Math 571 Chapter 3 The Prime Number Theorem

Robert C. Vaughan

January 6, 2023

Math 571 Chapter 3 The Prime Number Theorem

Robert C. Vaughan

The prime number theorem

- I want now to give an overview of the current state of play with regard to the distribution of primes.
- I want now to give an overview of the current state of play with regard to the distribution of primes.
- The bulk of the results I describe are usually proved in detail in Math 568.
The prime
- I want now to give an overview of the current state of play with regard to the distribution of primes.
- The bulk of the results I describe are usually proved in detail in Math 568.
- Although we will use some of these results we will not need to be familiar with the techniques for establishing them.
- I want now to give an overview of the current state of play with regard to the distribution of primes.
- The bulk of the results I describe are usually proved in detail in Math 568.
- Although we will use some of these results we will not need to be familiar with the techniques for establishing them.
- As I mentioned earlier, Gauss had suggested that

$$
\operatorname{li}(x)=\int_{2}^{\infty} \frac{d \alpha}{\log \alpha}
$$

should be a good approximation

$$
\pi(x)=\sum_{p \leq x} 1
$$

and we saw a table of values out to 10^{22} which illustrated this.

- The first progress of any kind towards Gauss' conjecture was by Riemann in 1859, when he gave an amazing formula for $\pi(x)$ and made a far reaching conjecture.
- The first progress of any kind towards Gauss' conjecture was by Riemann in 1859, when he gave an amazing formula for $\pi(x)$ and made a far reaching conjecture.
- To describe what he discovered in as simple terms as possible I will use the function

$$
\psi(x)=\sum_{n \leq x} \Lambda(n)
$$

which we introduced in connection with Chebyshev's results.

- The first progress of any kind towards Gauss' conjecture was by Riemann in 1859, when he gave an amazing formula for $\pi(x)$ and made a far reaching conjecture.
- To describe what he discovered in as simple terms as possible I will use the function

$$
\psi(x)=\sum_{n \leq x} \Lambda(n)
$$

which we introduced in connection with Chebyshev's results.

- Another actor in this drama is Riemann's zeta function, defined initially for $\Re s>1$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}
$$

- The first progress of any kind towards Gauss' conjecture was by Riemann in 1859, when he gave an amazing formula for $\pi(x)$ and made a far reaching conjecture.
- To describe what he discovered in as simple terms as possible I will use the function

$$
\psi(x)=\sum_{n \leq x} \Lambda(n)
$$

which we introduced in connection with Chebyshev's results.

- Another actor in this drama is Riemann's zeta function, defined initially for $\Re s>1$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} n^{-s}
$$

- In fact this had first been studied by Euler.

The prime number theorem

- The function $\zeta(s)$ can be continued to the whole complex plane.
- The function $\zeta(s)$ can be continued to the whole complex plane.
- If you are not familiar with this concept let me illustrate it by the example

$$
\sum_{n=0}^{\infty} z^{n}
$$

- The function $\zeta(s)$ can be continued to the whole complex plane.
- If you are not familiar with this concept let me illustrate it by the example

$$
\sum_{n=0}^{\infty} z^{n}
$$

- This series only exists when $|z|<1$.
- The function $\zeta(s)$ can be continued to the whole complex plane.
- If you are not familiar with this concept let me illustrate it by the example

$$
\sum_{n=0}^{\infty} z^{n}
$$

- This series only exists when $|z|<1$.
- However it converges to

$$
\frac{1}{1-z}
$$

in this open disc.

- The function $\zeta(s)$ can be continued to the whole complex plane.
- If you are not familiar with this concept let me illustrate it by the example

$$
\sum_{n=0}^{\infty} z^{n}
$$

- This series only exists when $|z|<1$.
- However it converges to

$$
\frac{1}{1-z}
$$

in this open disc.

- This latter expression exists for all $z \neq 1$.
- The function $\zeta(s)$ can be continued to the whole complex plane.
- If you are not familiar with this concept let me illustrate it by the example

$$
\sum_{n=0}^{\infty} z^{n}
$$

- This series only exists when $|z|<1$.
- However it converges to

$$
\frac{1}{1-z}
$$

in this open disc.

- This latter expression exists for all $z \neq 1$.
- Moreover this is differentiable when $z \neq 1$.
- The function $\zeta(s)$ can be continued to the whole complex plane.
- If you are not familiar with this concept let me illustrate it by the example

$$
\sum_{n=0}^{\infty} z^{n}
$$

- This series only exists when $|z|<1$.
- However it converges to

$$
\frac{1}{1-z}
$$

in this open disc.

- This latter expression exists for all $z \neq 1$.
- Moreover this is differentiable when $z \neq 1$.
- Thus this latter expression gives an "analytic continuation" to $\mathbb{C} \backslash\{1\}$.

The prime number theorem

- It turns out in the same way that $\zeta(s)$ has an analytic continuation to $\mathbb{C} \backslash\{1\}$.
- It turns out in the same way that $\zeta(s)$ has an analytic continuation to $\mathbb{C} \backslash\{1\}$.
- The variant for $\psi(x)$ of the formula that Riemann discovered is

$$
\psi(x)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{1}{2} \log \left(1-x^{-2}\right)-\frac{\zeta^{\prime}(0)}{\zeta(0)}
$$

- It turns out in the same way that $\zeta(s)$ has an analytic continuation to $\mathbb{C} \backslash\{1\}$.
- The variant for $\psi(x)$ of the formula that Riemann discovered is

$$
\psi(x)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{1}{2} \log \left(1-x^{-2}\right)-\frac{\zeta^{\prime}(0)}{\zeta(0)}
$$

- Here the sum is over the zeros ρ of $\zeta(s)$ with $0<\Re \rho<1$, the "non-trivial zeros".
- It turns out in the same way that $\zeta(s)$ has an analytic continuation to $\mathbb{C} \backslash\{1\}$.
- The variant for $\psi(x)$ of the formula that Riemann discovered is

$$
\psi(x)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{1}{2} \log \left(1-x^{-2}\right)-\frac{\zeta^{\prime}(0)}{\zeta(0)}
$$

- Here the sum is over the zeros ρ of $\zeta(s)$ with $0<\Re \rho<1$, the "non-trivial zeros".
- The formula holds for all $x \geq 2$ which are not the power of a prime.
- It turns out in the same way that $\zeta(s)$ has an analytic continuation to $\mathbb{C} \backslash\{1\}$.
- The variant for $\psi(x)$ of the formula that Riemann discovered is

$$
\psi(x)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{1}{2} \log \left(1-x^{-2}\right)-\frac{\zeta^{\prime}(0)}{\zeta(0)}
$$

- Here the sum is over the zeros ρ of $\zeta(s)$ with $0<\Re \rho<1$, the "non-trivial zeros".
- The formula holds for all $x \geq 2$ which are not the power of a prime.
- When $x=p^{k}$ for some p and k the left hand side has to be replaced by

$$
\psi(x)-\frac{1}{2} \log p
$$

The prime

 number theorem- Riemann computed the first few zeros ρ and found that they each had $\Re \rho=\frac{1}{2}$.
- Riemann computed the first few zeros ρ and found that they each had $\Re \rho=\frac{1}{2}$.
- The assertion that $\Re \rho=\frac{1}{2}$ for all the non-trivial ρ is now known as the Riemann Hypothesis (RH).
- Riemann computed the first few zeros ρ and found that they each had $\Re \rho=\frac{1}{2}$.
- The assertion that $\Re \rho=\frac{1}{2}$ for all the non-trivial ρ is now known as the Riemann Hypothesis (RH).
- The computations have been extended considerably. Platt and Trudgian (2020) have shown that there are $12,363,153,437,138$ zeros ρ with

$$
0<\Im \rho \leq 3,000,175,332,800
$$

and they all have $\Re \rho=\frac{1}{2}$.

- Riemann computed the first few zeros ρ and found that they each had $\Re \rho=\frac{1}{2}$.
- The assertion that $\Re \rho=\frac{1}{2}$ for all the non-trivial ρ is now known as the Riemann Hypothesis (RH).
- The computations have been extended considerably. Platt and Trudgian (2020) have shown that there are $12,363,153,437,138$ zeros ρ with

$$
0<\Im \rho \leq 3,000,175,332,800
$$

and they all have $\Re \rho=\frac{1}{2}$.

- We now know that for any $T>2$ the total number $N(T)$ of ρ with $0<\Im \rho \leq T$ is approximately

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi e}+O(\log T)
$$

and that at least 40% of them have $\Re \rho=\frac{1}{2}$.

The prime number theorem

- We also know that the assertion that for every $\theta>\frac{1}{2}$

$$
\psi(x)-x \ll x^{\theta} \text { for all } x \geq 2
$$

is equivalent to the RH ,

- We also know that the assertion that for every $\theta>\frac{1}{2}$

$$
\psi(x)-x \ll x^{\theta} \text { for all } x \geq 2
$$

is equivalent to the RH ,

- and that this in turn is equivalent to

$$
\pi(x)-\operatorname{li}(x) \ll x^{\theta}
$$

- In 1896 Hadamard and de la Vallée Poussin proved that

$$
\pi(x) \sim \operatorname{li}(x)
$$

so establishing Gauss' assertion.

- In 1896 Hadamard and de la Vallée Poussin proved that

$$
\pi(x) \sim \operatorname{li}(x)
$$

so establishing Gauss' assertion.

- More precisely de la Vallée Poussin showed that

$$
\pi(x)-\operatorname{li}(x) \ll x \exp (-c \sqrt{\log x})
$$

for some constant c.

- In 1896 Hadamard and de la Vallée Poussin proved that

$$
\pi(x) \sim \operatorname{li}(x)
$$

so establishing Gauss' assertion.

- More precisely de la Vallée Poussin showed that

$$
\pi(x)-\operatorname{li}(x) \ll x \exp (-c \sqrt{\log x})
$$

for some constant c.

- A proof of this is usually given in Math 568.

The prime number theorem

- The strongest result we now can prove is due to Korobov and I. M. Vinogradov (1958)

$$
\pi(x)-\mathrm{li}(x) \ll x \exp \left(-\frac{c(\log x)^{3 / 5}}{(\log \log x)^{1 / 5}}\right)
$$

- The strongest result we now can prove is due to Korobov and I. M. Vinogradov (1958)

$$
\pi(x)-\mathrm{li}(x) \ll x \exp \left(-\frac{c(\log x)^{3 / 5}}{(\log \log x)^{1 / 5}}\right)
$$

- and the best value for c that we have is $c=0.2098$ due to Kevin Ford (2002).
- One can make similar assertions for

$$
L(s ; \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

where χ is a primitive character modulo q,

- One can make similar assertions for

$$
L(s ; \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

where χ is a primitive character modulo q,

- and these functions all have analytic continuations to \mathbb{C} when $q>1$ and are differentiable everywhere, even at $s=1$.
- One can make similar assertions for

$$
L(s ; \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

where χ is a primitive character modulo q,

- and these functions all have analytic continuations to \mathbb{C} when $q>1$ and are differentiable everywhere, even at $s=1$.
- The values of $L(1 ; \chi)$ play an important rôle in algebraic number theory.
- One can make similar assertions for

$$
L(s ; \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

where χ is a primitive character modulo q,

- and these functions all have analytic continuations to \mathbb{C} when $q>1$ and are differentiable everywhere, even at $s=1$.
- The values of $L(1 ; \chi)$ play an important rôle in algebraic number theory.
- Also there is a Riemann Hypothesis for each one (GRH)
- One can make similar assertions for

$$
L(s ; \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

where χ is a primitive character modulo q,

- and these functions all have analytic continuations to \mathbb{C} when $q>1$ and are differentiable everywhere, even at $s=1$.
- The values of $L(1 ; \chi)$ play an important rôle in algebraic number theory.
- Also there is a Riemann Hypothesis for each one (GRH)
- and essentially all of the techniques that have been developed for treating $\zeta(s)$ can be ported over to $L(s ; \chi)$.

The prime number theorem

- The $L(s ; \chi)$ were introduced by Dirichlet to establish that if $(q, a)=1$, then there are infinitely many primes in the residue class a modulo q.
- The $L(s ; \chi)$ were introduced by Dirichlet to establish that if $(q, a)=1$, then there are infinitely many primes in the residue class a modulo q.
- An explicit version of this is given by using a basic property of characters.
- The $L(s ; \chi)$ were introduced by Dirichlet to establish that if $(q, a)=1$, then there are infinitely many primes in the residue class a modulo q.
- An explicit version of this is given by using a basic property of characters.
- Let

$$
\psi(x ; q, a)=\sum_{\substack{n \leq x \\ n \equiv a(\bmod q)}} \Lambda(n)
$$

and

$$
\psi(x ; \chi)=\sum_{n \leq x} \Lambda(n) \chi(n)
$$

- The $L(s ; \chi)$ were introduced by Dirichlet to establish that if $(q, a)=1$, then there are infinitely many primes in the residue class a modulo q.
- An explicit version of this is given by using a basic property of characters.
- Let

$$
\psi(x ; q, a)=\sum_{\substack{n \leq x \\ n \equiv a(\bmod q)}} \Lambda(n)
$$

and

$$
\psi(x ; \chi)=\sum_{n \leq x} \Lambda(n) \chi(n)
$$

- Then

$$
\psi(x ; q, a)=\frac{1}{\phi(q)} \sum_{\chi(\bmod q)} \bar{\chi}(a) \psi(x ; \chi)
$$

- Now GRH holds for $L(s ; \chi)$ when $\chi \neq \chi_{0}$ if and only if for every $\theta>\frac{1}{2}$

$$
\psi(x ; \chi) \ll x^{\theta}
$$

holds for all $x \geq 2$.
The prime number theorem

- Now GRH holds for $L(s ; \chi)$ when $\chi \neq \chi_{0}$ if and only if for every $\theta>\frac{1}{2}$

$$
\psi(x ; \chi) \ll x^{\theta}
$$

holds for all $x \geq 2$.

- Here the current state of play is the Siegel-Walfisz theorem (1936) which states that there is a positive constant c such that if A is any fixed positive number, $x \geq 2, q \leq(\log x)^{A}$ and χ is any non-principal character modulo q, then

$$
\psi(x ; \chi) \ll_{A} x \exp (-c \sqrt{\log x})
$$

- Now GRH holds for $L(s ; \chi)$ when $\chi \neq \chi_{0}$ if and only if for every $\theta>\frac{1}{2}$

$$
\psi(x ; \chi) \ll x^{\theta}
$$

holds for all $x \geq 2$.

- Here the current state of play is the Siegel-Walfisz theorem (1936) which states that there is a positive constant c such that if A is any fixed positive number, $x \geq 2, q \leq(\log x)^{A}$ and χ is any non-principal character modulo q, then

$$
\psi(x ; \chi) \ll_{A} x \exp (-c \sqrt{\log x})
$$

- Applied to $\psi(x ; q, a)$ this gives, under the same hypothesis on c, A, x, q that when $(q, a)=1$,

$$
\psi(x ; q, a)-\frac{x}{\phi(q)}<_{A} x \exp (-c \sqrt{\log x})
$$

- Now GRH holds for $L(s ; \chi)$ when $\chi \neq \chi_{0}$ if and only if for every $\theta>\frac{1}{2}$

$$
\psi(x ; \chi) \ll x^{\theta}
$$

holds for all $x \geq 2$.

- Here the current state of play is the Siegel-Walfisz theorem (1936) which states that there is a positive constant c such that if A is any fixed positive number, $x \geq 2, q \leq(\log x)^{A}$ and χ is any non-principal character modulo q, then

$$
\psi(x ; \chi) \ll_{A} x \exp (-c \sqrt{\log x})
$$

- Applied to $\psi(x ; q, a)$ this gives, under the same hypothesis on c, A, x, q that when $(q, a)=1$,

$$
\psi(x ; q, a)-\frac{x}{\phi(q)} \ll{ }_{A} x \exp (-c \sqrt{\log x})
$$

- In other words, with some constraint on q we have the analogue of de la Vallée Poussin's theorem.
- In 1965 Bombieri and A. I. Vinogradov showed, in some sense, that GRH holds on average, and this is good enough to be used as a replacement for GRH in many applications, and has been behind much of the remarkable progress in analytic number theory in recent years.
- In 1965 Bombieri and A. I. Vinogradov showed, in some sense, that GRH holds on average, and this is good enough to be used as a replacement for GRH in many applications, and has been behind much of the remarkable progress in analytic number theory in recent years.
- Equally remarkably we now have proofs of Bombieri-Vinogradov which are elementary apart from the input of the Siegel-Walfisz theorem.

