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_{j}) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^{2}$$
$$= \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q} \\ n+h_{j} \in \mathbb{P}}} \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ \mathbf{d}_{j}=1, (d,q)=1}} \lambda(\mathbf{d})\Big)^{2}.$$

- Thus although we gain a (log N)⁻¹ by using Bombieri-Vinogradov, we do not get anything small for the sum over d₁ so we lose back something like a log R.
- On the other hand, since the prime factors p of the d satisfy p > Q = log log log N, any factors like

$$\prod_{p\mid d} \frac{p^k - kp^{k-1}}{(p-1)^k}$$

are going to be close to 1, at least on average and so won't differ in any important way from the k - 1 version $z_{3,2,2}$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Recall that we plan to take

$$\lambda(\mathbf{d}) = \mu(d)d \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right)$$

with

$$\operatorname{supp} f = \mathcal{R} = \{ x \in [0,1]^k : x_1 + \dots + x_k \leq 1 \}.$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Ð.

990

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Recall that we plan to take

$$\lambda(\mathbf{d}) = \mu(\mathbf{d})\mathbf{d} \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right)$$

with

supp
$$f = \mathcal{R} = \{x \in [0, 1]^k : x_1 + \dots + x_k \leq 1\}.$$

• In the 1-dimensional sieve we had f = 1, and showing that

$$\mu(d)d\sum_{\substack{r\leq R\\d\mid r}}\frac{\mu(r)^2}{\phi(r)}=\frac{\mu(d)d}{\phi(d)}\sum_{\substack{s\leq R/d\\(s,d)=1}}\frac{\mu(s)^2}{\phi(s)}\sim \mu(d)\log\frac{R}{d}$$

イロト 不同 トイヨト イヨト

3

Sac

was relatively easy.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Recall that we plan to take

$$\lambda(\mathbf{d}) = \mu(d)d \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right)$$

with

supp
$$f = \mathcal{R} = \{x \in [0, 1]^k : x_1 + \dots + x_k \leq 1\}.$$

• In the 1-dimensional sieve we had f = 1, and showing that

$$\mu(d)d\sum_{\substack{r\leq R\\d\mid r}}\frac{\mu(r)^2}{\phi(r)} = \frac{\mu(d)d}{\phi(d)}\sum_{\substack{s\leq R/d\\(s,d)=1}}\frac{\mu(s)^2}{\phi(s)} \sim \mu(d)\log\frac{R}{d}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

was relatively easy.

• Now we need to entertain the possibility that *f* will be more complicated and we need to apply partial summation, maybe in more than one dimension.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Recall that we plan to take

$$\lambda(\mathbf{d}) = \mu(\mathbf{d})\mathbf{d} \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right)$$

with

supp
$$f = \mathcal{R} = \{x \in [0, 1]^k : x_1 + \dots + x_k \leq 1\}.$$

• In the 1-dimensional sieve we had f = 1, and showing that

$$\mu(d)d\sum_{\substack{r\leq R\\d\mid r}}\frac{\mu(r)^2}{\phi(r)}=\frac{\mu(d)d}{\phi(d)}\sum_{\substack{s\leq R/d\\(s,d)=1}}\frac{\mu(s)^2}{\phi(s)}\sim \mu(d)\log\frac{R}{d}$$

3

Sar

was relatively easy.

- Now we need to entertain the possibility that *f* will be more complicated and we need to apply partial summation, maybe in more than one dimension.
- We need to set up some notation.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • Let \mathcal{R}_j denote the set of *k*-tuples $t_1, \ldots, t_{j-1}, t_{j+1}, \ldots, t_k$ with $\mathbf{t} \in \mathcal{R}$ for some t_j .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- Let \mathcal{R}_j denote the set of *k*-tuples $t_1, \ldots, t_{j-1}, t_{j+1}, \ldots, t_k$ with $\mathbf{t} \in \mathcal{R}$ for some t_j .
- We define \mathcal{F} to be the class of functions f, not identically 0, defined on \mathcal{R} such that for each j, given $\mathbf{t}^* = t_1, \ldots, t_{j-1}, t_{j+1}, \ldots, t_k$ with $t_i \ge 0$ and $t_1 + \cdots + t_{j-1} + t_{j+1} + \cdots + t_k \le 1$ the function $f_j(t_j) = f(\mathbf{t})$ is absolutely continuous on $[0, 1 t_1 \cdots t_{j-1} t_{j+1} \cdots t_k]$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- Let \mathcal{R}_j denote the set of *k*-tuples $t_1, \ldots, t_{j-1}, t_{j+1}, \ldots, t_k$ with $\mathbf{t} \in \mathcal{R}$ for some t_j .
- We define \mathcal{F} to be the class of functions f, not identically 0, defined on \mathcal{R} such that for each j, given

$$\mathbf{t}^* = t_1, \dots, t_{j-1}, t_{j+1}, \dots, t_k$$
 with $t_i \ge 0$ and
 $t_1 + \dots + t_{j-1} + t_{j+1} + \dots + t_k \le 1$ the function
 $f_j(t_j) = f(\mathbf{t})$ is absolutely continuous on
 $[0, 1 - t_1 - \dots - t_{j-1} - t_{j+1} - \dots - t_k]$.

 Given an f ∈ F it is useful first to extend its definition to [0,1]^k by taking it to be 0 outside R and then to define a suitable metric.

$$\mathcal{F} = \sup_{\mathbf{t}\in\mathcal{R}} |f(\mathbf{t})| + \sum_{j=1}^k \sup_{\mathbf{t}^*\in\mathcal{R}_j} \int_0^1 \left| rac{\partial f}{\partial t_j}(\mathbf{t})
ight| dt_j.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps Proof of Theorem 6 (Maynard)

Let $k \ge 2$. Suppose the primes have level of distribution θ and $N > N_0(\delta)$. Let $R = N^{\frac{\theta}{2} - \delta}$, and Q, q, \mathcal{R} and $f \in \mathcal{F}$ be as above. Assume **h** is admissible and that for each j,

$$(a + h_j, q) = 1.$$
 Let $J = \int_{[0,1]^k} f(\mathbf{t})^2 d\mathbf{t}$,

$$I_j = \int_{[0,1]^{k-1}} \left(\int_0^1 f(\mathbf{t}) dt_j\right)^2 dt_1 \dots dt_{j-1} dt_{j+1} \dots dt_k,$$

$$S(f) = \frac{(1+o(1))\phi(q)^k N(\log R)^{k+1}}{q^{k+1}\log N} \sum_{j=1}^k I_j$$

and
$$T(f) = \frac{(1+o(1))\phi(q)^k N(\log R)^k}{q^{k+1}} J$$
 as $N \to \infty$. In particular $\frac{S(f)}{T(f)} = (1+o(1))\left(\frac{\theta}{2} - \delta\right) \frac{\sum_{j=1}^k I_j}{J}$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • The proof is divided into several stages. Fortunately the treatments of *S*(*f*) and *T*(*f*) are similar.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- The proof is divided into several stages. Fortunately the treatments of *S*(*f*) and *T*(*f*) are similar.
- Initially we do not assume anything about the $\lambda(\mathbf{d})$ apart from supposing that the $\lambda(\mathbf{d})$ are general real valued functions with support satisfying $d_1 \dots d_k = d \leq R$, (d, q) = 1 and d squarefree.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- The proof is divided into several stages. Fortunately the treatments of *S*(*f*) and *T*(*f*) are similar.
- Initially we do not assume anything about the λ(d) apart from supposing that the λ(d) are general real valued functions with support satisfying d₁...d_k = d ≤ R, (d, q) = 1 and d squarefree.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Of course, then $(d_i, d_j) = 1$ when $i \neq j$.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- The proof is divided into several stages. Fortunately the treatments of *S*(*f*) and *T*(*f*) are similar.
- Initially we do not assume anything about the λ(d) apart from supposing that the λ(d) are general real valued functions with support satisfying d₁...d_k = d ≤ R, (d, q) = 1 and d squarefree.
- Of course, then $(d_i, d_j) = 1$ when $i \neq j$.
- We begin with the diagonalisation process, and it is useful to define the multiplicative function $\phi_2(n)$ by $\phi_2(p) = p 2$ and $\phi_2(p^t) = 0$ when $t \ge 2$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- The proof is divided into several stages. Fortunately the treatments of *S*(*f*) and *T*(*f*) are similar.
- Initially we do not assume anything about the λ(d) apart from supposing that the λ(d) are general real valued functions with support satisfying d₁...d_k = d ≤ R, (d, q) = 1 and d squarefree.
- Of course, then $(d_i, d_j) = 1$ when $i \neq j$.
- We begin with the diagonalisation process, and it is useful to define the multiplicative function φ₂(n) by φ₂(p) = p − 2 and φ₂(p^t) = 0 when t ≥ 2.
- Then the diagonalisation process can be summarised by the following lemma

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps Proof of

Lemma 7

For j = 1, ..., k let

$$\kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}^{j}\frac{\lambda(\mathbf{d})}{\phi(d)},$$

where \sum^{j} indicates that the summation variable is a k-tuple, say **d**, which is restricted by $d_{i} = 1$, and let

$$\kappa(\mathbf{r}) = \mu(r)\phi(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}\frac{\lambda(\mathbf{d})}{d}.$$

Then
$$\frac{\mu(d)}{\phi(d)}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r}\\\mathbf{d}\mid\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(\mathbf{r})} \text{ and } \frac{\mu(d)}{d}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r}\\\mathbf{d}\mid\mathbf{r}}} \frac{\kappa(\mathbf{r})}{\phi(\mathbf{r})}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

• To summarize

$$\kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}^j \frac{\lambda(\mathbf{d})}{\phi(d)},$$

$$\lambda(\mathbf{d}) = \mu(\mathbf{d})\phi(\mathbf{d})\sum_{\substack{\mathbf{r}\\\mathbf{d}\mid\mathbf{r}}}^{j}\frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(\mathbf{r})},$$

$$\kappa(\mathbf{r}) = \mu(r)\phi(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}rac{\lambda(\mathbf{d})}{d} \text{ and } \lambda(\mathbf{d}) = \mu(d)d\sum_{\substack{\mathbf{r}\\\mathbf{d}\mid\mathbf{r}}}rac{\kappa(\mathbf{r})}{\phi(r)}.$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

€ 990

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

• To summarize

$$\kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}^j \frac{\lambda(\mathbf{d})}{\phi(d)},$$

$$\lambda(\mathbf{d}) = \mu(\mathbf{d})\phi(\mathbf{d})\sum_{\substack{\mathbf{r}\ \mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(\mathbf{r})},$$

$$\kappa(\mathbf{r}) = \mu(r)\phi(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}\frac{\lambda(\mathbf{d})}{d} \text{ and } \lambda(\mathbf{d}) = \mu(d)d\sum_{\substack{\mathbf{r}\\\mathbf{d}\mid\mathbf{r}}}\frac{\kappa(\mathbf{r})}{\phi(r)}.$$

In the k dimensional case this looks familiar and the k - 1 dimensional case does not look too bad. However the use of k-tuples d, etc., makes for some complications.

> Robert C. Vaughan

Maynard one

• This is Möbius inversion. Consider $\sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)}$

・ロト ・ 四ト ・ ヨト ・ ヨト

3

990

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- This is Möbius inversion. Consider $\sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)}$
- and substitute in the definition of κ_i to obtain

$$\sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}}}^{j} \mu(\mathbf{r}) \sum_{\substack{\mathbf{s}\\\mathbf{r}|\mathbf{s}}}^{j} \frac{\lambda(\mathbf{s})}{\phi(\mathbf{s})} = \sum_{\substack{\mathbf{d}|\mathbf{s}}}^{j} \frac{\lambda(\mathbf{s})}{\phi(\mathbf{s})} \sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}|\mathbf{s}}}^{\mathbf{r}} \mu(\mathbf{r})$$
$$= \sum_{\mathbf{t}}^{j} \frac{\lambda(\mathbf{dt})}{\phi(\mathbf{dt})} \mu(\mathbf{d}) \sum_{\substack{\mathbf{u}\\\mathbf{u}|\mathbf{t}}}^{\mathbf{u}} \mu(\mathbf{u}).$$

Note that the s = dt are square free, the t_i are pairwise coprime, and hence the u_i are pairwise coprime and so are the d_i . Also (t, d) = 1. Thus the u_i are free to range over a complete set of divisors of t_i .

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Sac

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- This is Möbius inversion. Consider $\sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)}$
- and substitute in the definition of κ_j to obtain

$$\sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}}}^{j} \mu(\mathbf{r}) \sum_{\substack{\mathbf{s}\\\mathbf{r}|\mathbf{s}}}^{j} \frac{\lambda(\mathbf{s})}{\phi(\mathbf{s})} = \sum_{\substack{\mathbf{d}|\mathbf{s}}}^{j} \frac{\lambda(\mathbf{s})}{\phi(\mathbf{s})} \sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}|\mathbf{s}}}^{\mathbf{r}} \mu(\mathbf{r})$$
$$= \sum_{\mathbf{t}}^{j} \frac{\lambda(\mathbf{dt})}{\phi(\mathbf{dt})} \mu(\mathbf{d}) \sum_{\substack{\mathbf{u}\\\mathbf{u}|\mathbf{t}}}^{\mathbf{u}} \mu(\mathbf{u}).$$

Note that the s = dt are square free, the t_i are pairwise coprime, and hence the u_i are pairwise coprime and so are the d_i . Also (t, d) = 1. Thus the u_i are free to range over a complete set of divisors of t_i .

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

• Also
$$s_j = 1$$
, so $d_j = t_j = 1$.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- This is Möbius inversion. Consider $\sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)}$
- and substitute in the definition of κ_j to obtain

$$\sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}}}^{j} \mu(\mathbf{r}) \sum_{\substack{\mathbf{s}\\\mathbf{r}|\mathbf{s}}}^{j} \frac{\lambda(\mathbf{s})}{\phi(\mathbf{s})} = \sum_{\substack{\mathbf{d}|\mathbf{s}}}^{j} \frac{\lambda(\mathbf{s})}{\phi(\mathbf{s})} \sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}|\mathbf{s}}}^{\mathbf{r}} \mu(\mathbf{r})$$
$$= \sum_{\mathbf{t}}^{j} \frac{\lambda(\mathbf{dt})}{\phi(\mathbf{dt})} \mu(\mathbf{d}) \sum_{\substack{\mathbf{u}\\\mathbf{u}|\mathbf{t}}}^{\mathbf{u}} \mu(\mathbf{u}).$$

Note that the s = dt are square free, the t_i are pairwise coprime, and hence the u_i are pairwise coprime and so are the d_i . Also (t, d) = 1. Thus the u_i are free to range over a complete set of divisors of t_i .

- Also $s_j = 1$, so $d_j = t_j = 1$.
- The sum over u_i is 0 unless $t_i = 1$. Thus it all collapses down to $\frac{\mu(d)}{\phi(d)}\lambda(\mathbf{d})$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- This is Möbius inversion. Consider $\sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)}$
- and substitute in the definition of κ_j to obtain

$$\sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}}}^{j} \mu(\mathbf{r}) \sum_{\substack{\mathbf{s}\\\mathbf{r}|\mathbf{s}}}^{j} \frac{\lambda(\mathbf{s})}{\phi(\mathbf{s})} = \sum_{\substack{\mathbf{d}|\mathbf{s}}}^{j} \frac{\lambda(\mathbf{s})}{\phi(\mathbf{s})} \sum_{\substack{\mathbf{r}\\\mathbf{d}|\mathbf{r}|\mathbf{s}}}^{\mathbf{r}} \mu(\mathbf{r})$$
$$= \sum_{\mathbf{t}}^{j} \frac{\lambda(\mathbf{dt})}{\phi(\mathbf{dt})} \mu(\mathbf{d}) \sum_{\substack{\mathbf{u}\\\mathbf{u}|\mathbf{t}}}^{\mathbf{u}} \mu(\mathbf{u}).$$

Note that the s = dt are square free, the t_i are pairwise coprime, and hence the u_i are pairwise coprime and so are the d_i . Also (t, d) = 1. Thus the u_i are free to range over a complete set of divisors of t_i .

- Also $s_j = 1$, so $d_j = t_j = 1$.
- The sum over u_i is 0 unless $t_i = 1$. Thus it all collapses down to $\frac{\mu(d)}{\phi(d)}\lambda(\mathbf{d})$.
- The other inversion formula follows in the same way.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1

• The core of the proof is the following lemma.

Lemma 8

Let

$$K_j = \max_{\mathbf{r}} |\kappa_j(\mathbf{r})|, \quad K = \max_{\mathbf{r}} |\kappa(\mathbf{r})|.$$

Then

$$S_j(f) = \frac{N}{\phi(q)\log N} \sum_{\mathbf{r}}^j \frac{\kappa_j(\mathbf{r})^2}{\phi_2(r)} + O\left(\frac{K_j^2 \phi(q)^{k-2} N(\log R)^{k-2}}{q^{k-1}Q}\right)$$

and

$$T(f) = \frac{N}{q} \sum_{\mathbf{r}} \frac{\kappa(\mathbf{r})^2}{\phi(\mathbf{r})} + O\left(\frac{K^2 N(\log R)^k}{qQ}\right).$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sac

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1

Let
$$K_j = \max_{\mathbf{r}} |\kappa_j(\mathbf{r})|$$
, $K = \max_{\mathbf{r}} |\kappa(\mathbf{r})|$. Then
 $S_j(f) = \frac{N}{\phi(q) \log N} \sum_{\mathbf{r}}^j \frac{\kappa_j(\mathbf{r})^2}{\phi_2(r)} + O\left(\frac{K_j^2 \phi(q)^{k-2} N(\log R)^{k-2}}{q^{k-1}Q}\right)$

ヘロト 人間 ト 人造 ト 人造 ト

æ

990

and
$$T(f) = \frac{N}{q} \sum_{\mathbf{r}} \frac{\kappa(\mathbf{r})^2}{\phi(\mathbf{r})} + O\left(\frac{K^2 N(\log R)^k}{qQ}\right).$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Let
$$K_j = \max_{\mathbf{r}} |\kappa_j(\mathbf{r})|$$
, $K = \max_{\mathbf{r}} |\kappa(\mathbf{r})|$. Then
 $S_j(f) = \frac{N}{\phi(q) \log N} \sum_{\mathbf{r}}^j \frac{\kappa_j(\mathbf{r})^2}{\phi_2(r)} + O\left(\frac{K_j^2 \phi(q)^{k-2} N(\log R)^k}{q^{k-1}Q}\right)$

and
$$T(f) = \frac{N}{q} \sum_{\mathbf{r}} \frac{\kappa(\mathbf{r})^2}{\phi(r)} + O\left(\frac{K^2 N(\log R)^k}{qQ}\right).$$

If κ(r) were normalised so that κ(r) ≈ (log R)^{-k}, then we would have

$$\sum_{\mathbf{r}} \frac{\kappa(\mathbf{r})^2}{\phi(\mathbf{r})} \approx (\log R)^{-2k} \sum_{r_1 \dots r_k \leq R} \frac{\mu(r_1 \dots r_k)^2}{\phi(r_1 \dots r_k)} \approx (\log R)^{-k}.$$

イロト 不得 トイヨト イヨト

3

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Let
$$K_j = \max_{\mathbf{r}} |\kappa_j(\mathbf{r})|$$
, $K = \max_{\mathbf{r}} |\kappa(\mathbf{r})|$. Then
 $S_j(f) = \frac{N}{\phi(q) \log N} \sum_{\mathbf{r}}^j \frac{\kappa_j(\mathbf{r})^2}{\phi_2(r)} + O\left(\frac{K_j^2 \phi(q)^{k-2} N(\log R)}{q^{k-1}Q}\right)$

and
$$T(f) = \frac{N}{q} \sum_{\mathbf{r}} \frac{\kappa(\mathbf{r})^2}{\phi(r)} + O\left(\frac{K^2 N(\log R)^k}{qQ}\right).$$

If κ(r) were normalised so that κ(r) ≈ (log R)^{-k}, then we would have

$$\sum_{\mathbf{r}} \frac{\kappa(\mathbf{r})^2}{\phi(\mathbf{r})} \approx (\log R)^{-2k} \sum_{r_1 \dots r_k \leq R} \frac{\mu(r_1 \dots r_k)^2}{\phi(r_1 \dots r_k)} \approx (\log R)^{-k}.$$

• Likewise $\sum_{\mathbf{r}}^{j} \frac{\kappa_{j}(\mathbf{r})^{2}}{\phi_{2}(\mathbf{r})} \approx (\log R)^{1-k}$. So we are in the right ballpark!

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Consider first

$$S_j(f) = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_j) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^2$$

. We need to insert the information about distribution into residue classes and in the main term replace $\lambda(\mathbf{d})$ by $\kappa_i(\mathbf{d})$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • Consider first

$$S_j(f) = \sum_{\substack{N < n \le 2N \\ n \equiv a \pmod{q}}} \mathbf{1}_{\mathbb{P}}(n+h_j) \Big(\sum_{\substack{d \le R \\ \mathbf{d}|n+\mathbf{h} \\ (d,q)=1}} \lambda(\mathbf{d})\Big)^2$$

~

・ロット (雪) (キョット (日)) ヨー

Sac

We need to insert the information about distribution into residue classes and in the main term replace λ(d) by κ_j(d).
Squaring out we obtain

$$S_j(f) = \sum_{\substack{\mathbf{d}, \mathbf{e} \\ d_j = e_j = 1}} \lambda(\mathbf{d}) \lambda(\mathbf{e}) \sum_{\substack{N < n \le 2N \\ [\mathbf{d}, \mathbf{e}] | n + \mathbf{h} \\ n \equiv a \mod a}} \mathbf{1}_{\mathbb{P}}(n + h_j).$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Squaring out we obtain

$$S_j(f) = \sum_{\substack{\mathbf{d}, \mathbf{e} \\ d_j = e_j = 1}} \lambda(\mathbf{d}) \lambda(\mathbf{e}) \sum_{\substack{N < n \le 2N \\ [\mathbf{d}, \mathbf{e}] \mid n + \mathbf{h} \\ n \equiv a \bmod q}} \mathbf{1}_{\mathbb{P}}(n + h_j).$$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Squaring out we obtain

$$S_j(f) = \sum_{\substack{\mathbf{d}, \mathbf{e} \ d_j = e_j = 1}} \lambda(\mathbf{d}) \lambda(\mathbf{e}) \sum_{\substack{N < n \le 2N \ [\mathbf{d}, \mathbf{e}] \mid n + \mathbf{h} \ n \equiv a mod q}} \mathbf{1}_{\mathbb{P}}(n + h_j).$$

• We recall that for $\lambda(\mathbf{d}) \neq 0$ we have d squarefree and (d, q) = 1. Therefore $(d_u, d_v) = 1$ when $u \neq v$. Likewise for \mathbf{e} . Also if $p|n + h_u$ and $p|n + h_v$, then $p|h_v - h_u$ and this is impossible since $p > \log \log \log N > \max |h_v - h_u|$. Thus, when $u \neq v$, $([d_u, e_u], [d_v, e_v]) = 1$, whence $(d_u, e_v) = 1$. Since $d_j = e_j = 1$ we have $[d_j, e_j] = 1$. Hence in the inner sum we are left with the system of congruences $n \equiv -h_i \pmod{[d_i, e_i]}$ $i \neq j$ and $n \equiv a \pmod{q}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 10 • Squaring out we obtain

$$S_j(f) = \sum_{\substack{\mathbf{d}, \mathbf{e} \ d_j = e_j = 1}} \lambda(\mathbf{d}) \lambda(\mathbf{e}) \sum_{\substack{N < n \le 2N \ [\mathbf{d}, \mathbf{e}] \mid n + \mathbf{h} \ n \equiv a mod q}} \mathbf{1}_{\mathbb{P}}(n + h_j).$$

- We recall that for $\lambda(\mathbf{d}) \neq 0$ we have d squarefree and (d, q) = 1. Therefore $(d_u, d_v) = 1$ when $u \neq v$. Likewise for \mathbf{e} . Also if $p|n + h_u$ and $p|n + h_v$, then $p|h_v h_u$ and this is impossible since $p > \log \log \log N > \max |h_v h_u|$. Thus, when $u \neq v$, $([d_u, e_u], [d_v, e_v]) = 1$, whence $(d_u, e_v) = 1$. Since $d_j = e_j = 1$ we have $[d_j, e_j] = 1$. Hence in the inner sum we are left with the system of congruences $n \equiv -h_i \pmod{[d_i, e_i]}$ $i \neq j$ and $n \equiv a \pmod{q}$.
- Then the innermost sum can be rewritten as

$$\sum_{\substack{N+h_j$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 Thus

 \sum $S_j(f) = \sum \lambda(\mathbf{d})\lambda(\mathbf{e})$ 1. $\overline{\mathbf{d},\mathbf{e}}$ $d_j = e_j = 1$ $N+h_i$ $p \equiv h_i - h_i \mod [d_i, e_i]$ $(i \neq j)$ $p \equiv a + h_i \mod q$

・ロット 御 マス ほう きゅう

э

Sac

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus

$$S_j(f) = \sum_{\substack{\mathbf{d}, \mathbf{e} \\ d_j = e_j = 1}} \lambda(\mathbf{d}) \lambda(\mathbf{e}) \sum_{\substack{N+h_j$$

イロト 不得 トイヨト イヨト

3

Sac

• We have $(a + h_j, q) = 1$ and $(h_j - h_i, de) = 1 (i \neq j)$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus

$$S_j(f) = \sum_{\substack{\mathbf{d}, \mathbf{e} \\ d_j = e_j = 1}} \lambda(\mathbf{d}) \lambda(\mathbf{e}) \sum_{\substack{N+h_j$$

• We have
$$(a + h_j, q) = 1$$
 and $(h_j - h_i, de) = 1 (i \neq j)$.
• Let $m = q \prod_{i=1}^{k} [d_i, e_i], X_j = \int_{N+h_j}^{2N+h_j} \frac{dt}{\log t}$ and

$$E = \sum_{\mathbf{d},\mathbf{e}}^{*} \left| \lambda(\mathbf{d})\lambda(\mathbf{e}) \right| \max_{(b,m)=1} \sup_{x \leq 2N+H} \left| \pi(x;m,b) - \frac{\mathrm{li}(x)}{\phi(m)} \right|$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

where $\sum_{i=1}^{*}$ indicates the restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$ when $u \neq v$, and $H = \max_j h_j$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus

$$S_j(f) = \sum_{\substack{\mathbf{d}, \mathbf{e} \\ d_j = e_j = 1}} \lambda(\mathbf{d}) \lambda(\mathbf{e}) \sum_{\substack{N+h_j$$

• We have
$$(a + h_j, q) = 1$$
 and $(h_j - h_i, de) = 1$ $(i \neq j)$.
• Let $m = q \prod_{i=1}^{k} [d_i, e_i], X_j = \int_{N+h_j}^{2N+h_j} \frac{dt}{\log t}$ and

$$E = \sum_{\mathbf{d},\mathbf{e}}^{*} |\lambda(\mathbf{d})\lambda(\mathbf{e})| \max_{(b,m)=1} \sup_{x \le 2N+H} \left| \pi(x;m,b) - \frac{\mathrm{li}(x)}{\phi(m)} \right|$$

where $\sum_{i=1}^{s}$ indicates the restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$ when $u \neq v$, and $H = \max_j h_j$.

Then

$$S_j(f) = X_j \sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} + O(E).$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • We need to bound the $\lambda(\mathbf{d})$. Recall that by Lemma 7

$$\frac{\mu(d)}{\phi(d)}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r} \\ \mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)}$$

э

590

> Robert C. Vaughan

Maynard one

• We need to bound the $\lambda(\mathbf{d})$. Recall that by Lemma 7

$$\frac{\mu(d)}{\phi(d)}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r} \\ \mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)}$$

• Hence

 $\mathbf{d}, d_i =$

$$\begin{split} \max_{\mathbf{i},d_j=1} |\lambda(\mathbf{d})| &\leq \max_{\mathbf{d},d_j=1} \phi(d) \sum_{\substack{\mathbf{r} \in \mathcal{D} \\ \mathbf{d} \mid \mathbf{r} \\ (d,q)=1}}^{j} \frac{\mathcal{K}_{j} \mu(\mathbf{r})^2}{\phi_2(\mathbf{r})} \\ &= \mathcal{K}_{j} \max_{\mathbf{d}} \frac{\phi(d)}{\phi_2(d)} \sum_{\substack{\mathbf{s} \mathbf{d} \in \mathcal{D} \\ (s,dq)=1}}^{j} \frac{\mu(s)^2}{\phi_2(s)} \\ &\leq \mathcal{K}_{j} \max_{\mathbf{d}} \frac{\phi(d)}{\phi_2(d)} \prod_{\substack{Q$$

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト 3 990

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We need to bound the $\lambda(\mathbf{d})$. Recall that by Lemma 7

$$\frac{\mu(d)}{\phi(d)}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r} \\ \mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)}$$

Hence

$$\begin{split} \max_{\mathbf{d},d_{j}=1} |\lambda(\mathbf{d})| &\leq \max_{\mathbf{d},d_{j}=1} \phi(d) \sum_{\substack{\mathbf{r} \in \mathcal{D} \\ \mathbf{d}|\mathbf{r} \\ (d,q)=1}}^{j} \frac{\mathcal{K}_{j}\mu(\mathbf{r})^{2}}{\phi_{2}(\mathbf{r})} \\ &= \mathcal{K}_{j} \max_{\mathbf{d}} \frac{\phi(d)}{\phi_{2}(d)} \sum_{\substack{\mathbf{s} \mathbf{d} \in \mathcal{D} \\ (s,dq)=1}}^{j} \frac{\mu(\mathbf{s})^{2}}{\phi_{2}(\mathbf{s})} \\ &\leq \mathcal{K}_{j} \max_{\mathbf{d}} \frac{\phi(d)}{\phi_{2}(d)} \prod_{\substack{Q
• Similarly max $|\lambda(\mathbf{d})| \ll \mathcal{K}(\log R)^{k}.$$$

э

Sac

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Recall the error

$$E = \sum_{\mathbf{d},\mathbf{e}}^{*} |\lambda(\mathbf{d})\lambda(\mathbf{e})| \max_{(b,m)=1} \sup_{x \le 2N+H} \left| \pi(x;m,b) - \frac{\mathrm{li}(x)}{\phi(m)} \right|$$

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

990

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 1 Recall the error

$$E = \sum_{\mathbf{d},\mathbf{e}}^{*} |\lambda(\mathbf{d})\lambda(\mathbf{e})| \max_{(b,m)=1} \sup_{x \leq 2N+H} \left| \pi(x;m,b) - \frac{\mathrm{li}(x)}{\phi(m)} \right|$$

イロト 不同 トイヨト イヨト

3

Sac

• Here m/q depends on the **d**, **e**. We need to know how many times the same *m* can arise.

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • Now consider the number of ways that the modulus m/q can arise in E.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- Now consider the number of ways that the modulus m/q can arise in E.
- In other words, how many choices of $d_1, \ldots, d_k, e_1, \ldots, e_k$ give rise to m?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- Now consider the number of ways that the modulus m/q can arise in E.
- In other words, how many choices of $d_1, \ldots, d_k, e_1, \ldots, e_k$ give rise to m?
- Since $(d_u, e_v) = 1$ for all $u \neq v$, it follows that m/q, and so m, is squarefree.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- Now consider the number of ways that the modulus m/q can arise in E.
- In other words, how many choices of $d_1, \ldots, d_k, e_1, \ldots, e_k$ give rise to m?
- Since $(d_u, e_v) = 1$ for all $u \neq v$, it follows that m/q, and so m, is squarefree.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Also as d₁...d_k | ∏^k_{i=1}[d_i, e_i] = m/q and d_j = 1 the number of possibilities for d is at most d_k(m/q), and likewise for e.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1(

- Now consider the number of ways that the modulus m/q can arise in E.
- In other words, how many choices of $d_1, \ldots, d_k, e_1, \ldots, e_k$ give rise to m?
- Since $(d_u, e_v) = 1$ for all $u \neq v$, it follows that m/q, and so m, is squarefree.
- Also as d₁...d_k | ∏^k_{i=1}[d_i, e_i] = m/q and d_j = 1 the number of possibilities for d is at most d_k(m/q), and likewise for e.
- Thus $E \ll K_j^2 (\log R)^{2k} E'$ where E' =

$$\sum_{m\leq qR^2}\mu(m)^2d_k(m)^2\max_{(b,m)=1}\sup_{x\leq 2N+H}\left|\pi(x;m,b)-\frac{\mathrm{li}(x)}{\phi(m)}\right|.$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

• We have
$$E \ll K_j^2 (\log R)^{2k} E'$$
 where $E' = \sum_{m \le qR^2} \mu(m)^2 d_k(m)^2 \max_{\substack{(b,m)=1 \ x \le 2N+H}} \sup_{x \le 2N+H} \left| \pi(x;m,b) - \frac{\operatorname{li}(x)}{\phi(m)} \right|.$

ヘロト 人間 ト 人目 ト 人目 ト

æ

990

1

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

• We have
$$E \ll K_j^2 (\log R)^{2k} E'$$
 where $E' = \sum_{m \le qR^2} \mu(m)^2 d_k(m)^2 \max_{(b,m)=1} \sup_{x \le 2N+H} \left| \pi(x;m,b) - \frac{\operatorname{li}(x)}{\phi(m)} \right|.$

・ロット (雪) (キョット (日)) ヨー

Sac

 The extra factor d_k(m)² is a minor irritant in the application of the Bombieri-Vinogradov theorem or equivalents and we deal with it by applying the Cauchy-Schwarz inequality.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

• We have
$$E \ll K_j^2 (\log R)^{2k} E'$$
 where $E' =$

$$\sum_{m \le qR^2} \mu(m)^2 d_k(m)^2 \max_{(b,m)=1} \sup_{x \le 2N+H} \left| \pi(x;m,b) - \frac{\mathrm{li}(x)}{\phi(m)} \right|.$$

- The extra factor d_k(m)² is a minor irritant in the application of the Bombieri-Vinogradov theorem or equivalents and we deal with it by applying the Cauchy-Schwarz inequality.
- Thus $E' \leq (E_1 E_2)^{1/2}$ where

$$E_1 = \sum_{m \leq qR^2} \max_{(b,m)=1} \sup_{x \leq 2N+H} \left| \pi(x; m, b) - \frac{\operatorname{li}(x)}{\phi(m)} \right|$$

and $E_2 =$

$$\sum_{m \le qR^2} \mu(m)^2 d_k(m)^4 \max_{(b,m)=1} \sup_{x \le 2N+H} \left| \pi(x;m,b) - \frac{\mathrm{li}(x)}{\phi(m)} \right|.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$E' \leq (E_1E_2)^{1/2}$$
 and $E_2 =$

$$\sum_{m \le qR^2} \mu(m)^2 d_k(m)^4 \max_{(b,m)=1} \sup_{x \le 2N+H} \left| \pi(x; m, b) - \frac{\mathrm{li}(x)}{\phi(m)} \right|$$

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

990

.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $E' \leq (E_1E_2)^{1/2}$ and $E_2 =$

$$\sum_{m \le qR^2} \mu(m)^2 d_k(m)^4 \max_{(b,m)=1} \sup_{x \le 2N+H} \left| \pi(x;m,b) - \frac{\mathrm{li}(x)}{\phi(m)} \right|$$

.

• Crudely we have

$$\max_{(b,m)=1} \sup_{x \leq 2N+H} \left| \pi(x;m,b) - \frac{\operatorname{li}(x)}{\phi(m)} \right| \ll \frac{N}{m}.$$

э

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$E' \leq (E_1E_2)^{1/2}$$
 and $E_2 =$

$$\sum_{m \le qR^2} \mu(m)^2 d_k(m)^4 \max_{(b,m)=1} \sup_{x \le 2N+H} \left| \pi(x;m,b) - \frac{\mathrm{li}(x)}{\phi(m)} \right|$$

• Crudely we have

$$\max_{(b,m)=1} \sup_{x \le 2N+H} \left| \pi(x;m,b) - \frac{\operatorname{li}(x)}{\phi(m)} \right| \ll \frac{N}{m}$$

• Thus
$$E_2 \ll N \sum_{m \leq qR^2} \mu(m)^2 d_k(m)^4 m^{-1}$$

$$\ll N \prod_{p \leq qR^2} \left(1 + \frac{k^4}{p}\right) \ll N(\log N)^{k^4}$$

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ● ● ● ●

.

.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • $E' \leq (E_1 E_2)^{1/2}$ and $E_2 =$

$$\sum_{m \le qR^2} \mu(m)^2 d_k(m)^4 \max_{(b,m)=1} \sup_{x \le 2N+H} \left| \pi(x;m,b) - \frac{\mathrm{li}(x)}{\phi(m)} \right|$$

• Crudely we have

$$\max_{(b,m)=1} \sup_{x \le 2N+H} \left| \pi(x;m,b) - \frac{\operatorname{li}(x)}{\phi(m)} \right| \ll \frac{N}{m}$$

• Thus
$$E_2 \ll N \sum_{m \leq qR^2} \mu(m)^2 d_k(m)^4 m^{-1}$$

$$\ll N \prod_{p \leq qR^2} \left(1 + \frac{k^4}{p}\right) \ll N(\log N)^{k^4}$$

 Hence, by our assumption that the level of distribution is θ and the choice of R = N^{θ/2−δ} we have E ≪ K²_iN(log N)^{-A}.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus we have established that

$$S_j(f) = X_j \sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} + O(K_j^2 N(\log N)^{-A})$$

where
$$m = q \prod_{i=1}^{k} [d_i, e_i]$$
, $X_j = \int_{N+h_j}^{2N+h_j} \frac{dt}{\log t}$,
 $Q = \log \log \log N$, $q = \prod_{p \le Q} p$, $H = \max_j h_j$ and \sum^*
indicates the restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$
when $u \ne v$.

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus we have established that

1.

$$S_j(f) = X_j \sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} + O(K_j^2 N(\log N)^{-A})$$

where
$$m = q \prod_{i=1}^{\kappa} [d_i, e_i], X_j = \int_{N+h_j}^{2N+h_j} \frac{dt}{\log t},$$

 $Q = \log \log \log \log N, q = \prod_{p \leq Q} p, H = \max_j h_j \text{ and } \sum_{i=1}^{*} p_i = 1 \text{ and } (d_u, e_v) = 1$
when $u \neq v$.

イロト 人間ト イヨト イヨト

= 900

• It remains to deal with the main term $S_j(f)$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus we have established that

1.

$$S_j(f) = X_j \sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} + O(K_j^2 N(\log N)^{-A})$$

where
$$m = q \prod_{i=1}^{\kappa} [d_i, e_i]$$
, $X_j = \int_{N+h_j}^{2N+h_j} \frac{dt}{\log t}$,
 $Q = \log \log \log \log N$, $q = \prod_{p \leq Q} p$, $H = \max_j h_j$ and \sum^*
indicates the restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$
when $u \neq v$.

・ロト ・ 同ト ・ ヨト ・ ヨト

= √Q (~

- It remains to deal with the main term $S_j(f)$.
- We want to diagonalise it.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus we have established that

1.

$$S_j(f) = X_j \sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} + O(K_j^2 N(\log N)^{-A})$$

where
$$m = q \prod_{i=1}^{\kappa} [d_i, e_i]$$
, $X_j = \int_{N+h_j}^{2N+h_j} \frac{dt}{\log t}$,
 $Q = \log \log \log \log N$, $q = \prod_{p \leq Q} p$, $H = \max_j h_j$ and \sum^*
indicates the restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$
when $u \neq v$.

- It remains to deal with the main term $S_j(f)$.
- We want to diagonalise it.
- If we had k = j = 2, then the sum would just be

$$\sum_{d_1,e_1} \frac{\lambda(d_1)\lambda(e_1)}{\phi([d_1,e_1])}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

and we could imitate the Selberg sieve.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 1 • Thus we have established that

1.

$$S_j(f) = X_j \sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} + O(K_j^2 N(\log N)^{-A})$$

where
$$m = q \prod_{i=1}^{\kappa} [d_i, e_i]$$
, $X_j = \int_{N+h_j}^{2N+h_j} \frac{dt}{\log t}$,
 $Q = \log \log \log \log N$, $q = \prod_{p \leq Q} p$, $H = \max_j h_j$ and \sum^*
indicates the restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$
when $u \neq v$.

- It remains to deal with the main term $S_j(f)$.
- We want to diagonalise it.
- If we had k = j = 2, then the sum would just be

$$\sum_{d_1,e_1} \frac{\lambda(d_1)\lambda(e_1)}{\phi([d_1,e_1])}$$

Sac

and we could imitate the Selberg sieve.

With this in mind, it is desirable to rid ourselves of the condition that (d_u, e_v) = 1 when u ≠ v.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

We have to deal with
$$\sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$$
 where
 $m = q \prod_{k=1}^{k} [d_i, e_i], \ q = \prod_{p \leq Q} p$, and \sum^* indicates the

restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$ when $u \neq v$.

イロト 人間ト イヨト イヨト

= 900

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have to deal with $\sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$ where

 $m = q \prod_{i=1}^{k} [d_i, e_i], q = \prod_{p \leq Q} p$, and \sum^* indicates the

restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$ when $u \neq v$.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

• It is desirable to rid ourselves of the condition that $(d_u, e_v) = 1$ when $u \neq v$.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have to deal with $\sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$ where

 $m = q \prod_{i=1}^{k} [d_i, e_i], q = \prod_{p \le Q} p$, and \sum^* indicates the restrictions $d_i = e_i = 1$ and $(d_u, e_v) = 1$ when $u \ne v$.

• It is desirable to rid ourselves of the condition that $(d_u, e_v) = 1$ when $u \neq v$.

 That this is possible without undue effect on the main term is due to the prior sieving resulting from the choice of the residue class a modulo q. Thus any primes p which can potentially divide (d_u, e_v) satisfy p > Q.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have to deal with $\sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$ where

 $m = q \prod_{i=1} [d_i, e_i], \ q = \prod_{p \le Q} p$, and \sum^* indicates the restrictions $d_i = e_i = 1$ and $(d_u, e_v) = 1$ when $u \ne v$.

- It is desirable to rid ourselves of the condition that $(d_u, e_v) = 1$ when $u \neq v$.
- That this is possible without undue effect on the main term is due to the prior sieving resulting from the choice of the residue class a modulo q. Thus any primes p which can potentially divide (d_u, e_v) satisfy p > Q.

• Now
$$\frac{\phi(m)}{\phi(q)} = \prod_{i \neq j} \phi([d_i, e_i]) \& \frac{1}{\phi([d_i, e_i])} = \frac{\phi((d_i, e_i))}{\phi(d_i)\phi(e_i)}.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have to deal with $\sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$ where

 $m = q \prod_{i=1} [d_i, e_i], \ q = \prod_{p \leq Q} p$, and \sum^* indicates the restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$ when $u \neq v$.

- It is desirable to rid ourselves of the condition that $(d_u, e_v) = 1$ when $u \neq v$.
- That this is possible without undue effect on the main term is due to the prior sieving resulting from the choice of the residue class a modulo q. Thus any primes p which can potentially divide (d_u, e_v) satisfy p > Q.
- Now $\frac{\phi(m)}{\phi(q)} = \prod_{i \neq j} \phi([d_i, e_i]) \& \frac{1}{\phi([d_i, e_i])} = \frac{\phi((d_i, e_i))}{\phi(d_i)\phi(e_i)}.$
- Hence $\frac{1}{\phi(m)} = \frac{1}{\phi(q)\phi(d)\phi(e)} \prod_{i \neq j} \phi((d_i, e_i)).$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$ where $m = q \prod_{i=1}^{k} [d_i, e_i], q = \prod_{p \leq Q} p$, and $\sum_{i=1}^{*}$ indicates the restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$ when $u \neq v$, and

$$rac{1}{\phi(m)} = rac{1}{\phi(q)\phi(d)\phi(e)} \prod_{i
eq j} \phiig((d_i,e_i)ig)$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$ where $m = q \prod_{i=1}^{k} [d_i, e_i], q = \prod_{p \leq Q} p$, and $\sum_{i=1}^{*}$ indicates the restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$ when $u \neq v$, and

$$rac{1}{\phi(m)} = rac{1}{\phi(q)\phi(d)\phi(e)} \prod_{i
eq j} \phiig((d_i,e_i)ig)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

• Also p-1 = 1 + (p-2), so for squarefree l we have $\phi(l) = \sum_{t|l} \phi_2(t)$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$ where $m = q \prod_{i=1}^{k} [d_i, e_i], q = \prod_{p \leq Q} p$, and $\sum_{i=1}^{*}$ indicates the restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$ when $u \neq v$, and

$$rac{1}{\phi(m)} = rac{1}{\phi(q)\phi(d)\phi(e)} \prod_{i
eq j} \phiig((d_i,e_i)ig)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

• Also p-1 = 1 + (p-2), so for squarefree l we have $\phi(l) = \sum_{t|l} \phi_2(t)$.

• Hence $\phi((d_i, e_i)) = \sum_{n_i \mid d_i, n_i \mid e_i} \phi_2(n_i).$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$ where $m = q \prod_{i=1}^{k} [d_i, e_i], q = \prod_{p \leq Q} p$, and $\sum_{i=1}^{*}$ indicates the restrictions $d_j = e_j = 1$ and $(d_u, e_v) = 1$ when $u \neq v$, and

$$rac{1}{\phi(m)} = rac{1}{\phi(q)\phi(d)\phi(e)}\prod_{i
eq j}\phiig((d_i,e_i)ig)$$

• Also p - 1 = 1 + (p - 2), so for squarefree l we have $\phi(l) = \sum_{t \mid l} \phi_2(t)$.

- Hence $\phi((d_i, e_i)) = \sum_{n_i \mid d_i, n_i \mid e_i} \phi_2(n_i).$
- We substitute this in the main term and invert the order of summation to obtain

$$\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} = \sum_{\mathbf{n}}^{j} \frac{\phi_{2}(n)}{\phi(q)} \sum_{\substack{\mathbf{d},\mathbf{e}\\\mathbf{n}\mid\mathbf{d},\mathbf{n}\mid\mathbf{e}}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(d)\phi(e)}.$$

イロト 不得 トイヨト イヨト 二日

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

$$\sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} = \sum_{\mathbf{n}}^j \frac{\phi_2(n)}{\phi(q)} \sum_{\substack{\mathbf{d},\mathbf{e}\\\mathbf{n}|\mathbf{d},\mathbf{n}|\mathbf{e}}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(d)\phi(e)} \text{ where }$$

 $m = q \prod_{i=1}^{k} [d_i, e_i], q = \prod_{p \le Q} p$, and \sum^* indicates the restrictions $d_i = e_i = 1$ and $(d_u, e_v) = 1$ when $u \ne v$

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Sar

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} = \sum_{\mathbf{n}}^{j} \frac{\phi_{2}(n)}{\phi(q)} \sum_{\substack{\mathbf{d},\mathbf{e} \\ \mathbf{n}|\mathbf{d},\mathbf{n}|\mathbf{e}}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(d)\phi(e)} \text{ where }$ $m = q \prod_{i=1}^{k} [d_{i}, e_{i}], \ q = \prod_{p \leq Q} p, \text{ and } \sum^{*} \text{ indicates the }$ restrictions $d_{j} = e_{j} = 1 \text{ and } (d_{u}, e_{v}) = 1 \text{ when } u \neq v$ • We now begin to deal with $(d_{u}, e_{v}) = 1 \text{ for } u \neq v.$ We replace it by $\sum_{s_{iiv} \mid d_{ii}, s_{iiv} \mid e_{v}} \mu(s_{uv}).$

・ロト ・ 同ト ・ ヨト ・ ヨト

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} = \sum_{\mathbf{n}}^{j} \frac{\phi_{2}(n)}{\phi(q)} \sum_{\substack{\mathbf{d},\mathbf{e} \\ \mathbf{n}|\mathbf{d},\mathbf{n}|\mathbf{e}}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(d)\phi(e)} \text{ where}$ $m = q \prod_{i=1}^{k} [d_{i}, e_{i}], \ q = \prod_{p \leq Q} p, \text{ and } \sum^{*} \text{ indicates the}$ restrictions $d_{j} = e_{j} = 1 \text{ and } (d_{u}, e_{v}) = 1 \text{ when } u \neq v$ • We now begin to deal with $(d_{u}, e_{v}) = 1 \text{ for } u \neq v.$ We replace it by $\sum_{s_{uv}|d_{u},s_{uv}|e_{v}} \mu(s_{uv}).$

• There are various observations with regard to the s_{uv}.

・ロト ・ 同ト ・ ヨト ・ ヨト

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} = \sum_{\mathbf{n}}^{j} \frac{\phi_{2}(n)}{\phi(q)} \sum_{\substack{\mathbf{d},\mathbf{e} \\ \mathbf{n}|\mathbf{d},\mathbf{n}|\mathbf{e}}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(d)\phi(e)} \text{ where}$ $m = q \prod_{i=1}^{k} [d_{i}, e_{i}], \ q = \prod_{p \leq Q} p, \text{ and } \sum^{*} \text{ indicates the}$ restrictions $d_{j} = e_{j} = 1$ and $(d_{u}, e_{v}) = 1$ when $u \neq v$ • We now begin to deal with $(d_{u}, e_{v}) = 1$ for $u \neq v$. We replace it by $\sum_{s_{uv}|d_{u},s_{uv}|e_{v}} \mu(s_{uv}).$

- There are various observations with regard to the s_{uv}.
- We have $n_u|d_u$, so $(e_v, n_u) = 1$. Hence $(s_{uv}, n_u) = 1$.

・ロト ・ 同ト ・ ヨト ・ ヨト

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} = \sum_{\mathbf{n}}^{j} \frac{\phi_{2}(n)}{\phi(q)} \sum_{\substack{\mathbf{d},\mathbf{e} \\ \mathbf{n}|\mathbf{d},\mathbf{n}|\mathbf{e}}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(d)\phi(e)} \text{ where }$ $m = q \prod_{i=1}^{k} [d_{i}, e_{i}], \ q = \prod_{p \leq Q} p, \text{ and } \sum^{*} \text{ indicates the }$ restrictions $d_{j} = e_{j} = 1 \text{ and } (d_{u}, e_{v}) = 1 \text{ when } u \neq v$ • We now begin to deal with $(d_{u}, e_{v}) = 1 \text{ for } u \neq v.$ We replace it by $\sum_{s_{inv}|d_{u},s_{inv}|e_{v}} \mu(s_{uv}).$

- There are various observations with regard to the s_{uv}.
- We have $n_u|d_u$, so $(e_v, n_u) = 1$. Hence $(s_{uv}, n_u) = 1$.

イロト 不得 トイヨト イヨト 二日

• Likewise $(s_{uv}, n_v) = 1$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} = \sum_{\mathbf{n}}^{j} \frac{\phi_{2}(n)}{\phi(q)} \sum_{\substack{\mathbf{d},\mathbf{e} \\ \mathbf{n}|\mathbf{d},\mathbf{n}|\mathbf{e}}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(d)\phi(e)} \text{ where }$ $m = q \prod_{i=1}^{k} [d_{i}, e_{i}], \ q = \prod_{p \leq Q} p, \text{ and } \sum^{*} \text{ indicates the }$ restrictions $d_{j} = e_{j} = 1$ and $(d_{u}, e_{v}) = 1$ when $u \neq v$ • We now begin to deal with $(d_{u}, e_{v}) = 1$ for $u \neq v$. We replace it by $\sum_{s_{uv}|d_{u}, s_{uv}|e_{v}} \mu(s_{uv}).$

- There are various observations with regard to the s_{uv}.
- We have $n_u|d_u$, so $(e_v, n_u) = 1$. Hence $(s_{uv}, n_u) = 1$.
- Likewise $(s_{uv}, n_v) = 1$.
- Also, when $w \neq v$, we have $s_{uw}|e_w$ and $(e_v, e_w) = 1$. Hence $(s_{uv}, s_{uw}) = 1$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} = \sum_{\mathbf{n}}^{j} \frac{\phi_{2}(n)}{\phi(q)} \sum_{\substack{\mathbf{d},\mathbf{e} \\ \mathbf{n}|\mathbf{d},\mathbf{n}|\mathbf{e}}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(d)\phi(e)} \text{ where }$ $m = q \prod_{i=1}^{k} [d_{i}, e_{i}], \ q = \prod_{p \leq Q} p, \text{ and } \sum^{*} \text{ indicates the }$ restrictions $d_{j} = e_{j} = 1 \text{ and } (d_{u}, e_{v}) = 1 \text{ when } u \neq v$ • We now begin to deal with $(d_{u}, e_{v}) = 1 \text{ for } u \neq v.$ We replace it by $\sum_{s_{inv}|d_{u},s_{inv}|e_{v}} \mu(s_{uv}).$

- There are various observations with regard to the s_{uv}.
- We have $n_u|d_u$, so $(e_v, n_u) = 1$. Hence $(s_{uv}, n_u) = 1$.
- Likewise $(s_{uv}, n_v) = 1$.
- Also, when $w \neq v$, we have $s_{uw}|e_w$ and $(e_v, e_w) = 1$. Hence $(s_{uv}, s_{uw}) = 1$.
- Likewise, when w
 eq u, $(s_{uv}, s_{wv}) = 1$ and so in summary

$$(s_{uv}, n_u) = (s_{uv}, n_v) = (s_{uv}, s_{uw}) = (s_{uv}, s_{wv}) = 1.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus via
$$\sum_{s_{uv}|d_u,s_{uv}|e_v} \mu(s_{uv}), \sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} = \sum_{\mathbf{n}}^j \frac{\phi_2(n)}{\phi(q)} \sum_{\substack{s_{uv}\\u\neq v}}^\dagger \left(\prod_{u\neq v} \mu(s_{uv})\right) \left(\sum_{\substack{\mathbf{d}\\\mathbf{n}\mid\mathbf{d}\\s_{uv}\midd_u}}^j \frac{\lambda(\mathbf{d})}{\phi(d)}\right) \left(\sum_{\substack{\mathbf{e}\\\mathbf{n}\mid\mathbf{e}\\s_{uv}\mide_v}}^j \frac{\lambda(\mathbf{e})}{\phi(e)}\right)$$

ヘロト 人間 ト 人目 ト 人目 ト

æ

with
$$\sum^{\dagger}: (s_{uv}, n_u n_v) = (s_{uv}, s_{uw}) = (s_{uv}, s_{wv}) = 1.$$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus via
$$\sum_{s_{uv}|d_u,s_{uv}|e_v} \mu(s_{uv}), \sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} = \sum_{\mathbf{n}}^j \frac{\phi_2(n)}{\phi(q)} \sum_{\substack{s_{uv}\\u\neq v}}^\dagger \left(\prod_{u\neq v} \mu(s_{uv})\right) \left(\sum_{\substack{\mathbf{d}\\\mathbf{n}\mid\mathbf{d}\\s_{uv}\midd_u}}^j \frac{\lambda(\mathbf{d})}{\phi(d)}\right) \left(\sum_{\substack{\mathbf{e}\\\mathbf{n}\mid\mathbf{e}\\s_{uv}\mide_v}}^j \frac{\lambda(\mathbf{e})}{\phi(e)}\right)$$

イロト 不得 トイヨト イヨト

3

990

with
$$\sum^{\dagger} (s_{uv}, n_u n_v) = (s_{uv}, s_{uw}) = (s_{uv}, s_{wv}) = 1.$$

• This is not yet a diagonal form, but it is progress.

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus via
$$\sum_{s_{uv}|d_u,s_{uv}|e_v} \mu(s_{uv}), \sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)} = \sum_{\mathbf{n}}^j \frac{\phi_2(n)}{\phi(q)} \sum_{\substack{s_{uv}\\u\neq v}}^\dagger \left(\prod_{u\neq v} \mu(s_{uv})\right) \left(\sum_{\substack{\mathbf{d}\\\mathbf{n}|\mathbf{d}\\s_{uv}|d_u}}^j \frac{\lambda(\mathbf{d})}{\phi(d)}\right) \left(\sum_{\substack{\mathbf{e}\\\mathbf{n}|\mathbf{e}\\s_{uv}|e_v}}^j \frac{\lambda(\mathbf{e})}{\phi(e)}\right)$$

with
$$\sum^{\dagger} (s_{uv}, n_u n_v) = (s_{uv}, s_{uw}) = (s_{uv}, s_{wv}) = 1.$$

This is not yet a diagonal form, but it is progress

• We sub
$$\frac{\kappa_j(\mathbf{r})}{\mu(r)\phi_2(r)} = \sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}^{j} \frac{\lambda(\mathbf{d})}{\phi(d)}$$
 for λ , so $\sum_{\mathbf{d},\mathbf{e}}^{*} \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$

$$=\sum_{\mathbf{n}}^{j}\frac{1}{\phi(q)\phi_{2}(n)}\sum_{\substack{s_{uv}\\u\neq v}}^{\dagger}\Big(\prod_{u\neq v}\frac{\mu(s_{uv})}{\phi_{2}(s_{uv})^{2}}\Big)\kappa_{j}(\mathbf{a})\kappa_{j}(\mathbf{b})$$

where $\mathbf{a} = a_1, \ldots, a_k$, $\mathbf{b} = b_1, \ldots, b_k$ are factors of \mathbf{d} , \mathbf{e} ,

$$a_{u} = n_{u} \prod_{\substack{v \neq u \\ v \neq u}} s_{uv}, \quad b_{v} = n_{v} \prod_{\substack{u \neq v \\ u \neq v}} s_{uv}.$$

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus
$$\sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$$

$$=\sum_{\mathbf{n}}^{j}\frac{1}{\phi(q)\phi_{2}(n)}\sum_{\substack{s_{uv}\\u\neq v}}^{\dagger}\left(\prod_{u\neq v}\frac{\mu(s_{uv})}{\phi_{2}(s_{uv})^{2}}\right)\kappa_{j}(\mathbf{a})\kappa_{j}(\mathbf{b})$$

where
$$a = a_1, ..., a_k$$
, $b = b_1, ..., b_k$,

$$a_u = n_u \prod_{\substack{v \ v \neq u}} s_{uv}, \quad b_v = n_v \prod_{\substack{u \ u \neq v}} s_{uv}$$

ヘロト 人間 ト 人目 ト 人目 ト

æ

and
$$\sum^\dagger:~(s_{uv},n_un_v)=(s_{uv},s_{uw})=(s_{uv},s_{wv})=1.$$

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus
$$\sum_{\mathbf{d},\mathbf{e}}^* \frac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$$

$$=\sum_{\mathbf{n}}^{j}\frac{1}{\phi(q)\phi_{2}(n)}\sum_{\substack{s_{uv}\\u\neq v}}^{\dagger}\left(\prod_{u\neq v}\frac{\mu(s_{uv})}{\phi_{2}(s_{uv})^{2}}\right)\kappa_{j}(\mathbf{a})\kappa_{j}(\mathbf{b})$$

where
$$a = a_1, ..., a_k$$
, $b = b_1, ..., b_k$,

$$a_u = n_u \prod_{\substack{v \ v \neq u}} s_{uv}, \quad b_v = n_v \prod_{\substack{u \neq v \ u \neq v}} s_{uv}$$

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

and
$$\sum^{\dagger}: (s_{uv}, n_u n_v) = (s_{uv}, s_{uw}) = (s_{uv}, s_{wv}) = 1.$$

In particular $a = b = ns$ where $s = \prod_{u \neq v} s_{uv}$.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus
$$\sum_{\mathbf{d},\mathbf{e}}^{*} rac{\lambda(\mathbf{d})\lambda(\mathbf{e})}{\phi(m)}$$

$$=\sum_{\mathbf{n}}^{j}\frac{1}{\phi(q)\phi_{2}(n)}\sum_{\substack{s_{uv}\\u\neq v}}^{\dagger}\left(\prod_{u\neq v}\frac{\mu(s_{uv})}{\phi_{2}(s_{uv})^{2}}\right)\kappa_{j}(\mathbf{a})\kappa_{j}(\mathbf{b})$$

where
$$a = a_1, ..., a_k$$
, $b = b_1, ..., b_k$,

$$a_u = n_u \prod_{\substack{v \ v \neq u}} s_{uv}, \quad b_v = n_v \prod_{\substack{u \ u \neq v}} s_{uv}$$

and
$$\sum^{\dagger}: (s_{uv}, n_u n_v) = (s_{uv}, s_{uw}) = (s_{uv}, s_{wv}) = 1.$$

- In particular a = b = ns where $s = \prod_{u \neq v} s_{uv}$.
- Thus the main term is

$$\sum_{\mathbf{n}}^{j} \frac{1}{\phi(q)\phi_{2}(n)} \sum_{\substack{s_{uv}\\ u\neq v}}^{\dagger} \frac{\mu(s)}{\phi_{2}(s)^{2}} \kappa_{j}(\mathbf{a}) \kappa_{j}(\mathbf{b}).$$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

The main term is
$$\sum_{\mathbf{n}}^{j} \frac{1}{\phi(q)\phi_{2}(n)} \sum_{\substack{s_{uv}\\u\neq v}}^{\dagger} \frac{\mu(s)}{\phi_{2}(s)^{2}} \kappa_{j}(\mathbf{a}) \kappa_{j}(\mathbf{b})$$

and
$$\sum^{\dagger} (s_{uv}, n_{u}n_{v}) = (s_{uv}, s_{uw}) = (s_{uv}, s_{wv}) = 1.$$

ヘロト 人間 ト 人目 ト 人目 ト

æ

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

• The main term is
$$\sum_{\mathbf{n}}^{j} \frac{1}{\phi(q)\phi_2(n)} \sum_{\substack{s_{uv}\\u\neq v}}^{\dagger} \frac{\mu(s)}{\phi_2(s)^2} \kappa_j(\mathbf{a}) \kappa_j(\mathbf{b})$$

and
$$\sum^{\dagger} (s_{uv}, n_u n_v) = (s_{uv}, s_{uw}) = (s_{uv}, s_{wv}) = 1.$$

• Since $n_j = 1$ the terms with s > 1 contribute

$$\ll \frac{K_j^2}{\phi(q)} \sum_{\substack{n \leq R \\ (n,q)=1}} \frac{d_{k-1}(n)\mu(n)^2}{\phi_2(n)} \sum_{\substack{s>1 \\ (s,q)=1}} \frac{d_{k(k-1)}(s)\mu(s)^2}{\phi_2(s)^2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

• The main term is
$$\sum_{\mathbf{n}}^{j} \frac{1}{\phi(q)\phi_2(n)} \sum_{\substack{s_{uv}\\ u \neq v}}^{\dagger} \frac{\mu(s)}{\phi_2(s)^2} \kappa_j(\mathbf{a}) \kappa_j(\mathbf{b})$$

and
$$\sum^{\dagger} (s_{uv}, n_u n_v) = (s_{uv}, s_{uw}) = (s_{uv}, s_{wv}) = 1.$$

• Since $n_j = 1$ the terms with s > 1 contribute

$$\ll \frac{K_j^2}{\phi(q)} \sum_{\substack{n \leq R \\ (n,q)=1}} \frac{d_{k-1}(n)\mu(n)^2}{\phi_2(n)} \sum_{\substack{s>1 \\ (s,q)=1}} \frac{d_{k(k-1)}(s)\mu(s)^2}{\phi_2(s)^2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• The inner sum is

$$\ll -1 + \prod_{p>Q} \left(1 + \frac{k(k-1)}{(p-2)^2}\right) \ll \frac{1}{Q \log Q}$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

- The Setup
- Maynard one
- Bounded Gaps

Proof of Theorem 10 • The main term is $\sum_{\mathbf{n}}^{j} \frac{1}{\phi(q)\phi_2(n)} \sum_{\substack{s_{uv}\\u\neq v}}^{\dagger} \frac{\mu(s)}{\phi_2(s)^2} \kappa_j(\mathbf{a}) \kappa_j(\mathbf{b})$

and
$$\sum^{\dagger} (s_{uv}, n_u n_v) = (s_{uv}, s_{uw}) = (s_{uv}, s_{wv}) = 1.$$

• Since $n_j = 1$ the terms with s > 1 contribute

$$\ll \frac{K_j^2}{\phi(q)} \sum_{\substack{n \leq R \\ (n,q)=1}} \frac{d_{k-1}(n)\mu(n)^2}{\phi_2(n)} \sum_{\substack{s>1 \\ (s,q)=1}} \frac{d_{k(k-1)}(s)\mu(s)^2}{\phi_2(s)^2}.$$

• The inner sum is
$$\ll -1 + \prod_{p>Q} \left(1 + \frac{k(k-1)}{(p-2)^2}\right) \ll \frac{1}{Q \log Q}$$

and the sum over n is

$$\ll \prod_{Q$$

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

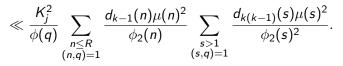
Maynard's Theorem

- The Setup
- Maynard one

Bounded Gaps

Proof of Theorem 10

- The main term is $\sum_{\mathbf{n}}^{j} \frac{1}{\phi(q)\phi_2(n)} \sum_{\substack{s_{uv}\\u\neq v}}^{\dagger} \frac{\mu(s)}{\phi_2(s)^2} \kappa_j(\mathbf{a}) \kappa_j(\mathbf{b})$
 - and $\sum^{\dagger} (s_{uv}, n_u n_v) = (s_{uv}, s_{uw}) = (s_{uv}, s_{wv}) = 1.$
- Since $n_j = 1$ the terms with s > 1 contribute



- The inner sum is $\ll -1 + \prod_{p>Q} \left(1 + \frac{k(k-1)}{(p-2)^2}\right) \ll \frac{1}{Q \log Q}$
- and the sum over n is

$$\ll \prod_{Q$$

• Thus the total contribution from the terms with $s = \prod_{u \neq v} s_{uv} > 1$ is $\frac{K_j^2 \phi(q)^{k-2} (\log R)^{k-1}}{q^{k-1} Q}$.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • For the terms with s = 1 we have $\mathbf{a} = \mathbf{b} = \mathbf{n}$. Thus the main term becomes

$$\sum_{\mathbf{n}}^{j} \frac{\kappa_{j}(\mathbf{n})^{2}}{\phi(q)\phi_{2}(n)} + O\left(\frac{K_{j}^{2}\phi(q)^{k-2}(\log R)^{k-1}}{q^{k-1}Q}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • For the terms with *s* = 1 we have **a** = **b** = **n**. Thus the main term becomes

$$\sum_{\mathbf{n}}^{j} \frac{\kappa_j(\mathbf{n})^2}{\phi(q)\phi_2(n)} + O\left(\frac{K_j^2\phi(q)^{k-2}(\log R)^{k-1}}{q^{k-1}Q}\right)$$

• Recall that this is multiplied by

$$\int_{N+h_j}^{2N+h_j} \frac{d\alpha}{\log \alpha} = \frac{N}{\log N} + O\left(\frac{N}{(\log N)^2}\right)$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • For the terms with *s* = 1 we have **a** = **b** = **n**. Thus the main term becomes

$$\sum_{\mathbf{n}}^{j} \frac{\kappa_j(\mathbf{n})^2}{\phi(q)\phi_2(n)} + O\left(\frac{K_j^2\phi(q)^{k-2}(\log R)^{k-1}}{q^{k-1}Q}\right)$$

• Recall that this is multiplied by

$$\int_{N+h_j}^{2N+h_j} \frac{d\alpha}{\log \alpha} = \frac{N}{\log N} + O\left(\frac{N}{(\log N)^2}\right)$$

• Since

$$\sum_{\mathbf{n}}^{j} \frac{\kappa_{j}(\mathbf{n})^{2}}{\phi(q)\phi_{2}(n)} \ll \frac{\kappa_{j}^{2}}{\phi(q)} \sum_{n \leq R} \frac{d_{k-1}(n)}{phi_{2}(n)} \ll \frac{\kappa_{j}^{2}}{\phi(q)} (\log R)^{k-1}$$

the complete main term is seen to be

$$\frac{N}{\log N}\sum_{\mathbf{n}}^{j}\frac{\kappa_{j}(\mathbf{n})^{2}}{\phi(q)\phi_{2}(n)}+O\left(\frac{NK_{j}^{2}\phi(q)^{k-2}(\log R)^{k-1}}{q^{k-1}Q(\log N)}\right).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • This completes the proof of the approximation for S_j.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- This completes the proof of the approximation for S_j.
- The proof of the approximation for T(f) is essentially the same, except that we do not use Bombieri's theorem and we do not have the restriction that $d_i = 1$ to contend with.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- This completes the proof of the approximation for S_j.
- The proof of the approximation for T(f) is essentially the same, except that we do not use Bombieri's theorem and we do not have the restriction that $d_i = 1$ to contend with.
- Thus on the initial application of the Chinese Remainder Theorem the main term is

 $\frac{N}{m}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

and the error term is O(1).

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- This completes the proof of the approximation for S_j.
- The proof of the approximation for T(f) is essentially the same, except that we do not use Bombieri's theorem and we do not have the restriction that $d_i = 1$ to contend with.
- Thus on the initial application of the Chinese Remainder Theorem the main term is

 $\frac{N}{m}$

and the error term is O(1).

• Since

 $\max_{\mathbf{d}} |\lambda(\mathbf{d})| \ll K (\log R)^k$

we see that the total contribution arising from this error is

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

$$\ll K^2 R^2 (\log R)^{4k-2}$$

which is acceptable since $R = N^{\theta/2-\delta}$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- This completes the proof of the approximation for S_j.
- The proof of the approximation for T(f) is essentially the same, except that we do not use Bombieri's theorem and we do not have the restriction that $d_i = 1$ to contend with.
- Thus on the initial application of the Chinese Remainder Theorem the main term is

 $\frac{N}{m}$

and the error term is O(1).

Since

 $\max_{\mathbf{d}} |\lambda(\mathbf{d})| \ll K (\log R)^k$

we see that the total contribution arising from this error is

$$\ll K^2 R^2 (\log R)^{4k-2}$$

which is acceptable since $R = N^{\theta/2-\delta}$.

Then just as the function φ now plays the rôle that φ₂ played earlier, so the κ_j is replaced by its understudy κ. The process of replacing λ by κ is identical, as is the elimination of the restriction (d_u, e_v) = 1.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • To summarize, we have established Lemma 8. Let

$$K_j = \max_{\mathbf{r}} |\kappa_j(\mathbf{r})|, \quad K = \max_{\mathbf{r}} |\kappa(\mathbf{r})|.$$

Then

$$S_j(f) = \frac{N}{\phi(q)\log N} \sum_{\mathbf{r}}^j \frac{\kappa_j(\mathbf{r})^2}{\phi_2(r)} + O\left(\frac{K_j^2\phi(q)^{k-2}N(\log R)^{k-2}}{q^{k-1}Q}\right)$$

and

$$T(f) = \frac{N}{q} \sum_{\mathbf{r}} \frac{\kappa(\mathbf{r})^2}{\phi(r)} + O\left(\frac{K^2 N(\log R)^k}{qQ}\right).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have initially defined κ and κ_i in terms of λ .

$$\kappa(\mathbf{r}) = \mu(r)\phi(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}\frac{\lambda(\mathbf{d})}{d}.$$

$$\kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}^j \frac{\lambda(\mathbf{d})}{\phi(d)} \quad (j=1,\ldots,k),$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

where $\sum_{j=1}^{j}$ indicates that the summation variable is a k-tuple, say **d**, which is restricted by $d_j = 1$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have initially defined κ and κ_j in terms of λ .

$$\kappa(\mathbf{r}) = \mu(r)\phi(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}\frac{\lambda(\mathbf{d})}{d}.$$

$$\kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}^j \frac{\lambda(\mathbf{d})}{\phi(d)} \quad (j=1,\ldots,k),$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

where \sum^{j} indicates that the summation variable is a k-tuple, say **d**, which is restricted by $d_{j} = 1$

• In Lemma 7 we showed they are invertible. $\frac{\mu(d)}{\phi(d)}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r} \\ \mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)} \text{ and } \frac{\mu(d)}{d}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r} \\ \mathbf{d}|\mathbf{r}}} \frac{\kappa(\mathbf{r})}{\phi(r)}.$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We have initially defined κ and κ_j in terms of λ .

$$\kappa(\mathbf{r}) = \mu(r)\phi(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}\frac{\lambda(\mathbf{d})}{d}.$$

$$\kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}^j \frac{\lambda(\mathbf{d})}{\phi(d)} \quad (j=1,\ldots,k),$$

where $\sum_{j=1}^{j}$ indicates that the summation variable is a k-tuple, say **d**, which is restricted by $d_j = 1$

- In Lemma 7 we showed they are invertible. $\frac{\mu(d)}{\phi(d)}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r} \\ \mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)} \text{ and } \frac{\mu(d)}{d}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r} \\ \mathbf{d}|\mathbf{r}}} \frac{\kappa(\mathbf{r})}{\phi(r)}.$
- Thus as in the Selberg sieve, rather than choosing first λ, we can instead choose κ, and then the values of λ, and so κ_j, will follow.

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

•
$$\frac{\mu(d)}{d}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r} \\ \mathbf{d}|\mathbf{r}}} \frac{\kappa(\mathbf{r})}{\phi(r)} \text{ and } \frac{\mu(d)}{\phi(d)}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r} \\ \mathbf{d}|\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)}.$$

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

•
$$\frac{\mu(d)}{d}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r}\\\mathbf{d}\mid\mathbf{r}}} \frac{\kappa(\mathbf{r})}{\phi(r)} \text{ and } \frac{\mu(d)}{\phi(d)}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r}\\\mathbf{d}\mid\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)}.$$

• You may recall that it was asserted in (4) that we would choose

$$\lambda(\mathbf{d}) = \mu(d)d \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right).$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

•
$$\frac{\mu(d)}{d}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r}\\\mathbf{d}\mid\mathbf{r}}} \frac{\kappa(\mathbf{r})}{\phi(r)} \text{ and } \frac{\mu(d)}{\phi(d)}\lambda(\mathbf{d}) = \sum_{\substack{\mathbf{r}\\\mathbf{d}\mid\mathbf{r}}}^{j} \frac{\kappa_{j}(\mathbf{r})}{\phi_{2}(r)}.$$

• You may recall that it was asserted in (4) that we would choose

$$\lambda(\mathbf{d}) = \mu(d)d \sum_{\substack{\mathbf{r} \\ \mathbf{d} \mid \mathbf{r} \\ (r,q)=1}} \frac{\mu(r)^2}{\phi(r)} f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right).$$

• The motivation for this was the knowledge that this can be achieved by simply taking

$$\kappa(\mathbf{r}) = f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right).$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • It is useful to have an estimate for κ_j in terms of κ .

イロト 不得 トイヨト イヨト

3

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • It is useful to have an estimate for κ_i in terms of κ .

•
$$\lambda(\mathbf{d}) = \mu(d)d\sum_{\substack{\mathbf{s}\\\mathbf{d}\mid\mathbf{s}}}\frac{\kappa(\mathbf{s})}{\phi(\mathbf{s})}, \quad \kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}^j\frac{\lambda(\mathbf{d})}{\phi(d)}$$

イロト 不得 トイヨト イヨト

3

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • It is useful to have an estimate for κ_i in terms of κ .

•
$$\lambda(\mathbf{d}) = \mu(d)d\sum_{\substack{\mathbf{s}\\\mathbf{d}\mid\mathbf{s}}}\frac{\kappa(\mathbf{s})}{\phi(\mathbf{s})}, \quad \kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}^j\frac{\lambda(\mathbf{d})}{\phi(d)}$$

人口 医水管 医水管 医水管

3

• Thus
$$\kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{s}\\\mathbf{r}\mid\mathbf{s}}}\frac{\kappa(\mathbf{s})}{\phi(s)}\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}\mid\mathbf{s}}}^j\frac{\mu(d)d}{\phi(d)}.$$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • It is useful to have an estimate for κ_j in terms of κ .

•
$$\lambda(\mathbf{d}) = \mu(d)d\sum_{\substack{\mathbf{s}\\\mathbf{d}\mid\mathbf{s}}} \frac{\kappa(\mathbf{s})}{\phi(s)}, \quad \kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}}}^j \frac{\lambda(\mathbf{d})}{\phi(d)}$$

• Thus
$$\kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{s}\\\mathbf{r}\mid\mathbf{s}}}\frac{\kappa(\mathbf{s})}{\phi(s)}\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}\mid\mathbf{s}}}^j\frac{\mu(d)d}{\phi(d)}.$$

• Write $e_i = d_i/r_i$ and $t_i = s_i/r_i$. Then the inner sum is

$$\frac{\mu(r)r}{\phi(r)}\sum_{\substack{\mathbf{e}\\\mathbf{e}|\mathbf{t}\\\mathbf{e}_j=1}}\frac{\mu(e)e}{\phi(e)}=\frac{\mu(r)r\mu(t/t_j)}{\phi(r)\phi(t/t_j)}.$$

イロト 不同 トイヨト イヨト

э

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • It is useful to have an estimate for κ_j in terms of κ .

•
$$\lambda(\mathbf{d}) = \mu(d)d\sum_{\substack{\mathbf{s}\\\mathbf{d}|\mathbf{s}}} \frac{\kappa(\mathbf{s})}{\phi(\mathbf{s})}, \quad \kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{d}\\\mathbf{r}|\mathbf{d}}}^j \frac{\lambda(\mathbf{d})}{\phi(d)}$$

• Thus
$$\kappa_j(\mathbf{r}) = \mu(r)\phi_2(r)\sum_{\substack{\mathbf{s}\\\mathbf{r}\mid\mathbf{s}}}\frac{\kappa(\mathbf{s})}{\phi(s)}\sum_{\substack{\mathbf{d}\\\mathbf{r}\mid\mathbf{d}\mid\mathbf{s}}}^j\frac{\mu(d)d}{\phi(d)}.$$

• Write $e_i = d_i/r_i$ and $t_i = s_i/r_i$. Then the inner sum is

$$\frac{\mu(r)r}{\phi(r)}\sum_{\substack{\mathbf{e}\\\mathbf{e}|\mathbf{t}\\\mathbf{e}_j=1}}\frac{\mu(e)e}{\phi(e)}=\frac{\mu(r)r\mu(t/t_j)}{\phi(r)\phi(t/t_j)}.$$

• Using $\mathbf{rt}(=\mathbf{s})$ for r_1t_1, \ldots, r_kt_k ,

$$\kappa_j(\mathbf{r}) = rac{r\phi_2(r)}{\phi(r)^2} \sum_{\mathbf{t}} \kappa(\mathbf{rt}) rac{\mu(t)\phi(t_j)\mu(t_j)}{\phi(t)^2}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

-

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

• $\kappa_j(\mathbf{r}) = \frac{r\phi_2(r)}{\phi(r)^2} \sum_{\mathbf{r}} \kappa(\mathbf{rt}) \frac{\mu(t)\phi(t_j)\mu(t_j)}{\phi(t)^2}$

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ● ●

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

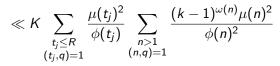
The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\kappa_j(\mathbf{r}) = \frac{r\phi_2(r)}{\phi(r)^2} \sum_{\mathbf{t}} \kappa(\mathbf{rt}) \frac{\mu(t)\phi(t_j)\mu(t_j)}{\phi(t)^2}.$

• The $t > t_j$ contribute



・ロト ・ 同ト ・ ヨト ・ ヨト

Э

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

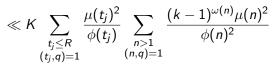
The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\kappa_j(\mathbf{r}) = \frac{r\phi_2(r)}{\phi(r)^2} \sum_{\mathbf{t}} \kappa(\mathbf{rt}) \frac{\mu(t)\phi(t_j)\mu(t_j)}{\phi(t)^2}.$

• The *t* > *t_j* contribute



• The inner sum is $-1 + \prod_{p>Q} \left(1 + \frac{k-1}{(p-1)^2}\right) \ll Q^{-1}$. and we have $\sum_{\substack{t_j \leq R \\ (t_j,q)=1}} \frac{\mu(t_j)^2}{\phi(t_j)} \ll \prod_{Q .$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • $\kappa_j(\mathbf{r}) = \frac{r\phi_2(r)}{\phi(r)^2} \sum_{\mathbf{t}} \kappa(\mathbf{rt}) \frac{\mu(t)\phi(t_j)\mu(t_j)}{\phi(t)^2}.$

• The *t* > *t_j* contribute

$$\ll K \sum_{\substack{t_j \leq R \\ (t_j,q)=1}} \frac{\mu(t_j)^2}{\phi(t_j)} \sum_{\substack{n>1 \\ (n,q)=1}} \frac{(k-1)^{\omega(n)} \mu(n)^2}{\phi(n)^2}$$

• The inner sum is $-1 + \prod_{p>Q} \left(1 + \frac{k-1}{(p-1)^2}\right) \ll Q^{-1}$. and we have $\sum_{\substack{t_j \leq R \ (t_i,q)=1}} \frac{\mu(t_j)^2}{\phi(t_j)} \ll \prod_{Q .$

• Since also $\frac{r\phi_2(r)^2}{\phi(r)} = 1 + O(1/Q)$ it follows when $r_j = 1$,

$$\kappa_j(\mathbf{r}) = \sum_{t_j} rac{\kappa(\mathbf{r}')}{\phi(t_j)} + O\left(rac{\kappa\phi(q)\log R}{qQ}
ight)$$

where $\mathbf{r}' = r_1, \ldots, r_{j-1}, t_j, r_{j+1}, \ldots, r_k, \ldots, r_k, \ldots$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • The final step of the proof of Maynard's theorem is to obtain smooth approximations to the main terms.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- The final step of the proof of Maynard's theorem is to obtain smooth approximations to the main terms.
- We already did this for the Selberg sieve, i.e. k = 1.

イロト 不得 トイヨト イヨト ニヨー

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- The final step of the proof of Maynard's theorem is to obtain smooth approximations to the main terms.
- We already did this for the Selberg sieve, i.e. k = 1.
- We adopt the expedient of establishing a one-dimensional approximation and applying it *k*-times.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- The final step of the proof of Maynard's theorem is to obtain smooth approximations to the main terms.
- We already did this for the Selberg sieve, i.e. k = 1.
- We adopt the expedient of establishing a one-dimensional approximation and applying it *k*-times.
- Suppose that $g:[0,1] \to \mathbb{R}$. Then we call g *l*-piecewise absolutely continuous on [0,1] when there is a partition $a_0 = 0 < a_1 < \ldots < a_l = 1$ of [0,1] so that for $1 \le j \le l$ 1. $g_+(a_{j-1}) = \lim_{x \to a_{j-1}+} g(x) \& g_-(a_j) = \lim_{x \to a_j-} g(x)$ exist,
 - 2. g is absolutely continuous on $[a_{j-1}, a_j]$ when we replace $g(a_{j-1})$ and $g(a_j)$ by $g_+(a_{j-1})$ and $g_-(a_j)$ respectively.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- The final step of the proof of Maynard's theorem is to obtain smooth approximations to the main terms.
- We already did this for the Selberg sieve, i.e. k = 1.
- We adopt the expedient of establishing a one-dimensional approximation and applying it *k*-times.
- Suppose that $g:[0,1] \to \mathbb{R}$. Then we call g *l*-piecewise absolutely continuous on [0,1] when there is a partition $a_0 = 0 < a_1 < \ldots < a_l = 1$ of [0,1] so that for $1 \le j \le l$ 1. $g_+(a_{j-1}) = \lim_{x \to a_{j-1}+} g(x) \& g_-(a_j) = \lim_{x \to a_j-} g(x)$ exist,
 - 2. g is absolutely continuous on $[a_{j-1}, a_j]$ when we replace $g(a_{j-1})$ and $g(a_j)$ by $g_+(a_{j-1})$ and $g_-(a_j)$ respectively.
- We define $\mathcal{G}(I, G)$ to be the class of *I*-piecewise absolutely continuous functions *g* on [0, 1] such that

$$\sup_{v\in [0,1]} |g(v)| + \int_0^1 |g'(v)| dv \le G.$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- The final step of the proof of Maynard's theorem is to obtain smooth approximations to the main terms.
- We already did this for the Selberg sieve, i.e. k = 1.
- We adopt the expedient of establishing a one-dimensional approximation and applying it *k*-times.
- Suppose that $g:[0,1] \to \mathbb{R}$. Then we call g *l*-piecewise absolutely continuous on [0,1] when there is a partition $a_0 = 0 < a_1 < \ldots < a_l = 1$ of [0,1] so that for $1 \le j \le l$ 1. $g_+(a_{j-1}) = \lim_{x \to a_{j-1}+} g(x) \& g_-(a_j) = \lim_{x \to a_j-} g(x)$ exist,
 - 2. g is absolutely continuous on $[a_{j-1}, a_j]$ when we replace $g(a_{j-1})$ and $g(a_j)$ by $g_+(a_{j-1})$ and $g_-(a_j)$ respectively.
- We define $\mathcal{G}(I, G)$ to be the class of *I*-piecewise absolutely continuous functions *g* on [0, 1] such that

$$\sup_{\in [0,1]} |g(v)| + \int_0^1 |g'(v)| dv \le G.$$

 In practice it suffices that g' is continuous except for at most one x in [0, 1] where g and g' have jump discontinuities.

v

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • We establish

Lemma 9

Suppose $\eta : \mathbb{N} \to \mathbb{R}$ is multiplicative, supported on the squarefree numbers, that $0 \le \eta(p) \le 2$. $\eta(2) < 2$ and there is a C > 0 such that, whenever p > C, $\left| \eta(p) - \frac{1}{p} \right| \le \frac{C}{p^2}$. Suppose also $g \in \mathcal{G}(I, G)$ and $m \in \mathbb{N}$. Then $\sum_{\substack{n \le x \\ (n,m)=1}} \eta(n)g\left(\frac{\log n}{\log x}\right) =$

$$A_m \int_0^1 g(v) dv \log x + O\left(IG\left(1 + \sum_{p \mid m} \frac{\log p}{p}\right) \prod_{p \mid m} \left(1 + \frac{1}{p}\right) \right)$$

where
$$A_m = rac{\phi(m)}{m} \prod_{p \nmid m} \left(1 + \eta(p)\right) \left(1 - rac{1}{p}\right)$$
. We also have

 $A_m \ll \phi(m)/m.$

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

• Then $\sum_{\substack{n \leq x \\ (n,m)=1}} \eta(n)g\left(\frac{\log n}{\log x}\right) =$

$$A_m \int_0^1 g(v) dv \log x + O\left(IG\left(1 + \sum_{p \mid m} \frac{\log p}{p}\right) \prod_{p \mid m} \left(1 + \frac{1}{p}\right) \right)$$

・ロット (雪) (キョット (日)) ヨー

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

• Then $\sum_{\substack{n \leq x \\ (n,m)=1}} \eta(n)g\left(\frac{\log n}{\log x}\right) =$

$$A_m \int_0^1 g(v) dv \log x + O\left(IG\left(1 + \sum_{p \mid m} \frac{\log p}{p}\right) \prod_{p \mid m} \left(1 + \frac{1}{p}\right) \right)$$

• Although there is nothing very deep in this, the generality creates a lot of detail.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Preliminaries to the moderr theory

- Maynard's Theorem
- The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

• Then
$$\sum_{\substack{n \leq x \\ (n,m)=1}} \eta(n)g\left(\frac{\log n}{\log x}\right) =$$

$$A_m \int_0^1 g(v) dv \log x + O\left(IG\left(1 + \sum_{p|m} \frac{\log p}{p}\right) \prod_{p|m} \left(1 + \frac{1}{p}\right) \right)$$

- Although there is nothing very deep in this, the generality creates a lot of detail.
- We proceed first to look at the special case when g is identically 1. Of course η(n) is itself fairly general, but it is close to 1/n, and we use this. The fact that the support is just the squarefree numbers is a further complication.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We extend η to a totally multiplicative function $\eta^*(n)$ by

$$\eta^*(p^k) = \eta(p)^k.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We extend η to a totally multiplicative function $\eta^*(n)$ by

$$\eta^*(p^k) = \eta(p)^k.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

• Now we compare $\eta^*(n)$ with the function 1/n.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • We extend η to a totally multiplicative function $\eta^*(\mathbf{n})$ by

 $\eta^*(p^k) = \eta(p)^k.$

- Now we compare $\eta^*(n)$ with the function 1/n.
- To this end let ρ be the multiplicative function with

$$ho(p^k) = \eta(p)^{k-1} (\eta(p) - 1/p) \quad (k > 0).$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- We extend η to a totally multiplicative function $\eta^*(n)$ by $\eta^*(p^k) = \eta(p)^k.$
- Now we compare $\eta^*(n)$ with the function 1/n.
- To this end let ρ be the multiplicative function with

$$\rho(p^k) = \eta(p)^{k-1} (\eta(p) - 1/p) \quad (k > 0).$$

イロト 不得 トイヨト イヨト 二日

Sac

• Then, for some positive constant C_1 , $|
ho(p^k)| \leq rac{C_1^k}{p^{k+1}}$, and

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- We extend η to a totally multiplicative function $\eta^*(n)$ by $\eta^*(p^k) = \eta(p)^k.$
- Now we compare $\eta^*(n)$ with the function 1/n.
- To this end let ρ be the multiplicative function with

$$ho(p^k) = \eta(p)^{k-1} (\eta(p) - 1/p) \quad (k > 0).$$

• Then, for some positive constant C_1 , $|
ho(p^k)| \leq rac{C_1^k}{p^{k+1}}$, and

•
$$\sum_{u=0}^{k} \rho(p^{u})p^{u-k} = \sum_{u=0}^{k} \eta(p)^{u}p^{u-k} - \sum_{u=1}^{k} \eta(p)^{u-1}p^{u-1-k} = \eta^{*}(p^{k}).$$
 Thus $\eta^{*}(n) = \sum_{v|n} v^{-1}\rho(n/v).$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- We extend η to a totally multiplicative function $\eta^*(n)$ by $\eta^*(p^k) = \eta(p)^k.$
- Now we compare $\eta^*(n)$ with the function 1/n.
- To this end let ρ be the multiplicative function with

$$\rho(p^k) = \eta(p)^{k-1} (\eta(p) - 1/p) \quad (k > 0).$$

- Then, for some positive constant C_1 , $|
 ho(p^k)| \leq rac{C_1^k}{p^{k+1}}$, and
- $\sum_{u=0}^{k} \rho(p^{u}) p^{u-k} = \sum_{u=0}^{k} \eta(p)^{u} p^{u-k} \sum_{u=1}^{k} \eta(p)^{u-1} p^{u-1-k} = \eta^{*}(p^{k}).$ Thus $\eta^{*}(n) = \sum_{v|n} v^{-1} \rho(n/v).$
- We now use the "Rankin trick" to estimate $\sum_{w>y} |\rho(w)|$.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

San

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- We extend η to a totally multiplicative function $\eta^*(n)$ by $\eta^*(p^k) = \eta(p)^k.$
- Now we compare $\eta^*(n)$ with the function 1/n.
- To this end let ρ be the multiplicative function with

$$ho(p^k) = \eta(p)^{k-1} (\eta(p) - 1/p) \quad (k > 0).$$

- Then, for some positive constant C_1 , $|
 ho(p^k)| \leq rac{C_1^k}{p^{k+1}}$, and
- $\sum_{u=0}^{k} \rho(p^{u}) p^{u-k} = \sum_{u=0}^{k} \eta(p)^{u} p^{u-k} \sum_{u=1}^{k} \eta(p)^{u-1} p^{u-1-k} = \eta^{*}(p^{k}).$ Thus $\eta^{*}(n) = \sum_{v|n} v^{-1} \rho(n/v).$

• We now use the "Rankin trick" to estimate $\sum_{w>y} |\rho(w)|$.

• Let $0 < \tau < 1$. Then $\sum_{w > y} |\rho(w)| \le y^{-\tau} \sum_{w=1}^{\infty} w^{\tau} |\rho(w)|$.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

• $|\rho(p^k)| \leq \frac{C_1^k}{p^{k+1}}, \sum_{w > y} |\rho(w)| \leq y^{-\tau} \sum_{w=1}^{\infty} w^{\tau} |\rho(w)|$

イロト イポト イヨト イヨト

э

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

•
$$|\rho(p^k)| \leq \frac{C_1^k}{p^{k+1}}, \sum_{w>y} |\rho(w)| \leq y^{-\tau} \sum_{w=1}^{\infty} w^{\tau} |\rho(w)|$$

• The sum here converges because

$$\prod_{\rho} \left(1 + \sum_{k=1}^{\infty} p^{k\tau} |\rho(p^k)| \right) \ll \prod_{\rho} \left(1 + \sum_{k=1}^{\infty} p^{k\tau-k-1} C_1^k \right) \right).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

æ

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1

•
$$|\rho(p^{k})| \leq \frac{C_{1}^{k}}{p^{k+1}}, \sum_{w>y} |\rho(w)| \leq y^{-\tau} \sum_{w=1}^{\infty} w^{\tau} |\rho(w)|$$

• The sum here converges because

$$\prod_{p} \left(1 + \sum_{k=1}^{\infty} p^{k\tau} |\rho(p^{k})| \right) \ll \prod_{p} \left(1 + \sum_{k=1}^{\infty} p^{k\tau-k-1} C_{1}^{k} \right).$$
• Hence $\sum_{\substack{z \leq y \\ (z,m)=1}} \rho(z) = D(m) + O(y^{-\tau})$ where $D(m) =$

$$\prod_{p \nmid m} \left(1 + \sum_{k=1}^{\infty} \eta(p)^{k-1} (\eta(p) - 1/p) \right) = \prod_{p \nmid m} \frac{1 - 1/p}{1 - \eta(p)}.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ● ●

Robert C. Vaughan

Maynard one

•
$$|\rho(p^{k})| \leq \frac{C_{1}^{k}}{p^{k+1}}, \sum_{w>y} |\rho(w)| \leq y^{-\tau} \sum_{w=1}^{\infty} w^{\tau} |\rho(w)|$$

• The sum here converges because

$$\prod_{p} \left(1 + \sum_{k=1}^{\infty} p^{k\tau} |\rho(p^{k})| \right) \ll \prod_{p} \left(1 + \sum_{k=1}^{\infty} p^{k\tau-k-1}C_{1}^{k} \right).$$
• Hence $\sum_{\substack{z \leq y \\ (z,m)=1}} \rho(z) = D(m) + O(y^{-\tau})$ where $D(m) =$

$$\prod_{p \nmid m} \left(1 + \sum_{k=1}^{\infty} \eta(p)^{k-1} (\eta(p) - 1/p) \right) = \prod_{p \nmid m} \frac{1 - 1/p}{1 - \eta(p)}.$$
• Therefore $\sum_{\substack{v \leq x \\ (v,m)=1}} \eta^{*}(v) = \sum_{\substack{w \leq x \\ (w,m)=1}} \frac{1}{w} \sum_{\substack{z \leq x/w \\ (z,m)=1}} \rho(z) =$

$$\sum_{\substack{w \leq x \\ (w,m)=1}} \frac{1}{w} (D(m) + O(w^{\tau}x^{-\tau})) = \sum_{\substack{w \leq x \\ (w,m)=1}} \frac{D(m)}{w} + O(1).$$

~k

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Therefore $\sum_{\substack{v \leq x \\ (v,m)=1}} \eta^*(v) = \sum_{\substack{w \leq x \\ (w,m)=1}} \frac{D(m)}{w} + O(1).$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Therefore
$$\sum_{\substack{v \le x \\ (v,m)=1}} \eta^*(v) = \sum_{\substack{w \le x \\ (w,m)=1}} \frac{D(m)}{w} + O(1).$$

The sum here is
 $\sum_{v|m} \frac{\mu(v)}{v} \sum_{u \le x/v} \frac{1}{u} = \sum_{v|m} \frac{\mu(v)}{v} (\log(x/v) + C_0 + O(v/x))$
 $= \frac{\phi(m)}{m} (\log x + C_0) - \sum_{v|m} \frac{\mu(v) \log v}{v} + O(d(m)/x).$

・ロト ・ 四ト ・ ヨト ・ ヨト

Ð.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Therefore
$$\sum_{\substack{v \le x \\ (v,m)=1}} \eta^*(v) = \sum_{\substack{w \le x \\ (w,m)=1}} \frac{D(m)}{w} + O(1).$$
The sum here is
$$\sum_{v|m} \frac{\mu(v)}{v} \sum_{u \le x/v} \frac{1}{u} = \sum_{v|m} \frac{\mu(v)}{v} \left(\log(x/v) + C_0 + O(v/x)\right)$$

$$= \frac{\phi(m)}{m} (\log x + C_0) - \sum_{v|m} \frac{\mu(v) \log v}{v} + O(d(m)/x).$$
Hence
$$\sum_{\substack{v \le x \\ (v,m)=1}} \eta^*(v) = \frac{\phi(m)}{m} D(m) \log x$$

$$+ O\left(\frac{d(m)}{x} + \left(1 + \sum_{p|m} \frac{\log p}{p}\right) \prod_{p|m} \left(1 + \frac{1}{p}\right)\right)$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

• Hence
$$\sum_{\substack{v \le x \\ (v,m)=1}} \eta^*(v) = \frac{\phi(m)}{m} D(m) \log x$$
$$+ O\left(\frac{d(m)}{x} + \left(1 + \sum_{p|m} \frac{\log p}{p}\right) \prod_{p|m} \left(1 + \frac{1}{p}\right)\right)$$

ヘロト 人間 ト 人造 ト 人造 ト

æ

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1

Hence
$$\sum_{\substack{v \le x \\ (v,m)=1}} \eta^*(v) = \frac{\phi(m)}{m} D(m) \log x$$
$$+ O\left(\frac{d(m)}{x} + \left(1 + \sum_{p|m} \frac{\log p}{p}\right) \prod_{p|m} \left(1 + \frac{1}{p}\right)\right)$$
$$Thus \sum_{\substack{n \le x \\ (n,m)=1}} \eta(n) = \sum_{\substack{n \le x \\ (n,m)=1}} \mu(n)^2 \eta^*(n) =$$
$$\sum_{\substack{u \le \sqrt{x} \\ (u,m)=1}} \mu(u) \eta^*(u)^2 \sum_{\substack{v \le x/u^2 \\ (v,m)=1}} \eta^*(v) = D_1(m) \log x$$
$$+ O\left(\frac{d(m)}{x} + \left(1 + \sum_{p|m} \frac{\log p}{p}\right) \prod_{p|m} \left(1 + \frac{1}{p}\right)\right)$$
$$where D_1(m) = \frac{\phi(m)}{m} D(m) \sum_{\substack{u=1 \\ (u,m)=1}}^{\infty} \mu(u) \eta^*(u)^2$$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

• Thus
$$\sum_{\substack{n \leq x \\ (n,m)=1}} \eta(n) = D_1(m) \log x$$

$$+O\left(rac{d(m)}{x}+\left(1+\sum_{p\mid m}rac{\log p}{p}
ight)\prod_{p\mid m}\left(1+rac{1}{p}
ight)
ight)$$

where
$$D_1(m) = rac{\phi(m)}{m} D(m) \sum_{\substack{u=1 \ (u,m)=1}}^{\infty} \mu(u) \eta^*(u)^2 =$$

$$\frac{\phi(m)}{m}\prod_{p\nmid m}\left(1-\eta(p)^2\right)\left(1-1/p\right)\left(1-\eta(p)\right)^{-1}=A_m$$

ヘロト 人間 ト 人造 ト 人造 ト

æ

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

• Thus
$$\sum_{\substack{n \leq x \\ (n,m)=1}} \eta(n) = D_1(m) \log x$$

$$+O\left(rac{d(m)}{x}+\left(1+\sum_{p\mid m}rac{\log p}{p}
ight)\prod_{p\mid m}\left(1+rac{1}{p}
ight)
ight)$$

where
$$D_1(m) = rac{\phi(m)}{m} D(m) \sum_{\substack{u=1 \ (u,m)=1}}^\infty \mu(u) \eta^*(u)^2 =$$

$$\frac{\phi(m)}{m} \prod_{p \nmid m} (1 - \eta(p)^2) (1 - 1/p)(1 - \eta(p))^{-1} = A_m$$

• Now we apply this to general g by partial summation.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • Now we apply this to general $g \in \mathcal{G}(I, G)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- Now we apply this to general $g \in \mathcal{G}(I, G)$.
- Let $E(x) = \sum_{\substack{n \le x \\ (n,m)=1}} \eta(n) A_m \log x$ and choose a_j as in the definition of $\mathcal{G}(I, G)$. When $x^{a_{j-1}} < n \le x^{a_j}$, $g\left(\frac{\log n}{\log x}\right) = g_-(a_j) - \int_{\frac{\log n}{\log x}}^{\frac{\log n}{\log x}} g'(v) dv$ except when $n = x^{a_j}$

・ロト ・ 同ト ・ ヨト ・ ヨト

when the two sides differ $by \ll G$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1

- Now we apply this to general $g \in \mathcal{G}(I, G)$.
- Let $E(x) = \sum_{\substack{n \le x \\ (n,m)=1}} \eta(n) A_m \log x$ and choose a_j as in the definition of $\mathcal{G}(I, G)$. When $x^{a_{j-1}} < n \le x^{a_j}$, $g\left(\frac{\log n}{\log x}\right) = g_-(a_j) - \int_{\frac{\log n}{\log x}}^{a_j} g'(v) dv$ except when $n = x^{a_j}$ when the two sides differ by $\ll G$.
- Multiply by η(n), sum over n ∈ (x^{a_{j-1}}, x^{a_j}], interchange the order of summation and integration and apply E to get (A_m(log x)(a_j a_{j-1}) + E(x^{a_j}) E(x^{a_{j-1}}))g₋(a_j) + O(G)

$$-\int_{a_{j-1}}^{y} \left(A_m(\log x)(v-a_{j-1})+E(x^v)-E(x^{a_{j-1}})\right)g'(v)dv.$$

イロト イボト イヨト イヨト 三日

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- Now we apply this to general $g \in \mathcal{G}(I, G)$.
- Let $E(x) = \sum_{\substack{n \le x \\ (n,m)=1}} \eta(n) A_m \log x$ and choose a_j as in the definition of $\mathcal{G}(I, G)$. When $x^{a_{j-1}} < n \le x^{a_j}$, $g\left(\frac{\log n}{\log x}\right) = g_-(a_j) - \int_{\frac{\log n}{\log x}}^{a_j} g'(v) dv$ except when $n = x^{a_j}$ when the two sides differ by $\ll G$.
- Multiply by η(n), sum over n ∈ (x^{a_{j-1}}, x^{a_j}], interchange the order of summation and integration and apply E to get (A_m(log x)(a_j a_{j-1}) + E(x^{a_j}) E(x^{a_{j-1}}))g₋(a_j) + O(G)

$$-\int_{a_{j-1}}^{a_{j-1}} \left(A_m(\log x)(v-a_{j-1})+E(x^v)-E(x^{a_{j-1}})\right)g'(v)dv.$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 10

- Now we apply this to general $g \in \mathcal{G}(I, G)$.
- Let $E(x) = \sum_{\substack{n \le x \\ (n,m)=1}} \eta(n) A_m \log x$ and choose a_j as in the definition of $\mathcal{G}(I, G)$. When $x^{a_{j-1}} < n \le x^{a_j}$, $g\left(\frac{\log n}{\log x}\right) = g_-(a_j) - \int_{\frac{\log n}{\log x}}^{a_j} g'(v) dv$ except when $n = x^{a_j}$ when the two sides differ by $\ll G$.
- Multiply by η(n), sum over n ∈ (x^{a_{j-1}}, x^{a_j}], interchange the order of summation and integration and apply E to get (A_m(log x)(a_j a_{j-1}) + E(x^{a_j}) E(x^{a_{j-1}}))g₋(a_j) + O(G)

$$-\int_{a_{j-1}}^{a_j} \left(A_m(\log x)(v-a_{j-1})+E(x^v)-E(x^{a_{j-1}})\right)g'(v)dv.$$

- Integrate main term by parts to give $\int_{a_{j-1}}^{a_j} A_m(\log x)g(v)dv$ which on summing over j gives the main term.
- Insert the bound for E from earlier and sum over j.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1 • We now complete the proof of Maynard's theorem.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- We now complete the proof of Maynard's theorem.
- We finally assume that $\kappa(\mathbf{r}) = f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right)$ for some f in \mathcal{F} .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э

Sar

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- We now complete the proof of Maynard's theorem.
- We finally assume that $\kappa(\mathbf{r}) = f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right)$ for some f in \mathcal{F} .
- To simplify some of the formulæ we then extend the definition of f to [0, 1]^k by taking f to be 0 outside R.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sar

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- We now complete the proof of Maynard's theorem.
- We finally assume that $\kappa(\mathbf{r}) = f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right)$ for some f in \mathcal{F} .
- To simplify some of the formulæ we then extend the definition of f to [0, 1]^k by taking f to be 0 outside R.

Sar

• Again we concentrate on S_j rather than T.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- We now complete the proof of Maynard's theorem.
- We finally assume that $\kappa(\mathbf{r}) = f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right)$ for some f in \mathcal{F} .
- To simplify some of the formulæ we then extend the definition of f to [0, 1]^k by taking f to be 0 outside R.

• Again we concentrate on S_j rather than T.

• Recall that $\kappa_j(\mathbf{r}) = 0$ unless $r_j = 1$, (r, q) = 1 and r is squarefree, in which case $\kappa_j(\mathbf{r}) = \sum_{t_j} \frac{\mu(t_j)^2}{\phi(t_j)} \times$

$$f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_{j-1}}{\log R}, \frac{\log t_j}{\log R}, \frac{\log r_{j+1}}{\log R}, \dots, \frac{\log r_k}{\log R}\right) + O\left(\frac{F\phi(q)\log R}{qQ}\right)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

where $\mathbf{r}' = r_1, ..., r_{j-1}, t_j, r_{j+1}, ..., r_k$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

- We now complete the proof of Maynard's theorem.
- We finally assume that $\kappa(\mathbf{r}) = f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_k}{\log R}\right)$ for some f in \mathcal{F} .
- To simplify some of the formulæ we then extend the definition of f to [0, 1]^k by taking f to be 0 outside R.

• Again we concentrate on S_j rather than T.

• Recall that $\kappa_j(\mathbf{r}) = 0$ unless $r_j = 1$, (r, q) = 1 and r is squarefree, in which case $\kappa_j(\mathbf{r}) = \sum_{t_i} \frac{\mu(t_j)^2}{\phi(t_j)} \times$

$$f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_{j-1}}{\log R}, \frac{\log t_j}{\log R}, \frac{\log r_{j+1}}{\log R}, \dots, \frac{\log r_k}{\log R}\right) + O\left(\frac{F\phi(q)\log R}{qQ}\right)$$

where $\mathbf{r}' = r_1, \dots, r_{j-1}, t_j, r_{j+1}, \dots, r_k$. • Thus $K_j \ll F \frac{\phi(q)}{q} \log R$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 1

$$\kappa_{j}(\mathbf{r}) = 0 \text{ unless } r_{j} = 1, (r, q) = 1 \text{ and } r \text{ is squarefree, in}$$

which case $\kappa_{j}(\mathbf{r}) = \sum_{t_{j}} \frac{\mu(t_{j})^{2}}{\phi(t_{j})} \times$
$$f\left(\frac{\log r_{1}}{\log R}, \dots, \frac{\log r_{j-1}}{\log R}, \frac{\log t_{j}}{\log R}, \frac{\log r_{j+1}}{\log R}, \dots, \frac{\log r_{k}}{\log R}\right)$$
$$+ O\left(\frac{F\phi(q)\log R}{qQ}\right)$$

・ロト ・四ト ・ヨト ・ヨト

æ

and
$$K_j \ll F \frac{\phi(q)}{q} \log R$$
.

Robert C. Vaughan

Maynard one

•
$$\kappa_j(\mathbf{r}) = 0$$
 unless $r_j = 1$, $(r, q) = 1$ and r is squarefree, in
which case $\kappa_j(\mathbf{r}) = \sum_{t_j} \frac{\mu(t_j)^2}{\phi(t_j)} \times$
 $f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_{j-1}}{\log R}, \frac{\log t_j}{\log R}, \frac{\log r_{j+1}}{\log R}, \dots, \frac{\log r_k}{\log R}\right)$
 $+ O\left(\frac{F\phi(q)\log R}{qQ}\right)$
and $K_j \ll F\frac{\phi(q)}{q}\log R$.
• Thus, by the last lemma, with $\eta(p) = 1/(p-1)$ and
 $m = qr$, when $r_j = 1$, $(r, q) = 1$ and r is squarefree
 $\kappa_j(\mathbf{r}) = (\log R)\frac{\phi(qr)}{qr}f_j(\mathbf{r}) + O\left(\frac{F\phi(q)\log R}{qQ}\right)$
where $f_j(\mathbf{r}) =$
 $\int_0^1 f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_{j-1}}{\log R}, u_j, \frac{\log r_{j-1}}{\log R}, \dots, \frac{\log r_k}{\log R}\right) du_j.$

æ

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

We have
$$\kappa_j(\mathbf{r}) = (\log R) \frac{\phi(qr)}{qr} f_j(\mathbf{r}) + O\left(\frac{F\phi(q)\log R}{qQ}\right)$$

where $f_j(\mathbf{r}) = \int_0^1 f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_{j-1}}{\log R}, u_j, \frac{\log r_{j-1}}{\log R}, \dots, \frac{\log r_k}{\log R}\right) du_j.$

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1

We have
$$\kappa_j(\mathbf{r}) = (\log R) \frac{\phi(qr)}{qr} f_j(\mathbf{r}) + O\left(\frac{F\phi(q)\log R}{qQ}\right)$$

where $f_j(\mathbf{r}) = \int_0^1 f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_{j-1}}{\log R}, u_j, \frac{\log r_{j-1}}{\log R}, \dots, \frac{\log r_k}{\log R}\right) du_j.$

• Thus, by Lemma 8, $S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2\log N} \times$

$$\sum_{\substack{\mathbf{r}\\(r,q)=1}}^{j} \frac{\mu(r)^2 \phi(r)^2}{\phi_2(r)r^2} f_j(\mathbf{r})^2 + O\left(\frac{F^2 \phi(q)^k N(\log R)^k}{q^{k+1}Q}\right).$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

(r,q) = 1

Proof of Theorem 10

We have
$$\kappa_j(\mathbf{r}) = (\log R) \frac{\phi(qr)}{qr} f_j(\mathbf{r}) + O\left(\frac{F\phi(q)\log R}{qQ}\right)$$

where $f_j(\mathbf{r}) =$

$$\int_0^1 f\left(\frac{\log r_1}{\log R}, \dots, \frac{\log r_{j-1}}{\log R}, u_j, \frac{\log r_{j-1}}{\log R}, \dots, \frac{\log r_k}{\log R}\right) du_j$$
Thus, by Lemma 8, $S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2\log N} \times$

$$\sum_{\mathbf{r}}^j \frac{\mu(r)^2 \phi(r)^2}{\phi_2(r)r^2} f_j(\mathbf{r})^2 + O\left(\frac{F^2 \phi(q)^k N(\log R)^k}{q^{k+1}Q}\right).$$

• We will repeatedly use, without further comment, that if $\tau(p) \ll p^{-2}$, then we have $\prod_{p>Q} (1+\tau(p)) = 1 + O(1/Q)$

and so such products can be replaced by 1 in the analysis. We have $\frac{\phi(r)^2}{\phi_2(r)r} = \prod_{p|r} \frac{(p-1)^2}{(p-1)^2 - 1}$ and each prime factor of r exceeds Q, so this is $1 + O(Q^{-1})$.

Т

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus
$$S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2 \log N} \times$$

$$\sum_{\substack{\mathbf{r}\\(r,q)=1}}^r \frac{\mu(r)^2}{r} f_j(\mathbf{r})^2 + O\left(\frac{F^2\phi(q)^k N(\log R)^k}{q^{k+1}Q}\right)$$

٠

ヘロト 人間 ト 人造 ト 人造 ト

æ

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

Thus
$$S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2 \log N} \times$$

$$\sum_{\substack{\mathbf{r} \\ (r,q)=1}}^{r} \frac{\mu(r)^2}{r} f_j(\mathbf{r})^2 + O\left(\frac{F^2\phi(q)^k N(\log R)^k}{q^{k+1}Q}\right)$$

As r is squarefree, the general arithmetical factor in the sum can be rewritten as ∏^k_{i=1} µ(r_i)²/r_i provided that the sum over r is restricted to r with (r_u, r_v)=1 when u ≠ v.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1(

Thus
$$S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2 \log N} \times$$

$$\sum_{\substack{\mathbf{r} \ (r,q)=1}}^{r} \frac{\mu(r)^2}{r} f_j(\mathbf{r})^2 + O\left(\frac{F^2\phi(q)^k N(\log R)^k}{q^{k+1}Q}\right)$$

As r is squarefree, the general arithmetical factor in the sum can be rewritten as ∏^k_{i=1} µ(r_i)²/r_i provided that the sum over r is restricted to r with (r_u, r_v)=1 when u ≠ v.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

• If we add in any $(r_u, r_v) > 1$, the extra **r** have a prime p > Q such that $p|r_u$ and $p|r_v$ for some $u \neq v$.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus
$$S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2 \log N} \times$$

$$\sum_{\substack{\mathbf{r} \\ (r,q)=1}}^{r} \frac{\mu(r)^2}{r} f_j(\mathbf{r})^2 + O\left(\frac{F^2\phi(q)^k N(\log R)^k}{q^{k+1}Q}\right)$$

- As r is squarefree, the general arithmetical factor in the sum can be rewritten as ∏^k_{i=1} µ(r_i)²/r_i provided that the sum over r is restricted to r with (r_u, r_v)=1 when u ≠ v.
- If we add in any $(r_u, r_v) > 1$, the extra **r** have a prime p > Q such that $p|r_u$ and $p|r_v$ for some $u \neq v$.
- $\bullet\,$ Therefore the total error introduced is $\ll\,$

$$\frac{\phi(q)N\log^2 R}{q^2\log N} \sum_{p>Q} \frac{F^2}{p^2} \left(\sum_{n< R} \frac{1}{n}\right)^{k-1} \ll \frac{F^2\phi(q)^kN\log^k R}{q^{k+1}Q}$$

イロト 不得 トイヨト イヨト 二日

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus
$$S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2 \log N} \times$$

$$\sum_{\substack{\mathbf{r}\\(r,q)=1}}^{r} \frac{\mu(r)^2}{r} f_j(\mathbf{r})^2 + O\left(\frac{F^2\phi(q)^k N(\log R)^k}{q^{k+1}Q}\right)$$

- As r is squarefree, the general arithmetical factor in the sum can be rewritten as ∏^k_{i=1} µ(r_i)²/r_i provided that the sum over r is restricted to r with (r_u, r_v)=1 when u ≠ v.
- If we add in any $(r_u, r_v) > 1$, the extra **r** have a prime p > Q such that $p|r_u$ and $p|r_v$ for some $u \neq v$.
- Therefore the total error introduced is \ll

$$\frac{\phi(q)N\log^2 R}{q^2\log N} \sum_{p>Q} \frac{F^2}{p^2} \left(\sum_{n< R} \frac{1}{n}\right)^{k-1} \ll \frac{F^2\phi(q)^kN\log^k R}{q^{k+1}Q}$$

• Thus the sum in the main term can be replaced by

$$\sum_{\substack{\mathbf{r}\\(r,q)=1}}^{r} f_j(\mathbf{r})^2 \prod_{i=1}^{k} \frac{\mu(r_i)^2}{r_i}.$$

イロト 不得 トイヨト イヨト ニヨー

Sac

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus
$$S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2\log N} \times$$

$$\sum_{\substack{\mathbf{r}\\(r,q)=1}}^{r} f_j(\mathbf{r})^2 \prod_{i=1}^{k} \frac{\mu(r_i)^2}{r_i} + O\left(\frac{F^2\phi(q)^k N(\log R)^k}{q^{k+1}Q}\right).$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

æ

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus
$$S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2 \log N} \times$$

$$\sum_{\substack{\mathbf{r} \\ (r,q)=1}}^{j} f_j(\mathbf{r})^2 \prod_{i=1}^{k} \frac{\mu(r_i)^2}{r_i} + O\left(\frac{F^2 \phi(q)^k N(\log R)^k}{q^{k+1}Q}\right).$$

• Now we apply Lemma 9 to each variable r_i in turn, i.e k-1 times, with

$$\eta(p) = \frac{1}{p}$$

イロト 不同 トイヨト イロト

∃ < 𝒫 𝔄 𝔄</p>

and m = q.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 1

P Thus
$$S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2 \log N} \times$$
$$\sum_{\substack{\mathbf{r}\\(r,q)=1}}^{j} f_j(\mathbf{r})^2 \prod_{i=1}^k \frac{\mu(r_i)^2}{r_i} + O\left(\frac{F^2 \phi(q)^k N(\log R)^k}{q^{k+1}Q}\right).$$

• Now we apply Lemma 9 to each variable r_i in turn, i.e k-1 times, with

$$\eta(p)=\frac{1}{p}$$

and m = q.

• Each time we obtain a factor $\prod_{p>Q}(1+\eta(p))(1-1/p)=\prod_{p>Q}(1-p^{-2})=1+O(1/Q).$ Thus

$$S_j(f) = \frac{\phi(q)^k N(\log R)^{k+1}}{q^{k+1} \log N} I_j + O\left(\frac{F^2 \phi(q)^k N(\log R)^k}{q^{k+1}Q}\right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where I_j is as in Theorem 6.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 1

• Thus
$$S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2 \log N} \times$$

$$\sum_{\substack{\mathbf{r}\\(r,q)=1}}^{j} f_j(\mathbf{r})^2 \prod_{i=1}^k \frac{\mu(r_i)^2}{r_i} + O\left(\frac{F^2 \phi(q)^k N(\log R)^k}{q^{k+1}Q}\right).$$

• Now we apply Lemma 9 to each variable r_i in turn, i.e k-1 times, with

$$\eta(p) = \frac{1}{p}$$

and m = q.

• Each time we obtain a factor $\prod_{p>Q}(1+\eta(p))(1-1/p)=\prod_{p>Q}(1-p^{-2})=1+O(1/Q).$ Thus

$$S_j(f) = \frac{\phi(q)^k N(\log R)^{k+1}}{q^{k+1} \log N} I_j + O\left(\frac{F^2 \phi(q)^k N(\log R)^k}{q^{k+1}Q}\right)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where I_j is as in Theorem 6.

• This gives the first part of that theorem.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 1

Thus
$$S_j(f) = \frac{\phi(q)N(\log R)^2}{q^2 \log N} \times$$

$$\sum_{\substack{\mathbf{r} \\ (r,q)=1}}^{j} f_j(\mathbf{r})^2 \prod_{i=1}^{k} \frac{\mu(r_i)^2}{r_i} + O\left(\frac{F^2 \phi(q)^k N(\log R)^k}{q^{k+1}Q}\right).$$

• Now we apply Lemma 9 to each variable r_i in turn, i.e k-1 times, with

$$\eta(p) = \frac{1}{p}$$

and m = q.

• Each time we obtain a factor $\prod_{p>Q}(1+\eta(p))(1-1/p)=\prod_{p>Q}(1-p^{-2})=1+O(1/Q).$ Thus

$$S_j(f) = \frac{\phi(q)^k N(\log R)^{k+1}}{q^{k+1} \log N} I_j + O\left(\frac{F^2 \phi(q)^k N(\log R)^k}{q^{k+1}Q}\right)$$

ъ

nac

where I_j is as in Theorem 6.

- This gives the first part of that theorem.
- The second part follows in the same way.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

Theorem 10 (Maynard)

Suppose that when $k \ge 2$, we take $f \in \mathcal{F}$ and then $I_j = I_j(f)$ and J = J(f) are as in Theorem 6. Let $\rho = \sup_{f \in \mathcal{F}} \frac{\sum_{j=1}^k I_j(f)}{J(f)}$. Then, for k sufficiently large, $\rho > \log k - \log \log k - 1$.

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sac

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

Theorem 10 (Maynard)

Suppose that when $k \ge 2$, we take $f \in \mathcal{F}$ and then $I_j = I_j(f)$ and J = J(f) are as in Theorem 6. Let $\rho = \sup_{f \in \mathcal{F}} \frac{\sum_{j=1}^k I_j(f)}{J(f)}$. Then, for k sufficiently large, $\rho > \log k - \log \log k - 1$.

Corollary 11 (Zhang)

There are bounded gaps in the sequence of primes.

• This is immediate from Theorems 6, 10 and the fact that there are admissible sets with *k* elements as provided, for example, by Theorem 3.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

Theorem 10 (Maynard)

Suppose that when $k \ge 2$, we take $f \in \mathcal{F}$ and then $I_j = I_j(f)$ and J = J(f) are as in Theorem 6. Let $\rho = \sup_{f \in \mathcal{F}} \frac{\sum_{j=1}^k I_j(f)}{J(f)}$. Then, for k sufficiently large, $\rho > \log k - \log \log k - 1$.

Corollary 11 (Zhang)

There are bounded gaps in the sequence of primes.

• This is immediate from Theorems 6, 10 and the fact that there are admissible sets with *k* elements as provided, for example, by Theorem 3.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Corollary 12 (Maynard, Tao)

For each $m \in \mathbb{N}$ we have $\liminf_{n \to \infty} (p_{n+m} - p_n) \ll m^2 e^{4m}$.

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

Maynard one

Bounded Gaps

Proof of Theorem 10

Corollary 13 (Maynard)

Let $m \in \mathbb{N}$ and let $\mathcal{G} = \{g_1, \ldots, g_l\}$ be a set of l distinct non-negative integers. Let $M(m, l, \mathcal{G})$ be the number of admissible m-tuples contained in \mathcal{G} and let $N(m, l, \mathcal{G})$ be the number of admissible m-tuples \mathbf{h} contained in \mathcal{G} such that there are infinitely many n for which each member of the m-tuple $n + \mathbf{h}$ is prime. Then, for $l > l_0(m)$, $l^m \ge M(m, l, \mathcal{G}) \gg_m l^m$ and $\frac{N(m, l, \mathcal{G})}{M(m, l, \mathcal{G})} \gg_m 1$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • de Polignac's conjecture [1849] asserts that every even integer is the difference of infinitely many pairs of primes. That the conjecture holds for a positive proportion of all even integers follows on taking m = 2 and $g_j = 2j - 2$ in the previous corollary, for then number of solutions of $g_{j_2} - g_{j_1} = 2d$ is at most l and so there must be $\gg l^2/l = 1$ different differences $g_{j_2} - g_{j_1}$ arising from the admissible pairs counted by N(2, l, G).

Corollary 14

There is an infinite subset \mathbb{D} of \mathbb{N} with positive lower asymptotic density such that for each $d \in \mathbb{D}$ there are infinitely many pairs of primes p_1, p_2 such that $p_2 - p_1 = d$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

• Let $\varpi = \frac{k/\log k}{\log(k/\log k)}$ and ξ be the positive solution to $1 + \xi \varpi = e^{\xi}$.

・ロット (雪) (キョット (日)) ヨー

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • Let $\varpi = \frac{k/\log k}{\log(k/\log k)}$ and ξ be the positive solution to $1 + \xi \varpi = e^{\xi}$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

 Then e^ξ/ξ > ∞ and, for k sufficiently large, log k - log log k < ξ < log k.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- Let $\varpi = \frac{k/\log k}{\log(k/\log k)}$ and ξ be the positive solution to $1 + \xi \varpi = e^{\xi}$.
- Then e^ξ/ξ > ∞ and, for k sufficiently large, log k - log log k < ξ < log k.
- Let $g:[0,\infty)
 ightarrow \mathbb{R}$ be defined by

$$g(y) = egin{cases} rac{1}{1+\xi y} & 0 \leq y \leq arpi, \ 0 & arpi < y. \end{cases}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

> Robert C. Vaughan

Preliminaries to the modern theory

- Maynard's Theorem
- The Setup
- Maynard one

Bounded Gaps

Proof of Theorem 10

- Let $\varpi = \frac{k/\log k}{\log(k/\log k)}$ and ξ be the positive solution to $1 + \xi \varpi = e^{\xi}$.
- Then e^ξ/ξ > ∞ and, for k sufficiently large, log k - log log k < ξ < log k.
- Let $g:[0,\infty)
 ightarrow \mathbb{R}$ be defined by

$$g(y) = egin{cases} rac{1}{1+\xi y} & 0 \leq y \leq arpi, \ 0 & arpi < y. \end{cases}$$

 We need to compute various integrals which we denote by α, β, γ, τ as follows.

$$\begin{aligned} \alpha &= \int_0^\infty g(y) dy = 1, \quad \beta = \int_0^\infty g(y)^2 dy = \frac{1}{\xi} - \frac{1}{\xi e^{\xi}}, \\ \gamma &= \int_0^\infty y g(y)^2 dy = \frac{1}{\xi} - \frac{1}{\xi^2} + \frac{1}{\xi^2 e^{\xi}}, \\ \tau &= \int_0^\infty y^2 g(y)^2 dy = \frac{\varpi}{\xi^2} - \frac{2}{\xi^2} + \frac{1}{\xi^3} - \frac{1}{\xi^3 e^{\xi}}. \end{aligned}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

• We now take

$$f(\mathbf{t}) = egin{cases} \prod_{i=1}^k g(kt_i) & \mathbf{t} \in \mathcal{R}, \\ 0 & \mathbf{t} \notin \mathcal{R}. \end{cases}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

æ

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 10 • We now take

$$f(\mathbf{t}) = egin{cases} \prod_{i=1}^k g(kt_i) & \mathbf{t} \in \mathcal{R}, \ 0 & \mathbf{t} \notin \mathcal{R}. \end{cases}$$

• Since f is symmetric we have $I_j(f) = I_k(f)$ for every $j \le k$. Thus $\rho \ge \frac{kI_k(f)}{J(f)}$ and we now proceed to estimate $I_k(f)$ and J(f).

・ロット (雪) (キョット (日)) ヨー

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 10 We now take

$$f(\mathbf{t}) = egin{cases} \prod_{i=1}^k g(kt_i) & \mathbf{t} \in \mathcal{R}, \\ 0 & \mathbf{t} \notin \mathcal{R}. \end{cases}$$

 Since f is symmetric we have I_j(f) = I_k(f) for every j ≤ k. Thus ρ ≥ kI_k(f)/J(f) and we now proceed to estimate I_k(f) and J(f).

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

• With this choice most of the mass of f is close to the axes. $g(kt) = \frac{1}{1+kt\xi} \sim \frac{1}{tk\log k}$. Thus for $t \gg 1/(k(\log k)^{1/2})$ we have $g(kt) \ll (\log k)^{-1/2}$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 10 • We now take

$$f(\mathbf{t}) = egin{cases} \prod_{i=1}^k g(kt_i) & \mathbf{t} \in \mathcal{R}, \\ 0 & \mathbf{t} \notin \mathcal{R}. \end{cases}$$

- Since f is symmetric we have $I_j(f) = I_k(f)$ for every $j \le k$. Thus $\rho \ge \frac{kI_k(f)}{J(f)}$ and we now proceed to estimate $I_k(f)$ and J(f).
- With this choice most of the mass of f is close to the axes. $g(kt) = \frac{1}{1+kt\xi} \sim \frac{1}{tk\log k}$. Thus for $t \gg 1/(k(\log k)^{1/2})$ we have $g(kt) \ll (\log k)^{-1/2}$.
- Thus the boundary condition t₁ + · · · + t_k ≤ 1 on R is relatively unimportant.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 10 • We now take

$$f(\mathbf{t}) = egin{cases} \prod_{i=1}^k g(kt_i) & \mathbf{t} \in \mathcal{R}, \ 0 & \mathbf{t} \notin \mathcal{R}. \end{cases}$$

- Since f is symmetric we have $I_j(f) = I_k(f)$ for every $j \le k$. Thus $\rho \ge \frac{kI_k(f)}{J(f)}$ and we now proceed to estimate $I_k(f)$ and J(f).
- With this choice most of the mass of f is close to the axes. $g(kt) = \frac{1}{1+kt\xi} \sim \frac{1}{tk\log k}$. Thus for $t \gg 1/(k(\log k)^{1/2})$ we have $g(kt) \ll (\log k)^{-1/2}$.
- Thus the boundary condition $t_1 + \cdots + t_k \leq 1$ on \mathcal{R} is relatively unimportant.
- Since we are concerned with only a lower bound for ρ, lower and upper bounds for I_k(f) and J respectively will suffice.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • An upper bound for J(f) is easy. We have

$$J(f) \leq \int_{[0,\infty)^k} \prod_{i=1}^k g(kt_i)^2 d\mathbf{t} = k^{-k} \beta^k.$$

人口 医水管 医水管 医子

3

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • An upper bound for J(f) is easy. We have

$$J(f) \leq \int_{[0,\infty)^k} \prod_{i=1}^k g(kt_i)^2 d\mathbf{t} = k^{-k} \beta^k.$$

 We can concentrate on a lower bound for *I_k(f)*. We want to let *kt_k* have the full range of its support so restrict the *t*₁,..., *t_{k-1}* to *kt*₁ + ··· + *kt_{k-1}* ≤ *k* − *∞*.

イロト 不得 トイヨト イヨト ニヨー

Sac

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard': Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 10 • An upper bound for J(f) is easy. We have

$$J(f) \leq \int_{[0,\infty)^k} \prod_{i=1}^k g(kt_i)^2 d\mathbf{t} = k^{-k} \beta^k.$$

- We can concentrate on a lower bound for $I_k(f)$. We want to let kt_k have the full range of its support so restrict the t_1, \ldots, t_{k-1} to $kt_1 + \cdots + kt_{k-1} \le k \varpi$.
- Then we define S to be the set of k − 1-tuples y₁,..., y_{k-1} with y_i ≥ 0 and y₁ + ··· + y_{k-1} ≤ k − ∞.
 Thus kl_k(f) =

$$k \int_{\mathcal{R}_{k-1}} \left(\int_0^{1-t_1-\dots-t_{k-1}} g(kt_k) dt_k \right)^2 \prod_{i=1}^{k-1} g(kt_i)^2 dt_1 \dots t_{k-1}$$
$$\geq k^{-k} \alpha^2 \int_{\mathcal{S}} \prod_{i=1}^{k-1} g(y_i)^2 d\mathbf{y} = k^{-k} \alpha^2 \beta^{k-1} - E$$
where $E = \frac{\alpha^2}{k^k} \int_{\mathcal{S}^*} \prod_{i=1}^{k-1} g(y_i)^2 d\mathbf{y}$ and $\mathcal{S}^* = [0,\infty)^{k-1} \setminus \mathcal{S}$.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

Thus
$$kI_k(f) \ge k^{-k}\alpha^2 \int_{\mathcal{S}} \prod_{i=1}^{k-1} g(y_i)^2 d\mathbf{y} = k^{-k}\alpha^2 \beta^{k-1} - E$$

where $E = \frac{\alpha^2}{k^k} \int_{\mathcal{S}^*} \prod_{i=1}^{k-1} g(y_i)^2 d\mathbf{y}$ and $\mathcal{S}^* = [0, \infty)^{k-1} \setminus \mathcal{S}$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

Ξ 9 Q (P

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setu

Maynard one

Bounded Gaps

Proof of Theorem 10

• Thus
$$kI_k(f) \ge k^{-k}\alpha^2 \int_{\mathcal{S}} \prod_{i=1}^{k-1} g(y_i)^2 d\mathbf{y} = k^{-k}\alpha^2 \beta^{k-1} - E$$

where $E = \frac{\alpha^2}{k^k} \int_{\mathcal{S}^*} \prod_{i=1}^{k-1} g(y_i)^2 d\mathbf{y}$ and $\mathcal{S}^* = [0, \infty)^{k-1} \setminus \mathcal{S}$.
• Let $\sigma = \gamma/\beta = \frac{1 - \xi^{-1} + \xi^{-1}e^{-\xi}}{1 - e^{-\xi}} = 1 - \frac{1}{\xi} + \frac{1}{e^{\xi} - 1}$. The condition $\mathbf{y} \in \mathcal{S}^*$ is equivalent to $y_1 + \cdots + y_{k-1} \ge k - \varpi$
and this in turn is equivalent to $\frac{y_1 + \cdots + y_{k-1}}{k-1} - \sigma$

$$\geq \frac{k-\varpi-\sigma(k-1)}{k-1} = 1-\sigma-\frac{\varpi-1}{k-1}.$$

For k sufficiently large we have

$$(1-\sigma)(k-1) - \varpi + 1 = \frac{1}{\xi} \left(1 - \frac{1}{\varpi} \right) (k-1) - \varpi + 1$$
$$= \frac{k}{\xi} + O\left(\frac{k}{(\log k)^2}\right) = \xi^{-1} + O(\xi^{-2}) > 0$$
and $1 - \sigma - \frac{\varpi - 1}{k - 1} = \xi^{-1} + O(\xi^{-2}).$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

$$\sigma = \gamma/\beta = 1 - \frac{1}{\xi} + \frac{1}{e^{\xi} - 1}.$$

 $\mathbf{y} \in \mathcal{S}^*$ is equivalent to

$$\frac{y_1 + \dots + y_{k-1}}{k-1} - \sigma \ge 1 - \sigma - \frac{\varpi - 1}{k-1} = \xi^{-1} + O(\xi^{-2}).$$

ヘロト 人間 ト 人造 ト 人造 ト

æ

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

$$\begin{split} \sigma &= \gamma/\beta = 1 - \frac{1}{\xi} + \frac{1}{e^{\xi} - 1}, \\ \mathbf{y} &\in \mathcal{S}^* \text{ is equivalent to} \end{split}$$

$$\frac{y_1 + \dots + y_{k-1}}{k-1} - \sigma \ge 1 - \sigma - \frac{\varpi - 1}{k-1} = \xi^{-1} + O(\xi^{-2}).$$

• Thus if
$$\mathbf{y} \in \mathcal{S}^*$$
, then

$$\left(\frac{y_1 + \dots + y_{k-1}}{k-1} - \sigma\right)^2 \zeta^2 \ge 1$$

▲□ ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

where
$$\zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1).$$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

$$\begin{split} \sigma &= \gamma/\beta = 1 - \frac{1}{\xi} + \frac{1}{e^{\xi} - 1}, \\ \mathbf{y} &\in \mathcal{S}^* \text{ is equivalent to} \end{split}$$

$$\frac{y_1 + \dots + y_{k-1}}{k-1} - \sigma \ge 1 - \sigma - \frac{\varpi - 1}{k-1} = \xi^{-1} + O(\xi^{-2}).$$

• Thus if
$$\mathbf{y} \in \mathcal{S}^*$$
, then

$$\left(\frac{y_1 + \dots + y_{k-1}}{k-1} - \sigma\right)^2 \zeta^2 \ge 1$$

where
$$\zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1).$$

• Hence $E \leq$

$$\frac{\alpha^2 \zeta^2}{k^k} \int_{[0,\infty)^{k-1}} \left(\frac{y_1 + \cdots + y_{k-1}}{k-1} - \sigma \right)^2 \prod_{i=1}^{k-1} g(y_i)^2 d\mathbf{y}.$$

A variant of the "Rankin trick".

・ロト・西ト・西ト・西ト・日下

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

$$\sigma = \gamma/\beta, \ \zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1), \ E \leq \frac{\alpha^2 \zeta^2}{k^k} \int_{[0,\infty)^{k-1}} \left(\frac{y_1 + \cdots + y_{k-1}}{k - 1} - \sigma\right)^2 \prod_{i=1}^{k-1} g(y_i)^2 d\mathbf{y}.$$

$$lpha = \int_0^\infty g(y) dy, \quad eta = \int_0^\infty g(y)^2 dy,$$

 $\gamma = \int_0^\infty y g(y)^2 dy, \quad \tau = \int_0^\infty y^2 g(y)^2 dy.$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

$$\sigma = \gamma/\beta, \ \zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1), \ E \leq \frac{\alpha^2 \zeta^2}{k^k} \int_{[0,\infty)^{k-1}} \left(\frac{y_1 + \cdots + y_{k-1}}{k - 1} - \sigma\right)^2 \prod_{i=1}^{k-1} g(y_i)^2 d\mathbf{y}.$$

$$\alpha = \int_0^\infty g(y) dy, \quad \beta = \int_0^\infty g(y)^2 dy,$$

$$\gamma = \int_0^\infty y g(y)^2 dy, \quad \tau = \int_0^\infty y^2 g(y)^2 dy.$$

We now square out
$$\left(rac{y_1+\dots+y_{k-1}}{k-1}-\sigma
ight)^2=$$

$$\sum_{1 \le i < j \le k-1} \frac{2y_i y_j}{(k-1)^2} + \sum_{i=1}^{k-1} \frac{y_i^2}{(k-1)^2} - \sum_{i=1}^{k-1} \frac{2\sigma y_i}{k-1} + \sigma^2$$

and evaluate this with reference to α_{r} etc. Thus E \leq

$$\frac{\alpha^2 \zeta^2}{k^k} \left(\frac{k-2}{k-1} \gamma^2 \beta^{k-3} + \frac{\tau \beta^{k-2}}{k-1} - 2\sigma \gamma \beta^{k-2} + \sigma^2 \beta^{k-1} \right).$$

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$\sigma = \gamma/\beta$$
, $\zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1)$,
 $\alpha = \int_0^\infty g(y)dy = 1$, $\beta = \int_0^\infty g(y)^2 dy = \frac{1}{\xi} - \frac{1}{\xi e^{\xi}}$,
 $\gamma = \int_0^\infty yg(y)^2 dy$, $\tau = \int_0^\infty y^2 g(y)^2 dy$.

$$E \leq \frac{\alpha^2 \zeta^2 \beta^{k-3}}{k^k} \left(\frac{k-2}{k-1} \gamma^2 + \frac{\tau \beta}{k-1} - 2\sigma \gamma \beta + \sigma^2 \beta^2 \right)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$\sigma = \gamma/\beta$$
, $\zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1)$,
 $\alpha = \int_0^\infty g(y)dy = 1$, $\beta = \int_0^\infty g(y)^2 dy = \frac{1}{\xi} - \frac{1}{\xi e^{\xi}}$,
 $\gamma = \int_0^\infty yg(y)^2 dy$, $\tau = \int_0^\infty y^2 g(y)^2 dy$.

$$E \leq \frac{\alpha^2 \zeta^2 \beta^{k-3}}{k^k} \left(\frac{k-2}{k-1} \gamma^2 + \frac{\tau \beta}{k-1} - 2\sigma \gamma \beta + \sigma^2 \beta^2 \right)$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

æ

• By definition of
$$\sigma$$
,

$$E \leq \frac{\alpha^2 \zeta^2 \beta^{k-3} (\tau \beta - \gamma^2)}{k^k (k-1)} < \frac{\alpha^2 \zeta^2 \beta^{k-2} \tau}{k^k (k-1)}.$$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$\sigma = \gamma/\beta, \ \zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1),$$

 $\alpha = \int_0^\infty g(y) dy = 1, \quad \beta = \int_0^\infty g(y)^2 dy = \frac{1}{\xi} - \frac{1}{\xi e^{\xi}},$
 $\gamma = \int_0^\infty y g(y)^2 dy, \quad \tau = \int_0^\infty y^2 g(y)^2 dy.$

$$E \leq \frac{\alpha^2 \zeta^2 \beta^{k-3}}{k^k} \left(\frac{k-2}{k-1} \gamma^2 + \frac{\tau \beta}{k-1} - 2\sigma \gamma \beta + \sigma^2 \beta^2 \right)$$

• By definition of
$$\sigma$$
,

$$E \leq \frac{\alpha^2 \zeta^2 \beta^{k-3} (\tau \beta - \gamma^2)}{k^k (k-1)} < \frac{\alpha^2 \zeta^2 \beta^{k-2} \tau}{k^k (k-1)}.$$

• We showed above that $J(f) \le k^{-k}\beta^k$ and $kI_k(f) \ge k^{-k}\alpha^2\beta^{k-1} - E$

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

$$\sigma = \gamma/\beta, \ \zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1),$$

$$\alpha = \int_0^\infty g(y) dy = 1, \quad \beta = \int_0^\infty g(y)^2 dy = \frac{1}{\xi} - \frac{1}{\xi e^{\xi}},$$

$$\gamma = \int_0^\infty y g(y)^2 dy, \quad \tau = \int_0^\infty y^2 g(y)^2 dy.$$

$$E \leq \frac{\alpha^2 \zeta^2 \beta^{k-3}}{k^k} \left(\frac{k-2}{k-1} \gamma^2 + \frac{\tau \beta}{k-1} - 2\sigma \gamma \beta + \sigma^2 \beta^2 \right)$$

• By definition of
$$\sigma$$
,

$$E \leq \frac{\alpha^2 \zeta^2 \beta^{k-3} (\tau \beta - \gamma^2)}{k^k (k-1)} < \frac{\alpha^2 \zeta^2 \beta^{k-2} \tau}{k^k (k-1)}.$$

• We showed above that $J(f) \le k^{-k}\beta^k$ and $kI_k(f) \ge k^{-k}\alpha^2\beta^{k-1} - E$

Thus

$$\rho > \beta^{-1} \left(1 - \frac{\zeta^2 \tau}{\beta(k-1)} \right)$$

くちゃく 御 マイボット 御 マント・

.

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$\zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1), \ \rho > \beta^{-1} - \frac{\zeta^2 \tau}{\beta^2 (k - 1)},$$

 $\beta = \int_0^\infty g(y)^2 dy = \frac{1}{\xi} - \frac{1}{\xi e^{\xi}}, \quad \beta^{-1} = \xi + O(\xi k^{-1} \log k),$
 $\tau = \int_0^\infty y^2 g(y)^2 dy = \frac{\varpi}{\xi^2} - \frac{2}{\xi^2} + \frac{1}{\xi^3} - \frac{1}{\xi^3 e^{\xi}},$

ヘロト 人間 ト 人造 ト 人造 ト

æ

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setur

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$\zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1), \ \rho > \beta^{-1} - \frac{\zeta^2 \tau}{\beta^2 (k - 1)},$$

 $\beta = \int_0^\infty g(y)^2 dy = \frac{1}{\xi} - \frac{1}{\xi e^{\xi}}, \quad \beta^{-1} = \xi + O(\xi k^{-1} \log k),$
 $\tau = \int_0^\infty y^2 g(y)^2 dy = \frac{\varpi}{\xi^2} - \frac{2}{\xi^2} + \frac{1}{\xi^3} - \frac{1}{\xi^3 e^{\xi}},$
• $\varpi = \frac{k/\log k}{\log(k/\log k)}$ and ξ is the positive root of $1 + \xi \varpi = e^{\xi}$, so $\log k - \log \log k < \xi = \log k - \log \log k + O(1),$
 $\zeta^2 = \xi^2 + O(\xi), \ \tau = \varpi \xi^{-2} + O(\xi^{-2}), \ \frac{1}{k - 1} = \frac{1}{k} + O(k^{-2}).$

ヘロト 人間 ト 人造 ト 人造 ト

æ

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$\zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1), \ \rho > \beta^{-1} - \frac{\zeta^2 \tau}{\beta^2 (k - 1)},$$

 $\beta = \int_0^\infty g(y)^2 dy = \frac{1}{\xi} - \frac{1}{\xi e^{\xi}}, \quad \beta^{-1} = \xi + O(\xi k^{-1} \log k),$
 $\tau = \int_0^\infty y^2 g(y)^2 dy = \frac{\varpi}{\xi^2} - \frac{2}{\xi^2} + \frac{1}{\xi^3} - \frac{1}{\xi^3 e^{\xi}},$
• $\varpi = \frac{k/\log k}{\log(k/\log k)}$ and ξ is the positive root of $1 + \xi \varpi = e^{\xi},$
so $\log k - \log \log k < \xi = \log k - \log \log k + O(1),$
 $\zeta^2 = \xi^2 + O(\xi), \ \tau = \varpi \xi^{-2} + O(\xi^{-2}), \ \frac{1}{k - 1} = \frac{1}{k} + O(k^{-2}).$
• Thus $\frac{\zeta^2 \tau}{\beta(k - 1)} = (\xi + O(1))\frac{\varpi}{k} = \frac{1}{\log k} + O(\log^{-2} k).$

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

•
$$\zeta = \left(1 - \sigma - \frac{\varpi - 1}{k - 1}\right)^{-1} = \xi + O(1), \ \rho > \beta^{-1} - \frac{\zeta^2 \tau}{\beta^2 (k - 1)},$$

 $\beta = \int_0^\infty g(y)^2 dy = \frac{1}{\xi} - \frac{1}{\xi e^{\xi}}, \quad \beta^{-1} = \xi + O(\xi k^{-1} \log k),$
 $\tau = \int_0^\infty y^2 g(y)^2 dy = \frac{\varpi}{\xi^2} - \frac{2}{\xi^2} + \frac{1}{\xi^3} - \frac{1}{\xi^3 e^{\xi}},$
• $\varpi = \frac{k/\log k}{\log(k/\log k)} \text{ and } \xi \text{ is the positive root of } 1 + \xi \varpi = e^{\xi},$
so $\log k - \log \log k < \xi = \log k - \log \log k + O(1),$
 $\zeta^2 = \xi^2 + O(\xi), \ \tau = \varpi \xi^{-2} + O(\xi^{-2}), \ \frac{1}{k - 1} = \frac{1}{k} + O(k^{-2}).$
• Thus $\frac{\zeta^2 \tau}{\beta(k - 1)} = (\xi + O(1))\frac{\varpi}{k} = \frac{1}{\log k} + O(\log^{-2} k).$
• Hence, if $k > k_0$, we have $\rho > \beta^{-1} \left(1 - \frac{\zeta^2 \tau}{\beta(k - 1)}\right)$
 $> \xi \left(1 + O(k^{-1} \log k)\right) \left(1 - \frac{1}{\log k} + O((\log k)^{-2})\right)$
 $> \log k - \log \log k - 1.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

• Let
$$\rho = \sup_{f \in \mathcal{F}} \frac{\sum_{j=1}^{k} I_j(f)}{J(f)}$$
. Then, for k sufficiently large,
 $\rho > \log k - \log \log k - 1$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

æ

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- Let $\rho = \sup_{f \in \mathcal{F}} \frac{\sum_{j=1}^{k} l_j(f)}{J(f)}$. Then, for k sufficiently large, $\rho > \log k - \log \log k - 1$.
- This completes the proof of Maynard's second theorem. Applied to his first theorem this gives

$$\sup_{f\in\mathcal{F}}\frac{S(f)}{T(f)}>\left(\frac{\theta}{2}-\delta\right)(\log k-\log\log k-1).$$

◆□▶ ◆◎▶ ◆○▶ ◆○▶ ●

Sar

Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- Let $\rho = \sup_{f \in \mathcal{F}} \frac{\sum_{j=1}^{k} l_j(f)}{J(f)}$. Then, for k sufficiently large, $\rho > \log k \log \log k 1$.
- This completes the proof of Maynard's second theorem. Applied to his first theorem this gives

$$\sup_{f\in\mathcal{F}}\frac{S(f)}{\mathcal{T}(f)}>\left(\frac{\theta}{2}-\delta\right)(\log k-\log\log k-1).$$

 Thus if the level of distribution θ > 0, then we can choose any large k and any admissible k-tuple and deduce that infinitely often there are bounded gaps in the primes.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10 • We now prove Corollary 12 (Maynard, Tao). For each $m \in \mathbb{N}$ we have $\liminf_{n \to \infty} (p_{n+m} - p_n) \ll m^2 e^{4m}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Sac

> Robert C. Vaughan

Preliminaries to the moderr theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- We now prove Corollary 12 (Maynard, Tao). For each $m \in \mathbb{N}$ we have $\liminf_{n \to \infty} (p_{n+m} - p_n) \ll m^2 e^{4m}$.
- Let C be chosen so that for every $m \in \mathbb{N}$ we have

$$\frac{Cme^{4m}}{4m+\log m+\log C}>e^{2+4m}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Sac

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- We now prove Corollary 12 (Maynard, Tao). For each $m \in \mathbb{N}$ we have $\liminf_{n \to \infty} (p_{n+m} - p_n) \ll m^2 e^{4m}$.
- Let C be chosen so that for every $m \in \mathbb{N}$ we have

$$\frac{Cme^{4m}}{4m+\log m+\log C}>e^{2+4m}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

• Then for $k \ge \max(3, Cme^{4m})$ we have $\frac{k}{\log k} \ge e^{2+4m}$ and so $\log k - \log \log k - 1 > 4m + 1$.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- We now prove Corollary 12 (Maynard, Tao). For each $m \in \mathbb{N}$ we have $\liminf_{n \to \infty} (p_{n+m} - p_n) \ll m^2 e^{4m}$.
- Let C be chosen so that for every $m \in \mathbb{N}$ we have

$$\frac{Cme^{4m}}{4m+\log m+\log C} > e^{2+4m}.$$

- Then for $k \ge \max(3, Cme^{4m})$ we have $\frac{k}{\log k} \ge e^{2+4m}$ and so $\log k \log \log k 1 > 4m + 1$.
- Thus if C is large enough (≥ 1 should do actually),

$$\left(\frac{1}{4}-\frac{1}{k}\right)\left(\log k-\log\log k-1\right)>m.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- We now prove Corollary 12 (Maynard, Tao). For each $m \in \mathbb{N}$ we have $\liminf_{n \to \infty} (p_{n+m} - p_n) \ll m^2 e^{4m}$.
- Let C be chosen so that for every $m \in \mathbb{N}$ we have

$$\frac{Cme^{4m}}{4m+\log m+\log C} > e^{2+4m}.$$

- Then for $k \ge \max(3, Cme^{4m})$ we have $\frac{k}{\log k} \ge e^{2+4m}$ and so $\log k \log \log k 1 > 4m + 1$.
- Thus if C is large enough (≥ 1 should do actually),

$$\left(\frac{1}{4}-\frac{1}{k}\right)\left(\log k-\log\log k-1\right)>m.$$

With level of distribution θ to be ¹/₂ and δ = ¹/_k, as in the deduction of Zhang's theorem we see ρ > m and so any admissible k-tuple h is such that there are infinitely many n such that the k-tuple n + h contains at least m primes.

> Robert C. Vaughan

Preliminaries to the modern theory

Maynard's Theorem

The Setup

Maynard one

Bounded Gaps

Proof of Theorem 10

- We now prove Corollary 12 (Maynard, Tao). For each $m \in \mathbb{N}$ we have $\liminf_{n \to \infty} (p_{n+m} - p_n) \ll m^2 e^{4m}$.
- Let C be chosen so that for every $m \in \mathbb{N}$ we have

$$\frac{Cme^{4m}}{4m+\log m+\log C} > e^{2+4m}.$$

- Then for $k \ge \max(3, Cme^{4m})$ we have $\frac{k}{\log k} \ge e^{2+4m}$ and so $\log k \log \log k 1 > 4m + 1$.
- Thus if C is large enough (≥ 1 should do actually),

$$\left(rac{1}{4}-rac{1}{k}
ight)\left(\log k-\log\log k-1
ight)>m.$$

- With level of distribution θ to be ¹/₂ and δ = ¹/_k, as in the deduction of Zhang's theorem we see ρ > m and so any admissible k-tuple h is such that there are infinitely many n such that the k-tuple n + h contains at least m primes.
- By Gallagher's Theorem there is a an admissible k-tuple of diameter $\ll k \log k \ll m^2 e^{4m}$.