> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

Math 571 Chapter 2 Multiplicative Structures

Robert C. Vaughan

January 6, 2023

イロト 不得 トイヨト イヨト ニヨー

Sac

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• In elementary number theory courses it is usual taught that the reduced residue classes modulo q form a cyclic group under multiplication if and only if $q = p^k$ with p = 2 and k = 1 or 2, or with p > 2 and all $k \ge 1$. A generator g is called a primitive root. It is often also shown that if p = 2 and $k \ge 3$, then every reduced residue modulo 2^k is generated by

 $(-1)^{u}5^{v}$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

where u = 0 or 1 and $0 \le v < 2^{k-2}$.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 In elementary number theory courses it is usual taught that the reduced residue classes modulo q form a cyclic group under multiplication if and only if q = p^k with p = 2 and k = 1 or 2, or with p > 2 and all k ≥ 1. A generator g is called a primitive root. It is often also shown that if p = 2 and k ≥ 3, then every reduced residue modulo 2^k is generated by

 $(-1)^{u}5^{v}$

where u = 0 or 1 and $0 \le v < 2^{k-2}$.

• One can then use the Chinese Remainder Theorem to express each residue modulo *q* in a suitable form. This was all first proved by Gauss.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 In elementary number theory courses it is usual taught that the reduced residue classes modulo q form a cyclic group under multiplication if and only if q = p^k with p = 2 and k = 1 or 2, or with p > 2 and all k ≥ 1. A generator g is called a primitive root. It is often also shown that if p = 2 and k ≥ 3, then every reduced residue modulo 2^k is generated by

 $(-1)^{u}5^{v}$

where u = 0 or 1 and $0 \le v < 2^{k-2}$.

- One can then use the Chinese Remainder Theorem to express each residue modulo *q* in a suitable form. This was all first proved by Gauss.
- It is also an example of the theorem, usually proved in abstract algebra courses, that each abelian group is a direct product of cyclic groups. The methods of abstract algebra do not necessarily give explicit representations, which are sometimes the easiest way of seeing things.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• There is a more abstract and general treat of characters which I have put in the files section if you are interested.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• There is a more abstract and general treat of characters which I have put in the files section if you are interested.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

 A Dirichlet character is an arithmetical function *χ* : ℕ → ℂ with the following properties.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• There is a more abstract and general treat of characters which I have put in the files section if you are interested.

- A Dirichlet character is an arithmetical function $\chi: \mathbb{N} \to \mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• There is a more abstract and general treat of characters which I have put in the files section if you are interested.

- A Dirichlet character is an arithmetical function $\chi: \mathbb{N} \to \mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.
- 2. χ has period q for some $q \in \mathbb{N}$.

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• There is a more abstract and general treat of characters which I have put in the files section if you are interested.

- A Dirichlet character is an arithmetical function $\chi: \mathbb{N} \to \mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.
- 2. χ has period q for some $q \in \mathbb{N}$.
- 3. If (x, q) > 1, then $\chi(x) = 0$.

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

- There is a more abstract and general treat of characters which I have put in the files section if you are interested.
- A Dirichlet character is an arithmetical function $\chi:\mathbb{N}\to\mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.
- 2. χ has period q for some $q \in \mathbb{N}$.
- 3. If (x, q) > 1, then $\chi(x) = 0$.
- In view of the periodicity we can immediately extend the definition to $\mathbb{Z}.$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

- There is a more abstract and general treat of characters which I have put in the files section if you are interested.
- A Dirichlet character is an arithmetical function $\chi:\mathbb{N}\to\mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.
- 2. χ has period q for some $q \in \mathbb{N}$.
- 3. If (x, q) > 1, then $\chi(x) = 0$.
- In view of the periodicity we can immediately extend the definition to $\mathbb{Z}.$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

• From the theory of multiplicative functions we have $\chi(1) = 1$.

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

- There is a more abstract and general treat of characters which I have put in the files section if you are interested.
- A Dirichlet character is an arithmetical function $\chi: \mathbb{N} \to \mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.
- 2. χ has period q for some $q \in \mathbb{N}$.
- 3. If (x, q) > 1, then $\chi(x) = 0$.
- In view of the periodicity we can immediately extend the definition to $\mathbb{Z}.$
- From the theory of multiplicative functions we have $\chi(1) = 1$.
- The special character which is 1 whenever (x, q) = 1 is called the principal character and is often denoted by χ₀.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• By Fermat-Euler, when (x, q) = 1 we have

$$1 = \chi(1) = \chi(x^{\phi(q)}) = \chi(x)^{\phi(q)},$$

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• By Fermat-Euler, when (x, q) = 1 we have

$$1 = \chi(1) = \chi(x^{\phi(q)}) = \chi(x)^{\phi(q)},$$

• so
$$\chi(x)$$
 is a $\phi(q)$ -th root of unity.

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• By Fermat-Euler, when (x, q) = 1 we have

$$1 = \chi(1) = \chi(x^{\phi(q)}) = \chi(x)^{\phi(q)},$$

• so
$$\chi(x)$$
 is a $\phi(q)$ -th root of unity.

• Also
$$|\chi(x)| = 1$$
.

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• By Fermat-Euler, when (x, q) = 1 we have

$$1 = \chi(1) = \chi(x^{\phi(q)}) = \chi(x)^{\phi(q)},$$

- so $\chi(x)$ is a $\phi(q)$ -th root of unity.
- Also $|\chi(x)| = 1$.
- Hence the number of possible characters modulo q is at most φ(q)^{φ(q)}, i.e. is finite.

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• By Fermat-Euler, when (x, q) = 1 we have

$$1 = \chi(1) = \chi(x^{\phi(q)}) = \chi(x)^{\phi(q)},$$

- so $\chi(x)$ is a $\phi(q)$ -th root of unity.
- Also $|\chi(x)| = 1$.
- Hence the number of possible characters modulo q is at most φ(q)^{φ(q)}, i.e. is finite.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

• Let their number be h.

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• If (a, q) = 1, then

 $\sum_{x=1}^{q} \chi(x) = \sum_{x=1}^{q} \chi(ax) = \chi(a) \sum_{x=1}^{q} \chi(x)$

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• If
$$(a, q) = 1$$
, then

$$\sum_{x=1}^{q} \chi(x) = \sum_{x=1}^{q} \chi(ax) = \chi(a) \sum_{x=1}^{q} \chi(x)$$

 Hence if there is an a with (a, q) = 1 and χ(a) ≠ 1, then the sum is 0.

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• If
$$(a, q) = 1$$
, then

$$\sum_{x=1}^{q} \chi(x) = \sum_{x=1}^{q} \chi(ax) = \chi(a) \sum_{x=1}^{q} \chi(x)$$

- Hence if there is an a with (a, q) = 1 and χ(a) ≠ 1, then the sum is 0.
- Thus we have

Lemma 1

Suppose that χ is a character modulo q. Then

$$\frac{1}{\phi(q)}\sum_{x=1}^{q}\chi(x) = \begin{cases} 1 & (\chi = \chi_0) \\ 0 & (\chi \neq \chi_0). \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 If χ₁ and χ₂ are characters modulo q₁ and q₂ respectively, then χ₁χ₂ is one modulo q₁q₂.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 If χ₁ and χ₂ are characters modulo q₁ and q₂ respectively, then χ₁χ₂ is one modulo q₁q₂.

▲□▶▲□▶▲≡▶▲≡▶ = ● ●

• If χ is a character, then so is $\overline{\chi}$, and $\chi \overline{\chi} = \overline{\chi} \chi = \chi_0$.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 If χ₁ and χ₂ are characters modulo q₁ and q₂ respectively, then χ₁χ₂ is one modulo q₁q₂.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- If χ is a character, then so is $\overline{\chi}$, and $\chi \overline{\chi} = \overline{\chi} \chi = \chi_0$.
- If χ_1 , χ_2 , χ_3 are characters modulo q and $\chi_1\chi_2(x) = \chi_1\chi_3(x)$ for every x, then $\chi_2 = \chi_3$.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 If χ₁ and χ₂ are characters modulo q₁ and q₂ respectively, then χ₁χ₂ is one modulo q₁q₂.

- If χ is a character, then so is $\overline{\chi}$, and $\chi \overline{\chi} = \overline{\chi} \chi = \chi_0$.
- If χ_1 , χ_2 , χ_3 are characters modulo q and $\chi_1\chi_2(x) = \chi_1\chi_3(x)$ for every x, then $\chi_2 = \chi_3$.
- Multiply by $\overline{\chi}_1$.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 Given x with (x, q) = 1 and any character χ₁ modulo q we have

$$\sum_{\chi \pmod{q}} \chi(x) = \sum_{\chi \pmod{q}} \chi_1 \chi(x) = \chi_1(x) \sum_{\chi \pmod{q}} \chi(x).$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= √Q (~

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 Given x with (x, q) = 1 and any character χ₁ modulo q we have

$$\sum_{\chi \pmod{q}} \chi(x) = \sum_{\chi \pmod{q}} \chi_1 \chi(x) = \chi_1(x) \sum_{\chi \pmod{q}} \chi(x).$$

• Now we have the analogue of the previous lemma.

Lemma 2

If (x,q) = 1 and there is a χ_1 such that $\chi_1(x) \neq 1$, then

 χ

$$\sum_{\chi \pmod{q}} \chi(x) = 0.$$

If there is no such χ_1 , then

$$\sum_{(\text{mod } q)} \chi(x) = h.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 Given x with (x, q) = 1 and any character χ₁ modulo q we have

$$\sum_{\chi \pmod{q}} \chi(x) = \sum_{\chi \pmod{q}} \chi_1 \chi(x) = \chi_1(x) \sum_{\chi \pmod{q}} \chi(x).$$

• Now we have the analogue of the previous lemma.

Lemma 2

If (x,q) = 1 and there is a χ_1 such that $\chi_1(x) \neq 1$, then

 χ

$$\sum_{\chi \pmod{q}} \chi(x) = 0.$$

If there is no such χ_1 , then

$$\sum_{(\text{mod } q)} \chi(x) = h.$$

• Can we always find such a χ_1 when $x \neq 1$ (mod q)?

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• The answer is yes.

Lemma 3

Given x with (x, q) = 1 and $x \not\equiv 1 \pmod{q}$ there is a character χ_1 modulo q such that $\chi_1(x) \neq 1$.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• The answer is yes.

Lemma 3

Given x with (x, q) = 1 and $x \not\equiv 1 \pmod{q}$ there is a character χ_1 modulo q such that $\chi_1(x) \neq 1$.

 We give a quick and dirty proof. Since x ≠ 1 (mod q), there is a prime power p^k such that p^k|q and p^k ∤ x − 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• The answer is yes.

Lemma 3

Given x with (x, q) = 1 and $x \not\equiv 1 \pmod{q}$ there is a character χ_1 modulo q such that $\chi_1(x) \neq 1$.

- We give a quick and dirty proof. Since x ≠ 1 (mod q), there is a prime power p^k such that p^k|q and p^k ∤ x − 1.
- If p is odd, or p = 2 and k = 1 or 2, then we can choose a primitive root g modulo p^k. Then we define a character χ₂(z; p^k) modulo p^k by taking

$$\chi_2(g^y;p^k)=e(y/\phi(p^k)).$$

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• The answer is yes.

Lemma 3

Given x with (x, q) = 1 and $x \not\equiv 1 \pmod{q}$ there is a character χ_1 modulo q such that $\chi_1(x) \neq 1$.

- We give a quick and dirty proof. Since x ≠ 1 (mod q), there is a prime power p^k such that p^k|q and p^k ∤ x − 1.
- If p is odd, or p = 2 and k = 1 or 2, then we can choose a primitive root g modulo p^k. Then we define a character χ₂(z; p^k) modulo p^k by taking

$$\chi_2(g^y;p^k)=e(y/\phi(p^k)).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

• Note that if $g^{y} \not\equiv 1 \mod p^{k}$, then $y \not\equiv 0 \pmod{\phi(p^{k})}$.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• The answer is yes.

Lemma 3

Given x with (x, q) = 1 and $x \not\equiv 1 \pmod{q}$ there is a character χ_1 modulo q such that $\chi_1(x) \neq 1$.

- We give a quick and dirty proof. Since x ≠ 1 (mod q), there is a prime power p^k such that p^k|q and p^k ∤ x − 1.
- If p is odd, or p = 2 and k = 1 or 2, then we can choose a primitive root g modulo p^k. Then we define a character χ₂(z; p^k) modulo p^k by taking

$$\chi_2(g^{y};p^k)=e(y/\phi(p^k)).$$

- Note that if $g^{y} \not\equiv 1 \mod p^{k}$, then $y \not\equiv 0 \pmod{\phi(p^{k})}$.
- Now define

$$\chi_1(x) = \chi_2(x; p^k) \chi_0(x; qp^{-k})$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• The answer is yes.

Lemma 3

Given x with (x, q) = 1 and $x \not\equiv 1 \pmod{q}$ there is a character χ_1 modulo q such that $\chi_1(x) \neq 1$.

- We give a quick and dirty proof. Since x ≠ 1 (mod q), there is a prime power p^k such that p^k|q and p^k ∤ x − 1.
- If p is odd, or p = 2 and k = 1 or 2, then we can choose a primitive root g modulo p^k. Then we define a character χ₂(z; p^k) modulo p^k by taking

$$\chi_2(g^y;p^k)=e(y/\phi(p^k)).$$

- Note that if $g^{y} \not\equiv 1 \mod p^{k}$, then $y \not\equiv 0 \pmod{\phi(p^{k})}$.
- Now define

$$\chi_1(x) = \chi_2(x; p^k) \chi_0(x; qp^{-k})$$

That leaves the case when p = 2 and k ≥ 3, which is a little more complicated.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• Choose y, z so that

$$x \equiv (-1)^y 5^z \pmod{2^k}$$

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• Choose y, z so that

$$x \equiv (-1)^y 5^z \pmod{2^k}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Now we construct χ_2 as follows.

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• Choose y, z so that

$$x \equiv (-1)^y 5^z \pmod{2^k}$$

- Now we construct χ_2 as follows.
- If y = 0, so that $0 \le z < 2^{k-2}$, then take

$$\chi_2((-1)^u 5^v; 2^k) = e(v/2^{k-2}).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• Choose y, z so that

$$x \equiv (-1)^y 5^z \pmod{2^k}$$

- Now we construct χ_2 as follows.
- If y = 0, so that $0 \le z < 2^{k-2}$, then take

$$\chi_2((-1)^u 5^v; 2^k) = e(v/2^{k-2}).$$

• If y = 1, then take

$$\chi_2((-1)^u 5^v; 2^k) = e(u/2).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• Choose y, z so that

$$x \equiv (-1)^y 5^z \pmod{2^k}$$

Now we construct χ₂ as follows.
If y = 0, so that 0 ≤ z < 2^{k-2}, then take

$$\chi_2((-1)^u 5^v; 2^k) = e(v/2^{k-2}).$$

• If y = 1, then take

$$\chi_2((-1)^u 5^v; 2^k) = e(u/2).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

• Then proceed as before.

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• We now can state the basic theorem for characters.

Theorem 4

There are $\phi(q)$ characters modulo q,

$$\frac{1}{\phi(q)}\sum_{\chi \pmod{q}} \overline{\chi}(a)\chi(x) = \begin{cases} 1 & x \equiv a \pmod{q} & (a,q) = 1, \\ 0 & x \not\equiv a \pmod{q} & or (a,q) > 1. \end{cases}$$

and

$$\frac{1}{\phi(q)} \sum_{x \pmod{q}} \overline{\chi}_1(x)\chi_2(x) = \begin{cases} 1 & \chi_1 = \chi_2 \text{ and } (x,q) = 1, \\ 0 & \chi_1 \neq \chi_2. \end{cases}$$

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

Consider the sum

 $\sum \qquad \sum \quad \chi(x).$ x (mod q) χ (mod q)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

Consider the sum

$$\sum_{x \pmod{q}} \sum_{\chi \pmod{q}} \chi(x)$$

.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• The sum over χ contributes 0 if $x \not\equiv 1 \pmod{q}$, h otherwise, so

= h.

• Interchanging the order gives

$$\sum_{\chi \pmod{q} \times \pmod{q}} \sum_{(\text{mod } q)} \chi(x) = \sum_{\chi \pmod{q}} \chi_0(x)$$
$$= \phi(q).$$

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 Given a character χ modulo q, if there is a character χ^{*} modulo r, with r|q, such that

$$\chi(x;q) = \chi^*(x;r)\chi_0(x;q),$$

▲□▶▲□▶▲≡▶▲≡▶ = ● ●

then we say that χ^* induces χ .

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 Given a character χ modulo q, if there is a character χ^{*} modulo r, with r|q, such that

$$\chi(x;q) = \chi^*(x;r)\chi_0(x;q),$$

then we say that χ^* induces χ .

 If there is no such character with r < q, then we say that *χ* is primitive.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

 Given a character χ modulo q, if there is a character χ^{*} modulo r, with r|q, such that

$$\chi(x;q) = \chi^*(x;r)\chi_0(x;q),$$

then we say that χ^* induces χ .

 If there is no such character with r < q, then we say that *χ* is primitive.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• If χ^* is primitive, then we call *r* the conductor of χ .

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• We now give two useful criteria for primitivity.

Theorem 5

Let χ be a character modulo q. Then the following are equivalent:

(1) χ is primitive.

(2) If $d \mid q$ and d < q then there is a c such that $c \equiv 1 \pmod{d}$, (c, q) = 1, $\chi(c) \neq 1$.

(3) If $d \mid q$ and d < q, then for every integer a,

 $\sum_{\substack{n=1\\n\equiv a\pmod{d}}}^{q}\chi(n)=0.$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• We now give two useful criteria for primitivity.

Theorem 5

Let χ be a character modulo q. Then the following are equivalent:

(1) χ is primitive.

(2) If $d \mid q$ and d < q then there is a c such that $c \equiv 1 \pmod{d}$, (c, q) = 1, $\chi(c) \neq 1$.

(3) If $d \mid q$ and d < q, then for every integer a,

r

$$\sum_{\substack{n=1\\n\equiv a \pmod{d}}}^{q} \chi(n) = 0.$$

• The proof is usually given in Math 568, and can be found in the files section.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• Given a character χ modulo q, we define the Gauss sum $\tau(\chi)$ of χ to be

$$\tau(\chi) = \sum_{a=1}^{q} \chi(a) e(a/q).$$

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• Given a character χ modulo q, we define the Gauss sum $\tau(\chi)$ of χ to be

$$\tau(\chi) = \sum_{a=1}^{q} \chi(a) e(a/q).$$

• The Gauss sum is a special case of the more general sum

$$c_{\chi}(n) = \sum_{a=1}^{q} \chi(a) e(an/q).$$

▲□▶▲□▶▲≡▶▲≡▶ = ● ●

> Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• Given a character χ modulo q, we define the Gauss sum $\tau(\chi)$ of χ to be

$$\tau(\chi) = \sum_{a=1}^{q} \chi(a) e(a/q).$$

• The Gauss sum is a special case of the more general sum

$$c_{\chi}(n) = \sum_{a=1}^{q} \chi(a) e(an/q).$$

• When χ is the principal character, this is Ramanujan's sum

$$c_q(n) = \sum_{\substack{a=1\\(a,q)=1}}^q e(an/q),$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• We now show that the sum $c_{\chi}(n)$ is closely related to $\tau(\chi)$.

Theorem 6

Suppose that χ is a character modulo q. If (n,q) = 1 then

$$\chi(n)\tau(\overline{\chi}) = \sum_{a=1}^{q} \overline{\chi}(a)e(an/q), \qquad (1)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

and in particular

$$\overline{\tau(\chi)} = \chi(-1)\tau(\overline{\chi}).$$

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

Proof.

If (n, q) = 1 then the map $a \mapsto an$ permutes the residues modulo q, and hence

$$\chi(n)c_{\chi}(n) = \sum_{a=1}^{q} \chi(an)e(an/q) = \tau(\chi).$$

On replacing χ by $\overline{\chi}$, this gives (6), and (7) follows by taking n = -1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• There is a mulitplicative property of Gauss sums which is useful.

Theorem 7

Suppose that $(q_1, q_2) = 1$, that χ_i is a character modulo q_i for i = 1, 2, and that $\chi = \chi_1 \chi_2$. Then

 $\tau(\chi) = \tau(\chi_1)\tau(\chi_2)\chi_1(q_2)\chi_2(q_1).$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ◆ ●

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• There is a mulitplicative property of Gauss sums which is useful.

Theorem 7

Suppose that $(q_1, q_2) = 1$, that χ_i is a character modulo q_i for i = 1, 2, and that $\chi = \chi_1 \chi_2$. Then

$$\tau(\chi) = \tau(\chi_1)\tau(\chi_2)\chi_1(q_2)\chi_2(q_1).$$

• This is standard.

Proof.

By the Chinese remainder theorem, each $a \pmod{q_1q_2}$ can be written uniquely as $a_1q_2 + a_2q_1$ with $1 \le a_i \le q_i$. Thus the general term in (3) is $\chi_1(a_1q_2)\chi_2(a_2q_1)e(a_1/q_1) e(a_2/q_2)$, so the result follows.

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• For primitive characters the hypothesis that (n, q) = 1 in the first theorem can be removed.

Theorem 8

Suppose that χ is a primitive character modulo q. Then

$$\chi(n)\tau(\overline{\chi}) = \sum_{a=1}^{q} \overline{\chi}(a)e(an/q), \qquad (2)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

holds for all n, and $|\tau(\chi)| = \sqrt{q}$.

Robert C. Vaughan

The multiplicative structure of residue classes

Dirichlet characters

Gauss sums

• We will make use of this when studying the large sieve.

Proof.

It suffices to prove (2) when (n,q) > 1. Choose *m* and *d* so that (m,d) = 1 and m/d = n/q. Then

$$\sum_{a=1}^{q} \chi(a) e(an/q) = \sum_{h=1}^{d} e(hm/d) \sum_{\substack{a=1\\a\equiv h \pmod{d}}}^{q} \chi(a).$$

Since $d \mid q$ and d < q, the inner sum vanishes by Theorem 5. Thus (2) holds.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @