Math 571 Chapter 2 Multiplicative Structures

Robert C. Vaughan

January 6, 2023

- In elementary number theory courses it is usual taught that the reduced residue classes modulo q form a cyclic group under multiplication if and only if $q=p^{k}$ with $p=2$ and $k=1$ or 2 , or with $p>2$ and all $k \geq 1$. A generator g is called a primitive root. It is often also shown that if $p=2$ and $k \geq 3$, then every reduced residue modulo 2^{k} is generated by

$$
(-1)^{u} 5^{v}
$$

where $u=0$ or 1 and $0 \leq v<2^{k-2}$.

- In elementary number theory courses it is usual taught that the reduced residue classes modulo q form a cyclic group under multiplication if and only if $q=p^{k}$ with $p=2$ and $k=1$ or 2 , or with $p>2$ and all $k \geq 1$. A generator g is called a primitive root. It is often also shown that if $p=2$ and $k \geq 3$, then every reduced residue modulo 2^{k} is generated by

$$
(-1)^{u} 5^{v}
$$

where $u=0$ or 1 and $0 \leq v<2^{k-2}$.

- One can then use the Chinese Remainder Theorem to express each residue modulo q in a suitable form. This was all first proved by Gauss.
- In elementary number theory courses it is usual taught that the reduced residue classes modulo q form a cyclic group under multiplication if and only if $q=p^{k}$ with $p=2$ and $k=1$ or 2 , or with $p>2$ and all $k \geq 1$. A generator g is called a primitive root. It is often also shown that if $p=2$ and $k \geq 3$, then every reduced residue modulo 2^{k} is generated by

$$
(-1)^{u} 5^{v}
$$

where $u=0$ or 1 and $0 \leq v<2^{k-2}$.

- One can then use the Chinese Remainder Theorem to express each residue modulo q in a suitable form. This was all first proved by Gauss.
- It is also an example of the theorem, usually proved in abstract algebra courses, that each abelian group is a direct product of cyclic groups. The methods of abstract algebra do not necessarily give explicit representations, which are sometimes the easiest way of seeing things.

Math 571
Chapter 2 Multiplicative Structures

Robert C . Vaughan

The
multiplicative structure of residue classes

Dirichlet characters

- There is a more abstract and general treat of characters which I have put in the files section if you are interested.
- There is a more abstract and general treat of characters which I have put in the files section if you are interested.
- A Dirichlet character is an arithmetical function $\chi: \mathbb{N} \rightarrow \mathbb{C}$ with the following properties.
- There is a more abstract and general treat of characters which I have put in the files section if you are interested.
- A Dirichlet character is an arithmetical function $\chi: \mathbb{N} \rightarrow \mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.
- There is a more abstract and general treat of characters which I have put in the files section if you are interested.
- A Dirichlet character is an arithmetical function $\chi: \mathbb{N} \rightarrow \mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.
- 2. χ has period q for some $q \in \mathbb{N}$.
- There is a more abstract and general treat of characters which I have put in the files section if you are interested.
- A Dirichlet character is an arithmetical function $\chi: \mathbb{N} \rightarrow \mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.
- 2. χ has period q for some $q \in \mathbb{N}$.
- 3. If $(x, q)>1$, then $\chi(x)=0$.
- There is a more abstract and general treat of characters which I have put in the files section if you are interested.
- A Dirichlet character is an arithmetical function $\chi: \mathbb{N} \rightarrow \mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.
- 2. χ has period q for some $q \in \mathbb{N}$.
- 3. If $(x, q)>1$, then $\chi(x)=0$.
- In view of the periodicity we can immediately extend the definition to \mathbb{Z}.
- There is a more abstract and general treat of characters which I have put in the files section if you are interested.
- A Dirichlet character is an arithmetical function $\chi: \mathbb{N} \rightarrow \mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.
- 2. χ has period q for some $q \in \mathbb{N}$.
- 3. If $(x, q)>1$, then $\chi(x)=0$.
- In view of the periodicity we can immediately extend the definition to \mathbb{Z}.
- From the theory of multiplicative functions we have $\chi(1)=1$.
- There is a more abstract and general treat of characters which I have put in the files section if you are interested.
- A Dirichlet character is an arithmetical function $\chi: \mathbb{N} \rightarrow \mathbb{C}$ with the following properties.
- 1. χ is totally multiplicative.
- 2. χ has period q for some $q \in \mathbb{N}$.
- 3. If $(x, q)>1$, then $\chi(x)=0$.
- In view of the periodicity we can immediately extend the definition to \mathbb{Z}.
- From the theory of multiplicative functions we have $\chi(1)=1$.
- The special character which is 1 whenever $(x, q)=1$ is called the principal character and is often denoted by χ_{0}.
- By Fermat-Euler, when $(x, q)=1$ we have

$$
1=\chi(1)=\chi\left(x^{\phi(q)}\right)=\chi(x)^{\phi(q)}
$$

- By Fermat-Euler, when $(x, q)=1$ we have

$$
1=\chi(1)=\chi\left(x^{\phi(q)}\right)=\chi(x)^{\phi(q)}
$$

- so $\chi(x)$ is a $\phi(q)$-th root of unity.
- By Fermat-Euler, when $(x, q)=1$ we have

$$
1=\chi(1)=\chi\left(x^{\phi(q)}\right)=\chi(x)^{\phi(q)}
$$

- so $\chi(x)$ is a $\phi(q)$-th root of unity.
- Also $|\chi(x)|=1$.
- By Fermat-Euler, when $(x, q)=1$ we have

$$
1=\chi(1)=\chi\left(x^{\phi(q)}\right)=\chi(x)^{\phi(q)}
$$

- so $\chi(x)$ is a $\phi(q)$-th root of unity.
- Also $|\chi(x)|=1$.
- Hence the number of possible characters modulo q is at most $\phi(q)^{\phi(q)}$, i.e. is finite.
- By Fermat-Euler, when $(x, q)=1$ we have

$$
1=\chi(1)=\chi\left(x^{\phi(q)}\right)=\chi(x)^{\phi(q)}
$$

- so $\chi(x)$ is a $\phi(q)$-th root of unity.
- Also $|\chi(x)|=1$.
- Hence the number of possible characters modulo q is at most $\phi(q)^{\phi(q)}$, i.e. is finite.
- Let their number be h.
- If $(a, q)=1$, then

Robert C. Vaughan

$$
\sum_{x=1}^{q} \chi(x)=\sum_{x=1}^{q} \chi(a x)=\chi(a) \sum_{x=1}^{q} \chi(x)
$$

- If $(a, q)=1$, then

$$
\sum_{x=1}^{q} \chi(x)=\sum_{x=1}^{q} \chi(a x)=\chi(a) \sum_{x=1}^{q} \chi(x)
$$

- Hence if there is an a with $(a, q)=1$ and $\chi(a) \neq 1$, then the sum is 0 .
- If $(a, q)=1$, then

$$
\sum_{x=1}^{q} \chi(x)=\sum_{x=1}^{q} \chi(a x)=\chi(a) \sum_{x=1}^{q} \chi(x)
$$

- Hence if there is an a with $(a, q)=1$ and $\chi(a) \neq 1$, then the sum is 0 .
- Thus we have

Lemma 1

Suppose that χ is a character modulo q. Then

$$
\frac{1}{\phi(q)} \sum_{x=1}^{q} \chi(x)= \begin{cases}1 & \left(\chi=\chi_{0}\right) \\ 0 & \left(\chi \neq \chi_{0}\right)\end{cases}
$$

Math 571
Chapter 2 Multiplicative
Structures
Robert C. Vaughan

The

multiplicative structure of residue classes

Dirichlet characters

- If χ_{1} and χ_{2} are characters modulo q_{1} and q_{2} respectively, then $\chi_{1} \chi_{2}$ is one modulo $q_{1} q_{2}$.

The

multiplicative structure of residue classes

Dirichlet characters

- If χ_{1} and χ_{2} are characters modulo q_{1} and q_{2} respectively, then $\chi_{1} \chi_{2}$ is one modulo $q_{1} q_{2}$.
- If χ is a character, then so is $\bar{\chi}$, and $\chi \bar{\chi}=\bar{\chi} \chi=\chi_{0}$.
- If χ_{1} and χ_{2} are characters modulo q_{1} and q_{2} respectively, then $\chi_{1} \chi_{2}$ is one modulo $q_{1} q_{2}$.
- If χ is a character, then so is $\bar{\chi}$, and $\chi \bar{\chi}=\bar{\chi} \chi=\chi_{0}$.
- If $\chi_{1}, \chi_{2}, \chi_{3}$ are characters modulo q and $\chi_{1} \chi_{2}(x)=\chi_{1} \chi_{3}(x)$ for every x, then $\chi_{2}=\chi_{3}$.
- If χ_{1} and χ_{2} are characters modulo q_{1} and q_{2} respectively, then $\chi_{1} \chi_{2}$ is one modulo $q_{1} q_{2}$.
- If χ is a character, then so is $\bar{\chi}$, and $\chi \bar{\chi}=\bar{\chi} \chi=\chi_{0}$.
- If $\chi_{1}, \chi_{2}, \chi_{3}$ are characters modulo q and $\chi_{1} \chi_{2}(x)=\chi_{1} \chi_{3}(x)$ for every x, then $\chi_{2}=\chi_{3}$.
- Multiply by $\bar{\chi}_{1}$.

Math 571 Chapter 2 Multiplicative Structures

Robert C. Vaughan

The

multiplicative structure of residue classes

Dirichlet characters

- Given x with $(x, q)=1$ and any character χ_{1} modulo q we have

$$
\sum_{\chi(\bmod q)} \chi(x)=\sum_{\chi(\bmod q)} \chi_{1} \chi(x)=\chi_{1}(x) \sum_{\chi(\bmod q)} \chi(x) .
$$

Math 571

- Given x with $(x, q)=1$ and any character χ_{1} modulo q we have

$$
\sum_{\chi(\bmod q)} \chi(x)=\sum_{\chi(\bmod q)} \chi_{1} \chi(x)=\chi_{1}(x) \sum_{\chi(\bmod q)} \chi(x)
$$

- Now we have the analogue of the previous lemma.

Lemma 2

If $(x, q)=1$ and there is a χ_{1} such that $\chi_{1}(x) \neq 1$, then

$$
\sum_{\chi(\bmod q)} \chi(x)=0
$$

If there is no such χ_{1}, then

$$
\sum_{(\bmod q)} \chi(x)=h
$$

- Given x with $(x, q)=1$ and any character χ_{1} modulo q we have

$$
\sum_{\chi(\bmod q)} \chi(x)=\sum_{\chi(\bmod q)} \chi_{1} \chi(x)=\chi_{1}(x) \sum_{\chi(\bmod q)} \chi(x)
$$

- Now we have the analogue of the previous lemma.

Lemma 2

If $(x, q)=1$ and there is a χ_{1} such that $\chi_{1}(x) \neq 1$, then

$$
\sum_{\chi(\bmod q)} \chi(x)=0
$$

If there is no such χ_{1}, then

$$
\sum_{(\bmod q)} \chi(x)=h
$$

- Can we always find such a χ_{1} when $x \not \equiv 1(\bmod q)$?

Math 571 Chapter 2 Multiplicative Structures

Robert C. Vaughan

- The answer is yes.

Lemma 3

Given x with $(x, q)=1$ and $x \not \equiv 1(\bmod q)$ there is a character χ_{1} modulo q such that $\chi_{1}(x) \neq 1$.

Math 571

- The answer is yes.

Lemma 3

Given x with $(x, q)=1$ and $x \not \equiv 1(\bmod q)$ there is a character χ_{1} modulo q such that $\chi_{1}(x) \neq 1$.

- We give a quick and dirty proof. Since $x \not \equiv 1(\bmod q)$, there is a prime power p^{k} such that $p^{k} \mid q$ and $p^{k} \nmid x-1$.
- The answer is yes.

Lemma 3

Given x with $(x, q)=1$ and $x \not \equiv 1(\bmod q)$ there is a character χ_{1} modulo q such that $\chi_{1}(x) \neq 1$.

- We give a quick and dirty proof. Since $x \not \equiv 1(\bmod q)$, there is a prime power p^{k} such that $p^{k} \mid q$ and $p^{k} \nmid x-1$.
- If p is odd, or $p=2$ and $k=1$ or 2 , then we can choose a primitive root g modulo p^{k}. Then we define a character $\chi_{2}\left(z ; p^{k}\right)$ modulo p^{k} by taking

$$
\chi_{2}\left(g^{y} ; p^{k}\right)=e\left(y / \phi\left(p^{k}\right)\right) .
$$

- The answer is yes.

Lemma 3

Given x with $(x, q)=1$ and $x \not \equiv 1(\bmod q)$ there is a character χ_{1} modulo q such that $\chi_{1}(x) \neq 1$.

- We give a quick and dirty proof. Since $x \not \equiv 1(\bmod q)$, there is a prime power p^{k} such that $p^{k} \mid q$ and $p^{k} \nmid x-1$.
- If p is odd, or $p=2$ and $k=1$ or 2 , then we can choose a primitive root g modulo p^{k}. Then we define a character $\chi_{2}\left(z ; p^{k}\right)$ modulo p^{k} by taking

$$
\chi_{2}\left(g^{y} ; p^{k}\right)=e\left(y / \phi\left(p^{k}\right)\right) .
$$

- Note that if $g^{y} \not \equiv 1 \bmod p^{k}$, then $y \not \equiv 0\left(\bmod \phi\left(p^{k}\right)\right)$.
- The answer is yes.

Lemma 3

Given x with $(x, q)=1$ and $x \not \equiv 1(\bmod q)$ there is a character χ_{1} modulo q such that $\chi_{1}(x) \neq 1$.

- We give a quick and dirty proof. Since $x \not \equiv 1(\bmod q)$, there is a prime power p^{k} such that $p^{k} \mid q$ and $p^{k} \nmid x-1$.
- If p is odd, or $p=2$ and $k=1$ or 2 , then we can choose a primitive root g modulo p^{k}. Then we define a character $\chi_{2}\left(z ; p^{k}\right)$ modulo p^{k} by taking

$$
\chi_{2}\left(g^{y} ; p^{k}\right)=e\left(y / \phi\left(p^{k}\right)\right) .
$$

- Note that if $g^{y} \not \equiv 1 \bmod p^{k}$, then $y \not \equiv 0\left(\bmod \phi\left(p^{k}\right)\right)$.
- Now define

$$
\chi_{1}(x)=\chi_{2}\left(x ; p^{k}\right) \chi_{0}\left(x ; q p^{-k}\right)
$$

- The answer is yes.

Lemma 3

Given x with $(x, q)=1$ and $x \not \equiv 1(\bmod q)$ there is a character χ_{1} modulo q such that $\chi_{1}(x) \neq 1$.

- We give a quick and dirty proof. Since $x \not \equiv 1(\bmod q)$, there is a prime power p^{k} such that $p^{k} \mid q$ and $p^{k} \nmid x-1$.
- If p is odd, or $p=2$ and $k=1$ or 2 , then we can choose a primitive root g modulo p^{k}. Then we define a character $\chi_{2}\left(z ; p^{k}\right)$ modulo p^{k} by taking

$$
\chi_{2}\left(g^{y} ; p^{k}\right)=e\left(y / \phi\left(p^{k}\right)\right) .
$$

- Note that if $g^{y} \not \equiv 1 \bmod p^{k}$, then $y \not \equiv 0\left(\bmod \phi\left(p^{k}\right)\right)$.
- Now define

$$
\chi_{1}(x)=\chi_{2}\left(x ; p^{k}\right) \chi_{0}\left(x ; q p^{-k}\right)
$$

- That leaves the case when $p=2$ and $k \geq 3$, which is a little more complicated.

Math 571
Chapter 2 Multiplicative
Structures
Robert C. Vaughan

The
multiplicative structure of residue classes

Dirichlet characters

- Choose y, z so that

$$
x \equiv(-1)^{y} 5^{z}\left(\bmod 2^{k}\right)
$$

- Choose y, z so that

$$
x \equiv(-1)^{y} 5^{z}\left(\bmod 2^{k}\right)
$$

- Now we construct χ_{2} as follows.
- Choose y, z so that

$$
x \equiv(-1)^{y} 5^{z} \quad\left(\bmod 2^{k}\right)
$$

- Now we construct χ_{2} as follows.
- If $y=0$, so that $0 \leq z<2^{k-2}$, then take

$$
\chi_{2}\left((-1)^{u} 5^{v} ; 2^{k}\right)=e\left(v / 2^{k-2}\right)
$$

- Choose y, z so that

$$
x \equiv(-1)^{y} 5^{z} \quad\left(\bmod 2^{k}\right)
$$

- Now we construct χ_{2} as follows.
- If $y=0$, so that $0 \leq z<2^{k-2}$, then take

$$
\chi_{2}\left((-1)^{u} 5^{v} ; 2^{k}\right)=e\left(v / 2^{k-2}\right)
$$

- If $y=1$, then take

$$
\chi_{2}\left((-1)^{u} 5^{v} ; 2^{k}\right)=e(u / 2)
$$

- Choose y, z so that

$$
x \equiv(-1)^{y} 5^{z} \quad\left(\bmod 2^{k}\right)
$$

- Now we construct χ_{2} as follows.
- If $y=0$, so that $0 \leq z<2^{k-2}$, then take

$$
\chi_{2}\left((-1)^{u} 5^{v} ; 2^{k}\right)=e\left(v / 2^{k-2}\right)
$$

- If $y=1$, then take

$$
\chi_{2}\left((-1)^{u} 5^{v} ; 2^{k}\right)=e(u / 2)
$$

- Then proceed as before.
- We now can state the basic theorem for characters.

Theorem 4

There are $\phi(q)$ characters modulo q,

$$
\begin{aligned}
& \frac{1}{\phi(q)} \sum_{\chi(\bmod q)} \bar{\chi}(a) \chi(x)= \begin{cases}1 & x \equiv a(\bmod q) \&(a, q)=1, \\
0 & x \not \equiv a(\bmod q) \text { or }(a, q)>1 .\end{cases} \\
& \text { and }
\end{aligned}
$$

$$
\frac{1}{\phi(q)} \sum_{x(\bmod q)} \bar{\chi}_{1}(x) \chi_{2}(x)= \begin{cases}1 & \chi_{1}=\chi_{2} \text { and }(x, q)=1 \\ 0 & \chi_{1} \neq \chi_{2}\end{cases}
$$

Math 571
Chapter 2 Multiplicative Structures

Robert C. Vaughan

The

multiplicative structure of residue classes

Dirichlet characters

- Consider the sum

$$
\sum_{x(\bmod q) \chi} \sum_{(\bmod q)} \chi(x) .
$$

- Consider the sum

$$
\sum_{x(\bmod q)} \sum_{\chi(\bmod q)} \chi(x)
$$

- The sum over χ contributes 0 if $x \not \equiv 1(\bmod q), h$ otherwise, so

$$
=h
$$

- Interchanging the order gives

$$
\begin{aligned}
\sum_{\chi(\bmod q) \times(\bmod q)} \sum_{x(x)} & =\sum_{x(\bmod q)} \chi_{0}(x) \\
& =\phi(q) .
\end{aligned}
$$

- Given a character χ modulo q, if there is a character χ^{*} modulo r, with $r \mid q$, such that

$$
\chi(x ; q)=\chi^{*}(x ; r) \chi_{0}(x ; q)
$$

then we say that χ^{*} induces χ.

- Given a character χ modulo q, if there is a character χ^{*} modulo r, with $r \mid q$, such that

$$
\chi(x ; q)=\chi^{*}(x ; r) \chi_{0}(x ; q)
$$

then we say that χ^{*} induces χ.

- If there is no such character with $r<q$, then we say that χ is primitive.
- Given a character χ modulo q, if there is a character χ^{*} modulo r, with $r \mid q$, such that

$$
\chi(x ; q)=\chi^{*}(x ; r) \chi_{0}(x ; q)
$$

then we say that χ^{*} induces χ.

- If there is no such character with $r<q$, then we say that χ is primitive.
- If χ^{*} is primitive, then we call r the conductor of χ.
- We now give two useful criteria for primitivity.

Theorem 5

Let χ be a character modulo q. Then the following are equivalent:
(1) χ is primitive.
(2) If $d \mid q$ and $d<q$ then there is a c such that $c \equiv 1$
$(\bmod d),(c, q)=1, \chi(c) \neq 1$.
(3) If $d \mid q$ and $d<q$, then for every integer a,

$$
\sum_{\substack{n=1 \\=a(\bmod d)}}^{q} \chi(n)=0
$$

- We now give two useful criteria for primitivity.

Theorem 5

Let χ be a character modulo q. Then the following are equivalent:
(1) χ is primitive.
(2) If $d \mid q$ and $d<q$ then there is a c such that $c \equiv 1$
$(\bmod d),(c, q)=1, \chi(c) \neq 1$.
(3) If $d \mid q$ and $d<q$, then for every integer a,

$$
\sum_{\substack{n=1 \\=a(\bmod d)}}^{q} \chi(n)=0
$$

- The proof is usually given in Math 568, and can be found in the files section.
- Given a character χ modulo q, we define the Gauss sum $\tau(\chi)$ of χ to be

$$
\tau(\chi)=\sum_{a=1}^{q} \chi(a) e(a / q)
$$

$$
\tau(\chi)=\sum_{a=1}^{q} \chi(a) e(a / q)
$$

- The Gauss sum is a special case of the more general sum

$$
c_{\chi}(n)=\sum_{a=1}^{q} \chi(a) e(a n / q)
$$

- Given a character χ modulo q, we define the Gauss sum $\tau(\chi)$ of χ to be

$$
\tau(\chi)=\sum_{a=1}^{q} \chi(a) e(a / q)
$$

- The Gauss sum is a special case of the more general sum

$$
c_{\chi}(n)=\sum_{a=1}^{q} \chi(a) e(a n / q)
$$

- When χ is the principal character, this is Ramanujan's sum

$$
c_{q}(n)=\sum_{\substack{a=1 \\(a, q)=1}}^{q} e(a n / q)
$$

- We now show that the sum $c_{\chi}(n)$ is closely related to $\tau(\chi)$.

Theorem 6

Suppose that χ is a character modulo q. If $(n, q)=1$ then

$$
\begin{equation*}
\chi(n) \tau(\bar{\chi})=\sum_{a=1}^{q} \bar{\chi}(a) e(a n / q) \tag{1}
\end{equation*}
$$

and in particular

$$
\overline{\tau(\chi)}=\chi(-1) \tau(\bar{\chi})
$$

Proof.

If $(n, q)=1$ then the map $a \mapsto a n$ permutes the residues modulo q, and hence

$$
\chi(n) c_{\chi}(n)=\sum_{a=1}^{q} \chi(a n) e(a n / q)=\tau(\chi)
$$

On replacing χ by $\bar{\chi}$, this gives (6), and (7) follows by taking $n=-1$.

- There is a mulitplicative property of Gauss sums which is useful.

Theorem 7

Suppose that $\left(q_{1}, q_{2}\right)=1$, that χ_{i} is a character modulo q_{i} for $i=1,2$, and that $\chi=\chi_{1} \chi_{2}$. Then

$$
\tau(\chi)=\tau\left(\chi_{1}\right) \tau\left(\chi_{2}\right) \chi_{1}\left(q_{2}\right) \chi_{2}\left(q_{1}\right)
$$

- There is a mulitplicative property of Gauss sums which is useful.

Theorem 7

Suppose that $\left(q_{1}, q_{2}\right)=1$, that χ_{i} is a character modulo q_{i} for $i=1,2$, and that $\chi=\chi_{1} \chi_{2}$. Then

$$
\tau(\chi)=\tau\left(\chi_{1}\right) \tau\left(\chi_{2}\right) \chi_{1}\left(q_{2}\right) \chi_{2}\left(q_{1}\right)
$$

- This is standard.

Proof.

By the Chinese remainder theorem, each a $\left(\bmod q_{1} q_{2}\right)$ can be written uniquely as $a_{1} q_{2}+a_{2} q_{1}$ with $1 \leq a_{i} \leq q_{i}$. Thus the general term in (3) is $\chi_{1}\left(a_{1} q_{2}\right) \chi_{2}\left(a_{2} q_{1}\right) e\left(a_{1} / q_{1}\right) e\left(a_{2} / q_{2}\right)$, so the result follows.

- For primitive characters the hypothesis that $(n, q)=1$ in the first theorem can be removed.

Theorem 8

Suppose that χ is a primitive character modulo q. Then

$$
\begin{equation*}
\chi(n) \tau(\bar{\chi})=\sum_{a=1}^{q} \bar{\chi}(a) e(a n / q) \tag{2}
\end{equation*}
$$

holds for all n, and $|\tau(\chi)|=\sqrt{q}$.

- We will make use of this when studying the large sieve.

Proof.

It suffices to prove (2) when $(n, q)>1$. Choose m and d so that $(m, d)=1$ and $m / d=n / q$. Then

$$
\sum_{a=1}^{q} \chi(a) e(a n / q)=\sum_{h=1}^{d} e(h m / d) \sum_{\substack{a=1 \\ a \equiv h(\bmod d)}}^{q} \chi(a) .
$$

Since $d \mid q$ and $d<q$, the inner sum vanishes by Theorem 5 . Thus (2) holds.

