Math 571 Chapter 1 Elementary Results

Robert C. Vaughan

January 11, 2023

- Since I are not sure of the number theory background of everyone in the class I will start by discussing some useful topics from elementary number theory.

Arithmetical Functions

- The set \mathcal{A} of arithmetical functions is defined by

$$
\mathcal{A}=\{f: \mathbb{N} \rightarrow \mathbb{C}\}
$$

Arithmetical Functions

- The set \mathcal{A} of arithmetical functions is defined by

$$
\mathcal{A}=\{f: \mathbb{N} \rightarrow \mathbb{C}\}
$$

- The set \mathcal{A} of arithmetical functions is defined by

$$
\mathcal{A}=\{f: \mathbb{N} \rightarrow \mathbb{C}\}
$$

- Of course the range of any particular function might well be a subset of \mathbb{C}.
- The set \mathcal{A} of arithmetical functions is defined by

$$
\mathcal{A}=\{f: \mathbb{N} \rightarrow \mathbb{C}\}
$$

- Of course the range of any particular function might well be a subset of \mathbb{C}.
- There are quite a number of important arithmetical functions.

Arithmetical Functions

- Some examples are

Averages of arithmetical functions

Elementary Prime number theory

Orders of magnitude of arithmetical functions.

Arithmetical Functions

Averages of arithmetical

- Some examples are
- The divisor function. The number of positive divisors of n.

$$
d(n)=\sum_{m \mid n} 1
$$

- Some examples are
- The divisor function. The number of positive divisors of n.

$$
d(n)=\sum_{m \mid n} 1 .
$$

- Euler's function. The number $\phi(n)$ of integers m with $1 \leq m \leq n$ and $(m, n)=1$. This is important because it counts the number of units in $\mathbb{Z} / n \mathbb{Z}$.
- Euler's function satisfies an interesting relationship.

Theorem 1

$$
\text { We have } \sum_{m \mid n} \phi(m)=n
$$

Arithmetical Functions

Averages of arithmetical functions

- Euler's function satisfies an interesting relationship.

Theorem 1

We have $\sum_{m \mid n} \phi(m)=n$.

- One way of seeing this is as follows. Consider the n fractions

$$
\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n} .
$$

- Euler's function satisfies an interesting relationship.

Theorem 1

We have $\sum_{m \mid n} \phi(m)=n$.

- One way of seeing this is as follows. Consider the n fractions

$$
\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n} .
$$

- Then factor out any common factors between denominators and numerators. Then one will obtain each fraction of the form

$$
\frac{l}{m}
$$

with $m \mid n, 1 \leq I \leq m$ and $(I, m)=1$.

- Euler's function satisfies an interesting relationship.

Theorem 1

We have $\sum_{m \mid n} \phi(m)=n$.

- One way of seeing this is as follows. Consider the n fractions

$$
\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n} .
$$

- Then factor out any common factors between denominators and numerators. Then one will obtain each fraction of the form

$$
\frac{l}{m}
$$

with $m \mid n, 1 \leq I \leq m$ and $(I, m)=1$.

- The number of such fractions is

$$
\sum_{m \mid n} \phi(m) .
$$

- The Möbius function. This is a more peculiar function. It is defined to be

$$
\mu(n)=(-1)^{k}
$$

when $n=p_{1} \ldots p_{k}$ and the p_{j} are distinct, and is defined to be 0 otherwise.

- It is also convenient to introduce three less interesting functions.
- It is also convenient to introduce three less interesting functions.
- The unit.

$$
e(n)= \begin{cases}1 & (n=1) \\ 0 & (n>1)\end{cases}
$$

- It is also convenient to introduce three less interesting functions.
- The unit.

$$
e(n)= \begin{cases}1 & (n=1) \\ 0 & (n>1)\end{cases}
$$

- The one.

$$
\mathbf{1}(n)=1 \text { for every } n
$$

- It is also convenient to introduce three less interesting functions.
- The unit.

$$
e(n)= \begin{cases}1 & (n=1) \\ 0 & (n>1)\end{cases}
$$

- The one.

$$
\mathbf{1}(n)=1 \text { for every } n
$$

- The identity.

$$
N(n)=n .
$$

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

- Two other functions which have interesting structures but which we will say less about at this stage are
- Sums of two squares. We define $r(n)$ to be the number of ways of writing n as the sum of two squares of integers.
- Two other functions which have interesting structures but which we will say less about at this stage are
- The primitive character modulo 4 . We define

$$
\chi_{1}(n)= \begin{cases}(-1)^{\frac{n-1}{2}} & 2 \nmid n, \\ 0 & 2 \mid n\end{cases}
$$

- Sums of two squares. We define $r(n)$ to be the number of ways of writing n as the sum of two squares of integers.
- For example, $1=0^{2}+(\pm 1)^{2}=(\pm 1)^{2}+0^{2}$, so $r(1)=4$, $r(3)=r(6)=r(7)=0, r(9)=4$, $65=(\pm 1)^{2}+(\pm 8)^{2}=(\pm 4)^{2}+(\pm 7)^{2}$ so $r(65)=16$.
- Two other functions which have interesting structures but which we will say less about at this stage are
- The primitive character modulo 4 . We define

$$
\chi_{1}(n)= \begin{cases}(-1)^{\frac{n-1}{2}} & 2 \nmid n, \\ 0 & 2 \mid n .\end{cases}
$$

- Sums of two squares. We define $r(n)$ to be the number of ways of writing n as the sum of two squares of integers.
- For example, $1=0^{2}+(\pm 1)^{2}=(\pm 1)^{2}+0^{2}$, so $r(1)=4$, $r(3)=r(6)=r(7)=0, r(9)=4$, $65=(\pm 1)^{2}+(\pm 8)^{2}=(\pm 4)^{2}+(\pm 7)^{2}$ so $r(65)=16$.
- $d, \phi, e, \mathbf{1}, N, \chi_{1}$ have an interesting property. That is they are multiplicative.
- Definition An arithmetical function f which is not identically 0 is multiplicative when it satisfies

$$
\begin{aligned}
& \qquad f(m n)=f(m) f(n) \\
& \text { whenever }(m, n)=1
\end{aligned}
$$

- Definition An arithmetical function f which is not identically 0 is multiplicative when it satisfies
whenever $(m, n)=1$.
- Let \mathcal{M} denote the set of multiplicative functions.

$$
f(m n)=f(m) f(n)
$$

- Definition An arithmetical function f which is not identically 0 is multiplicative when it satisfies

$$
\begin{aligned}
& \qquad f(m n)=f(m) f(n) \\
& \text { whenever }(m, n)=1
\end{aligned}
$$

- Let \mathcal{M} denote the set of multiplicative functions.
- The function $r(n)$ is not multiplicative, since $r(65)=16$ but $r(5)=r(13)=8$.
- Definition An arithmetical function f which is not identically 0 is multiplicative when it satisfies

$$
\begin{aligned}
& \qquad f(m n)=f(m) f(n) \\
& \text { whenever }(m, n)=1
\end{aligned}
$$

- Let \mathcal{M} denote the set of multiplicative functions.
- The function $r(n)$ is not multiplicative, since $r(65)=16$ but $r(5)=r(13)=8$.
- Indeed the fact that $r(1) \neq 1$ would contradict the next theorem.
- Definition An arithmetical function f which is not identically 0 is multiplicative when it satisfies

$$
f(m n)=f(m) f(n)
$$

whenever $(m, n)=1$.

- Let \mathcal{M} denote the set of multiplicative functions.
- The function $r(n)$ is not multiplicative, since $r(65)=16$ but $r(5)=r(13)=8$.
- Indeed the fact that $r(1) \neq 1$ would contradict the next theorem.
- However it is true that $r(n) / 4$ is multiplicative, but this is a little trickier to prove.

Math 571
Chapter 1 Elementary
Results
Robert C. Vaughan

Arithmetical Functions

Averages of arithmetical functions

Elementary Prime number theory
Orders of magnitude of arithmetical functions.

- We have

Theorem 2

Suppose that $f \in \mathcal{M}$. Then $f(1)=1$.

- We have

Theorem 2

Suppose that $f \in \mathcal{M}$. Then $f(1)=1$.

- The proof is easy.

Proof.

Since f is not identically 0 there is an n such that $f(n) \neq 0$. Hence $f(n)=f(n \times 1)=f(n) f(1)$, and the conclusion follows.

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

Arithmetical Functions

Averages of arithmetical functions

Elementary Prime number theory

- It is pretty obvious that $e, \mathbf{1}$ and N are in \mathcal{M}, and it is actually quite easy to show

Theorem 3

We have $\mu \in \mathcal{M}$.

- It is pretty obvious that $e, \mathbf{1}$ and N are in \mathcal{M}, and it is actually quite easy to show

Theorem 3

We have $\mu \in \mathcal{M}$.

Proof.

Suppose that $(m, n)=1$. If $p^{2} \mid m n$, then $p^{2} \mid m$ or $p^{2} \mid n$, so $\mu(m n)=0=\mu(m) \mu(n)$. If

$$
m=p_{1} \ldots p_{k}, \quad n=p_{1}^{\prime} \ldots p_{l}^{\prime}
$$

with the p_{i}, p_{j}^{\prime} distinct, then

$$
\mu(m n)=(-1)^{k+\prime}=(-1)^{k}(-1)^{\prime}=\mu(m) \mu(n) .
$$

- The following is very useful.

Theorem 4

Suppose the $f \in \mathcal{M}, g \in \mathcal{M}$ and h is defined for each n by $h(n)=\sum_{m \mid n} f(m) g(n / m)$. Then $h \in \mathcal{M}$.

- The following is very useful.

Theorem 4

Suppose the $f \in \mathcal{M}, g \in \mathcal{M}$ and h is defined for each n by $h(n)=\sum_{m \mid n} f(m) g(n / m)$. Then $h \in \mathcal{M}$.

Proof.

Suppose $\left(n_{1}, n_{2}\right)=1$. Then a typical divisor m of $n_{1} n_{2}$ is uniquely of the form $m_{1} m_{2}$ with $m_{1} \mid n_{1}$ and $m_{2} \mid n_{2}$. Hence

$$
\begin{aligned}
h\left(n_{1} n_{2}\right) & =\sum_{m_{1} \mid n_{1}} \sum_{m_{2} \mid n_{2}} f\left(m_{1} m_{2}\right) g\left(n_{1} n_{2} /\left(m_{1} m_{2}\right)\right) \\
& =\sum_{m_{1} \mid n_{1}} f\left(m_{1}\right) g\left(n_{1} / m_{1}\right) \sum_{m_{2} \mid n_{2}} f\left(m_{2}\right) g\left(n_{2} / m_{2}\right)
\end{aligned}
$$

- This enables is to establish an interesting property of the Möbius function.

Theorem 5

We have

$$
\sum_{m \mid n} \mu(m)=e(n)
$$

- This enables is to establish an interesting property of the Möbius function.

Theorem 5

We have

$$
\sum_{m \mid n} \mu(m)=e(n)
$$

Proof.

By the previous theorem the sum here is $\sum_{m \mid n} \mu(m) \mathbf{1}(n / m)$ is in \mathcal{M}. Moreover if $k \geq 1$, then

$$
\sum_{m \mid p^{k}} \mu(m)=\mu(1)+\mu(p)=1-1=0
$$

Math 571

- This suggests a general way of defining new functions. Definition. Given two arithmetical functions f and g we define the Dirichlet convolution $f * g$ to be the function defined by

$$
(f * g)(n)=\sum_{m \mid n} f(m) g(n / m)
$$

- This suggests a general way of defining new functions. Definition. Given two arithmetical functions f and g we define the Dirichlet convolution $f * g$ to be the function defined by

$$
(f * g)(n)=\sum_{m \mid n} f(m) g(n / m)
$$

- Note that this operation is commutative - simply replace m by n / m.
- This suggests a general way of defining new functions. Definition. Given two arithmetical functions f and g we define the Dirichlet convolution $f * g$ to be the function defined by

$$
(f * g)(n)=\sum_{m \mid n} f(m) g(n / m)
$$

- Note that this operation is commutative - simply replace m by n / m.
- It is also quite easy to see that

$$
(f * g) * h=f *(g * h)
$$

- This suggests a general way of defining new functions. Definition. Given two arithmetical functions f and g we define the Dirichlet convolution $f * g$ to be the function defined by

$$
(f * g)(n)=\sum_{m \mid n} f(m) g(n / m)
$$

- Note that this operation is commutative - simply replace m by n / m.
- It is also quite easy to see that

$$
(f * g) * h=f *(g * h)
$$

- Write the left hand side as

$$
\sum_{m \mid n}\left(\sum_{I \mid m} f(I) g(m / I)\right) h(n / m)
$$

and interchange the order of summation and replace m by kl.

Arithmetical Functions

- Dirichlet convolution has some interesting properties

Averages of arithmetical functions

Elementary
Prime number theory

Arithmetical Functions

Averages of arithmetical functions

Elementary Prime number theory

Orders of magnitude of arithmetical functions.

- Dirichlet convolution has some interesting properties
- 1. $f * e=e * f=f$ for any $f \in \mathcal{A}$, so e is really acting as a unit.
- Dirichlet convolution has some interesting properties
- 1. $f * e=e * f=f$ for any $f \in \mathcal{A}$, so e is really acting as a unit.
- 2. $\mu * \mathbf{1}=\mathbf{1} * \mu=e$, so μ is the inverse of $\mathbf{1}$, and vice versa.
- Dirichlet convolution has some interesting properties
- 1. $f * e=e * f=f$ for any $f \in \mathcal{A}$, so e is really acting as a unit.
- 2. $\mu * \mathbf{1}=\mathbf{1} * \mu=e$, so μ is the inverse of $\mathbf{1}$, and vice versa.
- 3. $d=\mathbf{1} * \mathbf{1}$, so $d \in \mathcal{M}$. Hence
- Dirichlet convolution has some interesting properties
- 1. $f * e=e * f=f$ for any $f \in \mathcal{A}$, so e is really acting as a unit.
- 2. $\mu * \mathbf{1}=\mathbf{1} * \mu=e$, so μ is the inverse of $\mathbf{1}$, and vice versa.
- 3. $d=1 * \mathbf{1}$, so $d \in \mathcal{M}$. Hence
- 4. $d\left(p^{k}\right)=k+1$ and $d\left(p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}\right)=\left(k_{1}+1\right) \ldots\left(k_{r}+1\right)$.

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

- The Möbius function has other interesting properties.

Theorem 6 (Möbius inversion I)
Suppose that $f \in \mathcal{A}$ and $g=f * \mathbf{1}$. Then $f=g * \mu$.

- The Möbius function has other interesting properties.

Theorem 6 (Möbius inversion I)

Suppose that $f \in \mathcal{A}$ and $g=f * \mathbf{1}$. Then $f=g * \mu$.

- Using Dirichlet convolution the proof is easy.

Proof.

We have

$$
g * \mu=(f * \mathbf{1}) * \mu=f *(\mathbf{1} * \mu)=f * e=f .
$$

- The Möbius function has other interesting properties.

Theorem 6 (Möbius inversion I)

Suppose that $f \in \mathcal{A}$ and $g=f * \mathbf{1}$. Then $f=g * \mu$.

- Using Dirichlet convolution the proof is easy.

Proof.

We have

$$
g * \mu=(f * \mathbf{1}) * \mu=f *(\mathbf{1} * \mu)=f * e=f .
$$

- There is a converse theorem

Theorem 7 (Möbius inversion II)

Suppose that $g \in \mathcal{A}$ and $f=g * \mu$, then $g=f * \mathbf{1}$.

- The Möbius function has other interesting properties.

Theorem 6 (Möbius inversion I)

Suppose that $f \in \mathcal{A}$ and $g=f * \mathbf{1}$. Then $f=g * \mu$.

- Using Dirichlet convolution the proof is easy.

Proof.

We have

$$
g * \mu=(f * \mathbf{1}) * \mu=f *(\mathbf{1} * \mu)=f * e=f .
$$

- There is a converse theorem

Theorem 7 (Möbius inversion II)

Suppose that $g \in \mathcal{A}$ and $f=g * \mu$, then $g=f * \mathbf{1}$.

- The proof is similar.

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

Arithmetical Functions

Averages of arithmetical functions

- There are some interesting consequences

Theorem 8

We have $\phi=\mu * N$ and $\phi \in \mathcal{M}$. Moreover

$$
\phi(n)=n \sum_{m \mid n} \frac{\mu(m)}{m}=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

- There are some interesting consequences

Theorem 8

We have $\phi=\mu * N$ and $\phi \in \mathcal{M}$. Moreover

$$
\phi(n)=n \sum_{m \mid n} \frac{\mu(m)}{m}=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

- Again the proof is easy.

Proof.

We saw in Theorem 1 that $\phi * \mathbf{1}=N$. Hence by the previous theorem we have $\phi=N * \mu=\mu * N$. Therefore, by Theorem 4, $\phi \in \mathcal{M}$. Moreover $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$ and we are done.

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

Arithmetical Functions

Averages of arithmetical functions

Elementary Prime number theory
Orders of magnitude of arithmetical functions.

- A structure theorem.

Theorem 9
Let $\mathcal{D}=\{f \in \mathcal{A}: f(1) \neq 0\}$. Then $\langle\mathcal{D}, *\rangle$ is an abelian group.

- A structure theorem.

Theorem 9

Let $\mathcal{D}=\{f \in \mathcal{A}: f(1) \neq 0\}$. Then $\langle\mathcal{D}, *\rangle$ is an abelian group.

- The proof is constructive.

Proof.

Of course e is the unit, and closure is obvious. We already checked commutativity and associativity. It remains, given $f \in \mathcal{D}$, to construct an inverse. Define g iteratively by $g(1)=1 / f(1), g(n)=-\sum_{m \mid n} f(m) g(n / m) / f(1)$ and it is clear that $f * g=e$.

$$
m>1
$$

- One of the most powerful techniques we have is to take an average.

Averages of arithmetical functions

- One of the most powerful techniques we have is to take an average.
- One of the more famous theorems of this kind is

Theorem 10 (Dirichlet)
Suppose that $X \in \mathbb{R}$ and $X \geq 2$. Then

$$
\sum_{n \leq X} d(n)=X \log X+(2 C-1) X+O\left(X^{1 / 2}\right)
$$

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

- We follow Dirichlet's proof method, which has become known as the method of the parabola.

Arithmetical Functions

Averages of arithmetical functions

Elementary

Math 571

- We follow Dirichlet's proof method, which has become known as the method of the parabola.
- The divisor function $d(n)$ can be thought of as the number of ordered pairs of positive integers $m, /$ such that $m l=n$.
- We follow Dirichlet's proof method, which has become known as the method of the parabola.
- The divisor function $d(n)$ can be thought of as the number of ordered pairs of positive integers $m, /$ such that $m l=n$.
- Thus when we sum over $n \leq X$ we are just counting the number of ordered pairs m, l such that $m l \leq X$.
- We follow Dirichlet's proof method, which has become known as the method of the parabola.
- The divisor function $d(n)$ can be thought of as the number of ordered pairs of positive integers $m, /$ such that $m l=n$.
- Thus when we sum over $n \leq X$ we are just counting the number of ordered pairs m, l such that $m l \leq X$.
- In other words we are counting the number of lattice points m, / under the rectangular hyperbola

$$
x y=X
$$

- We follow Dirichlet's proof method, which has become known as the method of the parabola.
- The divisor function $d(n)$ can be thought of as the number of ordered pairs of positive integers $m, /$ such that $m l=n$.
- Thus when we sum over $n \leq X$ we are just counting the number of ordered pairs m, l such that $m l \leq X$.
- In other words we are counting the number of lattice points m, / under the rectangular hyperbola

$$
x y=X
$$

- We could just crudely count, given $m \leq X$, the number of choices for I, namely

$$
\left\lfloor\frac{X}{m}\right\rfloor
$$

and obtain

$$
\sum_{m \leq X} \frac{X}{m}+O(X)
$$

but this gives a much weaker error term.

- Dirichlet's idea is divide the region under the hyperbola into two parts using its symmetry in the line $y=x$.
- Dirichlet's idea is divide the region under the hyperbola into two parts using its symmetry in the line $y=x$.
- That two regions are the part with

$$
m \leq \sqrt{X}, I \leq \frac{X}{m}
$$

and that with

$$
I \leq \sqrt{X}, m \leq \frac{X}{l} .
$$

- Dirichlet's idea is divide the region under the hyperbola into two parts using its symmetry in the line $y=x$.
- That two regions are the part with

$$
m \leq \sqrt{X}, I \leq \frac{X}{m}
$$

and that with

$$
l \leq \sqrt{X}, m \leq \frac{X}{l}
$$

- Clearly each region has the same number of lattice points. However the points m, I with $m \leq \sqrt{X}$ and $I \leq \sqrt{X}$ are counted in both regions.
- Thus we obtain

Arithmetical Functions

Averages of arithmetical functions

$$
\begin{aligned}
\sum_{n \leq X} d(n) & =2 \sum_{m \leq \sqrt{X}}\left\lfloor\frac{X}{m}\right\rfloor-\lfloor\sqrt{X}\rfloor^{2} \\
& =2 \sum_{m \leq \sqrt{X}} \frac{X}{m}-X+O\left(X^{1 / 2}\right) \\
& =2 X(\log (\sqrt{X})+C)-X+O\left(X^{1 / 2}\right)
\end{aligned}
$$

where in the last line we used Euler's estimate for $S(x)$.

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

- One can also compute an average for Euler's function

Theorem 11

Suppose that $x \in \mathbb{R}$ and $x \geq 2$. Then

$$
\sum_{n \leq x} \phi(n)=\frac{x^{2}}{2} \sum_{m=1}^{\infty} \frac{\mu(m)}{m^{2}}+O(x \log x)
$$

- One can also compute an average for Euler's function

Theorem 11

Suppose that $x \in \mathbb{R}$ and $x \geq 2$. Then

$$
\sum_{n \leq x} \phi(n)=\frac{x^{2}}{2} \sum_{m=1}^{\infty} \frac{\mu(m)}{m^{2}}+O(x \log x)
$$

- We remark that the infinite series here is "well known" to be $\frac{6}{\pi^{2}}$.
- One can also compute an average for Euler's function

Theorem 11

Suppose that $x \in \mathbb{R}$ and $x \geq 2$. Then

$$
\sum_{n \leq x} \phi(n)=\frac{x^{2}}{2} \sum_{m=1}^{\infty} \frac{\mu(m)}{m^{2}}+O(x \log x)
$$

- We remark that the infinite series here is "well known" to be $\frac{6}{\pi^{2}}$.
- We leave the proof largely to the class as homework.
- Hint: Use $\phi=\mu * N$ to obtain

$$
\sum_{n \leq x} \phi(n)=\sum_{n \leq x} n \sum_{m \mid n} \frac{\mu(m)}{m}=\sum_{m \leq x} \mu(m) \sum_{I \leq x / m} l
$$

and use a good approximation to the inner sum.

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

Arithmetical Functions

Averages of arithmetical functions

Elementary Prime number theory
Orders of magnitude of arithmetical functions.

- Likewise the sum of two squares function

Theorem 12 (Gauss)

Suppose that $x \in \mathbb{R}$ and $x \geq 2$. Then

$$
\sum_{n \leq X} r(n)=\pi X+O\left(X^{1 / 2}\right)
$$

- Likewise the sum of two squares function

Theorem 12 (Gauss)

Suppose that $x \in \mathbb{R}$ and $x \geq 2$. Then

$$
\sum_{n \leq X} r(n)=\pi X+O\left(X^{1 / 2}\right)
$$

- Again we leave the proof as an exercise. As a hint, there is a general principal which is easy to prove in this case that the number of lattice points in a convex region is equal to the area of the region with an error proportional to the length of the boundary.
- Gauss suggested that a good approximation to $\pi(x)$, the number of primes not exceeding x, is

$$
\operatorname{li}(x)=\int_{2}^{x} \frac{d t}{\log t}
$$

- Gauss suggested that a good approximation to $\pi(x)$, the number of primes not exceeding x, is

$$
\operatorname{li}(x)=\int_{2}^{x} \frac{d t}{\log t}
$$

- He also carried out some calculations for $x \leq 1000$. Today we have much more extensive calculations.

$\begin{gathered} \text { Math } 571 \\ \text { Chapter } \\ \text { Clementry } \\ \text { Elesults } \\ \text { Resuls } \end{gathered}$	x	$\pi(x)$	$\mathrm{li}(x)$
	10^{4}	1229	1245
	10^{5}	9592	9628
Robert C. Vaughan	10^{6}	78498	78626
	10^{7}	664579	664917
Arithmetical Functions	10^{8}	5761455	5762208
Averages of arithmetic fun	10^{9}	50847534	50849233
	10^{10}	455052511	455055613
Elementary Prime number theory	10^{11}	4118054813	4118066399
	10^{12}	37607912018	37607950279
Orders of magnitude o arithmetical functions	10^{13}	346065536839	346065645809
	10^{14}	3204941750802	3204942065690
	10^{15}	29844570422669	29844571475286
	10^{16}	279238341033925	279238344248555
	10^{17}	2623557157654233	2623557165610820
	10^{18}	24739954287740860	24739954309690413
	10^{19}	234057667276344607	234057667376222382
	10^{20}	2220819602560918840	2220819602783663483
	10^{21}	21127269486018731928	21127269486616126182
	10^{22}	201467286689315906290	201467286691248261498

Math 571 Chapter 1 Elementary

Results

Robert C. Vaughan

- This table has been extended out to at least 10^{27}. So is

$$
\pi(x)<\operatorname{li}(x)
$$

always true?

Arithmetical

 FunctionsAverages of arithmetical functions

Elementary Prime number theory

- This table has been extended out to at least 10^{27}. So is

$$
\pi(x)<\operatorname{li}(x)
$$

always true?

- No! Littlewood in 1914 showed that there are infinitely many values of x for which

$$
\pi(x)>\operatorname{li}(x)
$$

and now we believe that the first sign change occurs when

$$
x \approx 1.387162 \times 10^{316}
$$

well beyond what can be calculated directly.

- This table has been extended out to at least 10^{27}. So is

$$
\pi(x)<\operatorname{li}(x)
$$

always true?

- No! Littlewood in 1914 showed that there are infinitely many values of x for which

$$
\pi(x)>\operatorname{li}(x)
$$

and now we believe that the first sign change occurs when

$$
x \approx 1.387162 \times 10^{316}
$$

well beyond what can be calculated directly.

- For many years it was only known that the first sign change in $\pi(x)-\mathrm{li}(x)$ occurs for some x satisfying

$$
x<10^{10^{10^{964}}}
$$

- This table has been extended out to at least 10^{27}. So is

$$
\pi(x)<\operatorname{li}(x)
$$

always true?

- No! Littlewood in 1914 showed that there are infinitely many values of x for which

$$
\pi(x)>\operatorname{li}(x)
$$

and now we believe that the first sign change occurs when

$$
x \approx 1.387162 \times 10^{316}
$$

well beyond what can be calculated directly.

- For many years it was only known that the first sign change in $\pi(x)-\mathrm{li}(x)$ occurs for some x satisfying

$$
x<10^{10^{10^{964}}}
$$

- This number was computed by Skewes and G. H. Hardy once wrote that this is probably the largest number which has ever had any practical (my emphasis) value!
- The strongest results we know about the distribution of primes use complex analytic methods.
Averages of arithmetical functions

Elementary Prime number theory

- The strongest results we know about the distribution of primes use complex analytic methods.
- However there are some very useful and basic results that can be established elementarily.
- The strongest results we know about the distribution of primes use complex analytic methods.
- However there are some very useful and basic results that can be established elementarily.
- Many expositions of the results we are going to describe use nothing more than properties of binomial coefficients, but it is good to start to get the flavour of more sophisticated methods even though here they could be interpreted as just properties of binomial coefficients.
- We start by introducing The von Mangold function. This is defined by

$$
\Lambda(n)= \begin{cases}0 & \text { if } p_{1} p_{2} \mid n \text { with } p_{1} \neq p_{2} \\ \log p & \text { if } n=p^{k}\end{cases}
$$

- We start by introducing The von Mangold function. This is defined by

$$
\Lambda(n)= \begin{cases}0 & \text { if } p_{1} p_{2} \mid n \text { with } p_{1} \neq p_{2} \\ \log p & \text { if } n=p^{k}\end{cases}
$$

- The interesting thing is that the support of Λ is on the prime powers, the higher powers are quite rare, at most \sqrt{x} of them not exceeding x.
- We start by introducing The von Mangold function. This is defined by

$$
\Lambda(n)= \begin{cases}0 & \text { if } p_{1} p_{2} \mid n \text { with } p_{1} \neq p_{2} \\ \log p & \text { if } n=p^{k}\end{cases}
$$

- The interesting thing is that the support of Λ is on the prime powers, the higher powers are quite rare, at most \sqrt{x} of them not exceeding x.
- This function is definitely not multiplicative, since $\Lambda(1)=0$.
- However the von Mangoldt function does satisfy some interesting relationships.

Lemma 13

Let $n \in \mathbb{N}$. Then $\sum_{m \mid n} \Lambda(m)=\log n$.

- However the von Mangoldt function does satisfy some interesting relationships.

Lemma 13
Let $n \in \mathbb{N}$. Then $\sum_{m \mid n} \Lambda(m)=\log n$.

- The proof is a simple counting argument.

Proof.

Write $n=p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}$ with the p_{j} distinct. Then for a non-zero contribution to the sum we have $m=p_{s}^{j_{s}}$ for some s with $1 \leq s \leq r$ and j_{s} with $1 \leq j_{s} \leq k_{s}$. Thus the sum is

$$
\sum_{s=1}^{r} \sum_{j_{s}=1}^{k_{s}} \log p_{s}=\log n
$$

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

- We need to know something about the average of $\log n$.

Lemma 14 (Stirling)

Suppose that $X \in \mathbb{R}$ and $X \geq 2$. Then

$$
\sum_{n \leq X} \log n=X(\log X-1)+O(\log X)
$$

Math 571

- This can be thought of as the logarithm of Stirling's formula for $\lfloor X\rfloor$!.

Proof.

We have

$$
\begin{aligned}
\sum_{n \leq x} 1 & =\sum_{n \leq X}\left(\log X-\int_{n}^{X} \frac{d t}{t}\right) \\
& =\lfloor X\rfloor \log X-\int_{1}^{X} \frac{\lfloor t\rfloor}{t} d t \\
& =X(\log X-1)+\int_{1}^{X} \frac{t-\lfloor t\rfloor}{t} d t+O(\log X)
\end{aligned}
$$

Math 571 Chapter 1 Elementary Results

Robert C. Vaughan

Arithmetical Functions

Averages of arithmetical functions

Elementary Prime number theory

- Now we can say something about averages of the von Mangoldt function.

Theorem 15

Suppose that $X \in \mathbb{R}$ and $X \geq 2$. Then

$$
\sum_{m \leq X} \Lambda(m)\left\lfloor\frac{X}{m}\right\rfloor=X(\log X-1)+O(\log X)
$$

- Now we can say something about averages of the von Mangoldt function.

Theorem 15

Suppose that $X \in \mathbb{R}$ and $X \geq 2$. Then

$$
\sum_{m \leq X} \Lambda(m)\left\lfloor\frac{X}{m}\right\rfloor=X(\log X-1)+O(\log X)
$$

- This is easy

Proof.

We substitute from the first lemma into the second. Thus

$$
\sum_{n \leq X} \sum_{m \mid n} \Lambda(m)=X(\log X-1)+O(\log X)
$$

Now we interchange the order in the double sum and count the number of multiples of m not exceeding X.

Robert C. Vaughan

Arithmetical

Functions
Averages of arithmetical functions

Elementary
Prime number theory

Orders of magnitude of arithmetical functions.

- At this stage it is necessary to introduce some of the fundamental counting functions of prime number theory.
- At this stage it is necessary to introduce some of the fundamental counting functions of prime number theory.
- For $X \geq 0$ we define

$$
\begin{array}{r}
\psi(X)=\sum_{n \leq X} \Lambda(n) \\
\vartheta(X)=\sum_{p \leq X} \log p \\
\pi(X)=\sum_{p \leq X} 1
\end{array}
$$

- The following theorem shows the close relationship between these three functions.

Theorem 16

Suppose that $X \geq 2$. Then

$$
\begin{aligned}
\psi(X) & =\sum_{k} \vartheta\left(X^{1 / k}\right) \\
\vartheta(X) & =\sum_{k} \mu(k) \psi\left(X^{1 / k}\right) \\
\pi(X) & =\frac{\vartheta(X)}{\log X}+\int_{2}^{X} \frac{\vartheta(t)}{t \log ^{2} t} d t \\
\vartheta(X) & =\pi(X) \log X-\int_{2}^{X} \frac{\pi(t)}{t} d t
\end{aligned}
$$

Note that each of these functions are 0 when $X<2$, so the sums are all finite.

Math 571 Chapter 1 Elementary Results

Robert C. Vaughan

Arithmetical Functions

Averages of arithmetical functions

Elementary
Prime number theory
Orders of magnitude of arithmetical functions.

$$
\begin{aligned}
& \psi(X)=\sum_{k} \vartheta\left(X^{1 / k}\right) \\
& \vartheta(X)=\sum_{k} \mu(k) \psi\left(X^{1 / k}\right) \\
& \pi(X)=\frac{\vartheta(X)}{\log X}+\int_{2}^{X} \frac{\vartheta(t)}{t \log ^{2} t} d t \\
& \vartheta(X)=\pi(X) \log X-\int_{2}^{X} \frac{\pi(t)}{t} d t
\end{aligned}
$$

Math 571 Chapter 1 Elementary Results

Robert C. Vaughan

$$
\begin{aligned}
& \psi(X)=\sum_{k} \vartheta\left(X^{1 / k}\right) \\
& \vartheta(X)=\sum_{k} \mu(k) \psi\left(X^{1 / k}\right) \\
& \pi(X)=\frac{\vartheta(X)}{\log X}+\int_{2}^{X} \frac{\vartheta(t)}{t \log ^{2} t} d t \\
& \vartheta(X)=\pi(X) \log X-\int_{2}^{X} \frac{\pi(t)}{t} d t
\end{aligned}
$$

- By the definition of Λ we have

$$
\psi(X)=\sum_{k} \sum_{p \leq X^{1 / k}} \log p=\sum_{k} \vartheta\left(X^{1 / k}\right)
$$

$$
\begin{aligned}
& \psi(X)=\sum_{k} \vartheta\left(X^{1 / k}\right) \\
& \vartheta(X)=\sum_{k} \mu(k) \psi\left(X^{1 / k}\right) \\
& \pi(X)=\frac{\vartheta(X)}{\log X}+\int_{2}^{X} \frac{\vartheta(t)}{t \log ^{2} t} d t \\
& \vartheta(X)=\pi(X) \log X-\int_{2}^{X} \frac{\pi(t)}{t} d t
\end{aligned}
$$

- By the definition of Λ we have

$$
\psi(X)=\sum_{k} \sum_{p \leq X^{1 / k}} \log p=\sum_{k} \vartheta\left(X^{1 / k}\right)
$$

- Hence we have

$$
\sum_{k} \mu(k) \psi\left(X^{1 / k}\right)=\sum_{k} \mu(k) \sum_{l} \vartheta\left(X^{1 /(k l)}\right)
$$

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

Arithmetical Functions

Averages of arithmetical functions

Elementary Prime number theory
Orders of magnitude of arithmetical functions.

- Collecting together the terms for which $k l=m$ for a given m this becomes

$$
\sum_{m} \vartheta\left(X^{1 / m}\right) \sum_{k \mid m} \mu(k)=\vartheta(X) .
$$

Math 571 Chapter 1 Elementary Results

- Collecting together the terms for which $k l=m$ for a given m this becomes

$$
\sum_{m} \vartheta\left(X^{1 / m}\right) \sum_{k \mid m} \mu(k)=\vartheta(X)
$$

- We also have

$$
\begin{aligned}
\pi(X) & =\sum_{p \leq X}(\log p)\left(\frac{1}{\log X}+\int_{p}^{X} \frac{d t}{t \log ^{2} t}\right) \\
& =\frac{\vartheta(X)}{\log X}+\int_{2}^{X} \frac{\vartheta(t)}{t \log ^{2} t} d t
\end{aligned}
$$

- Collecting together the terms for which $k l=m$ for a given m this becomes

$$
\sum_{m} \vartheta\left(X^{1 / m}\right) \sum_{k \mid m} \mu(k)=\vartheta(X)
$$

- We also have

$$
\begin{aligned}
\pi(X) & =\sum_{p \leq X}(\log p)\left(\frac{1}{\log X}+\int_{p}^{X} \frac{d t}{t \log ^{2} t}\right) \\
& =\frac{\vartheta(X)}{\log X}+\int_{2}^{X} \frac{\vartheta(t)}{t \log ^{2} t} d t
\end{aligned}
$$

- The final identity is similar.

$$
\vartheta(X)=\sum_{p \leq X} \log X-\sum_{p \leq X} \int_{p}^{X} \frac{d t}{t}
$$

etcetera.

- Now we come to a series of theorems which are still used frequently.

Theorem 17 (Chebyshev)

There are positive constants C_{1} and C_{2} such that for each $X \in \mathbb{R}$ with $X \geq 2$ we have

$$
C_{1} X<\psi(X)<C_{2} X
$$

- Now we come to a series of theorems which are still used frequently.

Theorem 17 (Chebyshev)

There are positive constants C_{1} and C_{2} such that for each $X \in \mathbb{R}$ with $X \geq 2$ we have

$$
C_{1} X<\psi(X)<C_{2} X
$$

- Proof. For any $\theta \in \mathbb{R}$ let

$$
f(\theta)=\lfloor\theta\rfloor-2\left\lfloor\frac{\theta}{2}\right\rfloor .
$$

Then f is periodic with period 2 and

$$
f(\theta)= \begin{cases}0 & (0 \leq \theta<1) \\ 1 & (1 \leq \theta<2)\end{cases}
$$

Math 571
Chapter 1 Elementary

Results
Robert C. Vaughan

Arithmetical Functions

Averages of arithmetical functions

Elementary Prime number theory
Orders of magnitude of arithmetical functions.

- Hence

$$
\begin{aligned}
\psi(X) & \geq \sum_{n \leq X} \Lambda(n) f(X / n) \\
& =\sum_{n \leq X} \Lambda(n)\left\lfloor\frac{X}{n}\right\rfloor-2 \sum_{n \leq X / 2} \Lambda(n)\left\lfloor\frac{X / 2}{n}\right\rfloor
\end{aligned}
$$

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

Arithmetical Functions

Averages of arithmetical functions

Elementary Prime number theory
Orders of

- Hence

$$
\begin{aligned}
\psi(X) & \geq \sum_{n \leq X} \Lambda(n) f(X / n) \\
& =\sum_{n \leq X} \Lambda(n)\left\lfloor\frac{X}{n}\right\rfloor-2 \sum_{n \leq X / 2} \Lambda(n)\left\lfloor\frac{X / 2}{n}\right\rfloor
\end{aligned}
$$

- Here we used the fact that there is no contribution to the second sum when $X / 2<n \leq X$.
- Hence

$$
\begin{aligned}
\psi(X) & \geq \sum_{n \leq X} \Lambda(n) f(X / n) \\
& =\sum_{n \leq X} \Lambda(n)\left\lfloor\frac{X}{n}\right\rfloor-2 \sum_{n \leq X / 2} \Lambda(n)\left\lfloor\frac{X / 2}{n}\right\rfloor .
\end{aligned}
$$

- Here we used the fact that there is no contribution to the second sum when $X / 2<n \leq X$.
- Now we apply Theorem 15 and obtain for $x \geq 4$

$$
\begin{aligned}
\left.X(\log X-1)-2 \frac{X}{2}\left(\log \frac{X}{2}-1\right)\right) & +O(\log X) \\
= & X \log 2+O(\log X)
\end{aligned}
$$

- This establishes the first inequality of the theorem for all $X>C$ for some positive constant C. Since $\psi(X) \geq \log 2$ for all $X \geq 2$ the conclusion follows if C_{1} is small enough.

Math 571 Chapter 1 Elementary Results

Robert C. Vaughan

Arithmetical

 FunctionsAverages of arithmetical functions

Elementary Prime number theory

- We also have, for $X \geq 4$,

$$
\psi(X)-\psi(X / 2) \leq \sum_{n \leq X} \Lambda(n) f(X / n)
$$

and we have already seen that this is
$X \log 2+O(\log X)$.

$$
\psi(X)-\psi(X / 2) \leq \sum_{n \leq X} \Lambda(n) f(X / n)
$$

and we have already seen that this is

$$
X \log 2+O(\log X)
$$

- We also have, for $X \geq 4$,

$$
\psi(X)-\psi(X / 2) \leq C X
$$

Hence, for any $k \geq 0$,

$$
\psi\left(X 2^{-k}\right)-\psi\left(X 2^{-k-1}\right)<C X 2^{-k}
$$

$$
\psi(X)-\psi(X / 2) \leq \sum_{n \leq X} \Lambda(n) f(X / n)
$$

and we have already seen that this is

$$
X \log 2+O(\log X)
$$

- Hence for some positive constant C we have, for all $X>0$,

$$
\psi(X)-\psi(X / 2) \leq C X .
$$

Hence, for any $k \geq 0$,

$$
\psi\left(X 2^{-k}\right)-\psi\left(X 2^{-k-1}\right)<C X 2^{-k}
$$

- Summing over all k gives the desired upper bound.

Math 571
Chapter 1
Elementary

- The following now follow easily from the last couple of theorems.

Corollary 18 (Chebyshev)

There are positive constants $C_{3}, C_{4}, C_{5}, C_{6}$ such that for every $X \geq 2$ we have

$$
\begin{aligned}
& C_{3} X<\vartheta(X)<C_{4} X \\
& \frac{C_{5} X}{\log X}<\pi(X)<\frac{C_{6} X}{\log X}
\end{aligned}
$$

- It is also possible to establish a more precise version of Euler's result on the primes.

Theorem 19 (Mertens)

There is a constant B such that whenever $X \geq 2$ we have

$$
\begin{aligned}
\sum_{n \leq X} \frac{\Lambda(n)}{n} & =\log X+O(1) \\
\sum_{p \leq X} \frac{\log p}{p} & =\log X+O(1) \\
\sum_{p \leq X} \frac{1}{p} & =\log \log X+B+O\left(\frac{1}{\log X}\right)
\end{aligned}
$$

- It is also possible to establish a more precise version of Euler's result on the primes.

Theorem 19 (Mertens)

There is a constant B such that whenever $X \geq 2$ we have

$$
\begin{aligned}
\sum_{n \leq X} \frac{\Lambda(n)}{n} & =\log X+O(1) \\
\sum_{p \leq X} \frac{\log p}{p} & =\log X+O(1) \\
\sum_{p \leq X} \frac{1}{p} & =\log \log X+B+O\left(\frac{1}{\log X}\right)
\end{aligned}
$$

- I don't want to spend time on the proof, but it is given below and you can see it in the files if you are interested.
- Proof By Theorem 15 we have

$$
\sum_{m \leq X} \Lambda(m)\left\lfloor\frac{X}{m}\right\rfloor=X(\log X-1)+O(\log X)
$$

Averages of arithmetical functions

Elementary Prime number theory

- Proof By Theorem 15 we have

$$
\sum_{m \leq X} \Lambda(m)\left\lfloor\frac{X}{m}\right\rfloor=X(\log X-1)+O(\log X)
$$

- The left hand side is

$$
X \sum_{m \leq X} \frac{\Lambda(m)}{m}+O(\psi(X))
$$

- The left hand side is

$$
X \sum_{m \leq X} \frac{\Lambda(m)}{m}+O(\psi(X))
$$

- Hence by Cheyshev's theorem we have

$$
X \sum_{m \leq X} \frac{\Lambda(m)}{m}=X \log X+O(X)
$$

- Proof By Theorem 15 we have

$$
\sum_{m \leq X} \Lambda(m)\left\lfloor\frac{X}{m}\right\rfloor=X(\log X-1)+O(\log X)
$$

- The left hand side is

$$
X \sum_{m \leq X} \frac{\Lambda(m)}{m}+O(\psi(X))
$$

- Hence by Cheyshev's theorem we have

$$
X \sum_{m \leq X} \frac{\Lambda(m)}{m}=X \log X+O(X)
$$

- Dividing by X gives the first result.

Math 571
Chapter 1 Elementary
Results
Robert C. Vaughan

- We also have

$$
\sum_{m \leq X} \frac{\Lambda(m)}{m}=\sum_{k} \sum_{p^{k} \leq X} \frac{\log p}{p^{k}} .
$$

- We also have

$$
\sum_{m \leq X} \frac{\Lambda(m)}{m}=\sum_{k} \sum_{p^{k} \leq X} \frac{\log p}{p^{k}}
$$

- The terms with $k \geq 2$ contribute

$$
\leq \sum_{p} \sum_{k \geq 2} \frac{\log p}{p^{k}} \leq \sum_{n=2}^{\infty} \frac{\log n}{n(n-1)}
$$

which is convergent, and this gives the second expression.

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

Arithmetical Functions

Averages of arithmetical functions

Elementary
Prime number theory
Orders of magnitude of arithmetical functions.

- Finally we can see that

$$
\begin{aligned}
\sum_{p \leq X} \frac{1}{p} & =\sum_{p \leq x} \frac{\log p}{p}\left(\frac{1}{\log X}+\int_{p}^{X} \frac{d t}{t \log ^{2} t}\right) \\
& =\frac{1}{\log X} \sum_{p \leq X} \frac{\log p}{p}+\int_{2}^{X} \sum_{p \leq t} \frac{\log p}{p} \frac{d t}{t \log ^{2} t}
\end{aligned}
$$

Math 571 Chapter 1 Elementary Results

Robert C. Vaughan

- Finally we can see that

$$
\begin{aligned}
\sum_{p \leq X} \frac{1}{p} & =\sum_{p \leq x} \frac{\log p}{p}\left(\frac{1}{\log X}+\int_{p}^{X} \frac{d t}{t \log ^{2} t}\right) \\
& =\frac{1}{\log X} \sum_{p \leq X} \frac{\log p}{p}+\int_{2}^{X} \sum_{p \leq t} \frac{\log p}{p} \frac{d t}{t \log ^{2} t}
\end{aligned}
$$

- $E(t)=\sum_{p \leq t} \frac{\log p}{p}-\log t$ so that by the second part of the theorem we have $E(t) \ll 1$.

Math 571

- Finally we can see that

$$
\begin{aligned}
\sum_{p \leq X} \frac{1}{p} & =\sum_{p \leq x} \frac{\log p}{p}\left(\frac{1}{\log X}+\int_{p}^{X} \frac{d t}{t \log ^{2} t}\right) \\
& =\frac{1}{\log X} \sum_{p \leq x} \frac{\log p}{p}+\int_{2}^{X} \sum_{p \leq t} \frac{\log p}{p} \frac{d t}{t \log ^{2} t}
\end{aligned}
$$

- $E(t)=\sum_{p \leq t} \frac{\log p}{p}-\log t$ so that by the second part of the theorem we have $E(t) \ll 1$.
- Then the above is

$$
\begin{aligned}
= & \frac{\log X+E(X)}{\log X}+\int_{2}^{X} \frac{\log t+E(t)}{t \log ^{2} t} d t \\
= & \log \log X+1-\log \log 2+\int_{2}^{\infty} \frac{E(t)}{t \log ^{2} t} d t \\
& +\frac{E(X)}{\log X}-\int_{X}^{\infty} \frac{E(t)}{t \log ^{2} t} d t .
\end{aligned}
$$

- Finally we can see that

$$
\begin{aligned}
\sum_{p \leq X} \frac{1}{p} & =\sum_{p \leq X} \frac{\log p}{p}\left(\frac{1}{\log X}+\int_{p}^{X} \frac{d t}{t \log ^{2} t}\right) \\
& =\frac{1}{\log X} \sum_{p \leq X} \frac{\log p}{p}+\int_{2}^{X} \sum_{p \leq t} \frac{\log p}{p} \frac{d t}{t \log ^{2} t}
\end{aligned}
$$

- $E(t)=\sum_{p \leq t} \frac{\log p}{p}-\log t$ so that by the second part of the theorem we have $E(t) \ll 1$.
- Then the above is

$$
\begin{aligned}
= & \frac{\log X+E(X)}{\log X}+\int_{2}^{X} \frac{\log t+E(t)}{t \log ^{2} t} d t \\
= & \log \log X+1-\log \log 2+\int_{2}^{\infty} \frac{E(t)}{t \log ^{2} t} d t \\
& +\frac{E(X)}{\log X}-\int_{X}^{\infty} \frac{E(t)}{t \log ^{2} t} d t .
\end{aligned}
$$

- The first integral converges and the last two terms are $\ll \frac{1}{\log X}$.

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

- Another theorem which can be deduced is the following.

Theorem 20 (Mertens)
We have

$$
\prod_{p \leq X}\left(1-\frac{1}{p}\right)^{-1}=e^{C} \log X+O(1)
$$

- Another theorem which can be deduced is the following.

Theorem 20 (Mertens)

We have

$$
\prod_{p \leq X}\left(1-\frac{1}{p}\right)^{-1}=e^{C} \log X+O(1)
$$

- I do not give the proof here. In practice the third estimate in the previous theorem is usually adequate.

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan

- There is an interesting application of the above which lead to some important developments.
- There is an interesting application of the above which lead to some important developments.
- As a companion to the definition of a multiplicative function we have Definition. An $f \in \mathcal{A}$ is additive when it satisfies $f(m n)=f(m)+f(n)$ whenever $(m, n)=1$.
- Now we introduce two further functions. Definition. We define $\omega(n)$ to be the number of different prime factors of n and $\Omega(n)$ to be the total number of prime factors of n.
- There is an interesting application of the above which lead to some important developments.
- As a companion to the definition of a multiplicative function we have Definition. An $f \in \mathcal{A}$ is additive when it satisfies $f(m n)=f(m)+f(n)$ whenever $(m, n)=1$.
- Now we introduce two further functions. Definition. We define $\omega(n)$ to be the number of different prime factors of n and $\Omega(n)$ to be the total number of prime factors of n.
- Example. We have $360=2^{3} 3^{2} 5$ so that $\omega(360)=3$ and $\Omega(360)=6$. Generally, if the p_{j} are distinct, $\omega\left(p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}\right)=r$ and $\Omega\left(p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}\right)=k_{1}+\cdots k_{r}$.
- There is an interesting application of the above which lead to some important developments.
- As a companion to the definition of a multiplicative function we have Definition. An $f \in \mathcal{A}$ is additive when it satisfies $f(m n)=f(m)+f(n)$ whenever $(m, n)=1$.
- Now we introduce two further functions. Definition. We define $\omega(n)$ to be the number of different prime factors of n and $\Omega(n)$ to be the total number of prime factors of n.
- Example. We have $360=2^{3} 3^{2} 5$ so that $\omega(360)=3$ and $\Omega(360)=6$. Generally, if the p_{j} are distinct, $\omega\left(p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}\right)=r$ and $\Omega\left(p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}\right)=k_{1}+\cdots k_{r}$.
- One might expect that most of the time Ω is appreciably bigger than ω, but in fact this is not so.
- There is an interesting application of the above which lead to some important developments.
- As a companion to the definition of a multiplicative function we have Definition. An $f \in \mathcal{A}$ is additive when it satisfies $f(m n)=f(m)+f(n)$ whenever $(m, n)=1$.
- Now we introduce two further functions. Definition. We define $\omega(n)$ to be the number of different prime factors of n and $\Omega(n)$ to be the total number of prime factors of n.
- Example. We have $360=2^{3} 3^{2} 5$ so that $\omega(360)=3$ and $\Omega(360)=6$. Generally, if the p_{j} are distinct, $\omega\left(p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}\right)=r$ and $\Omega\left(p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}\right)=k_{1}+\cdots k_{r}$.
- One might expect that most of the time Ω is appreciably bigger than ω, but in fact this is not so.
- By the way, there is some connection with the divisor function. It is not hard to show that $2^{\omega(n)} \leq d(n) \leq 2^{\Omega(n)}$.
- There is an interesting application of the above which lead to some important developments.
- As a companion to the definition of a multiplicative function we have Definition. An $f \in \mathcal{A}$ is additive when it satisfies $f(m n)=f(m)+f(n)$ whenever $(m, n)=1$.
- Now we introduce two further functions. Definition. We define $\omega(n)$ to be the number of different prime factors of n and $\Omega(n)$ to be the total number of prime factors of n.
- Example. We have $360=2^{3} 3^{2} 5$ so that $\omega(360)=3$ and $\Omega(360)=6$. Generally, if the p_{j} are distinct, $\omega\left(p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}\right)=r$ and $\Omega\left(p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}\right)=k_{1}+\cdots k_{r}$.
- One might expect that most of the time Ω is appreciably bigger than ω, but in fact this is not so.
- By the way, there is some connection with the divisor function. It is not hard to show that $2^{\omega(n)} \leq d(n) \leq 2^{\Omega(n)}$.
- In fact this is a simple consequence of the chain of inequalities $2 \leq k+1 \leq 2^{k}$.

$$
\begin{aligned}
& \sum_{n \leq X} \Omega(n)= \\
& \quad x \log \log X+\left(B+\sum_{p} \frac{1}{p(p-1)}\right) x+o\left(\frac{x}{\log X}\right) .
\end{aligned}
$$

Math 571
Chapter 1
Elementary Results

Robert C. Vaughan

- We skip the proof.

Proof.

We have

$$
\begin{aligned}
\sum_{n \leq X} \omega(n) & =\sum_{n \leq X} \sum_{p \mid n} 1=\sum_{p \leq X}\left\lfloor\frac{X}{p}\right\rfloor \\
& =X \sum_{p \leq X} \frac{1}{p}+O(\pi(x))
\end{aligned}
$$

and the result follows by combining Corollary 18 and Theorem 19.

The case of Ω is similar.

Math 571
Chapter 1
Elementary
Results
Robert C. Vaughan

- Hardy and Ramanujan made the remarkable discovery that $\log \log n$ is not just the average of $\omega(n)$, but is its normal order.
- Hardy and Ramanujan made the remarkable discovery that $\log \log n$ is not just the average of $\omega(n)$, but is its normal order.
- Later Turán found a simple proof of this.

Theorem 22 (Hardy \& Ramanujan)

Suppose that $X \geq 2$. Then

$$
\begin{aligned}
& \sum_{n \leq X}\left(\omega(n)-\sum_{p \leq X} \frac{1}{p}\right)^{2} \ll X \sum_{p \leq X} \frac{1}{p} \\
& \sum_{n \leq X}(\omega(n)-\log \log X)^{2} \ll X \log \log X
\end{aligned}
$$

and

$$
\sum_{2 \leq n \leq X}(\omega(n)-\log \log n)^{2} \ll X \log \log X
$$

Math 571 Chapter 1 Elementary

- Here is Turán's proof. It is easily seen that

$$
\begin{aligned}
& \left.\qquad \sum_{n \leq X}\left(\sum_{p \leq X} \frac{1}{p}-\log \log X\right)\right)^{2} \ll X \\
& \text { and (generally if } Y \geq 1 \text { we have } \log Y \leq 2 Y^{1 / 2} \text {) }
\end{aligned}
$$

$$
\begin{aligned}
\sum_{2 \leq n \leq x}(\log \log X-\log \log n)^{2} & =\sum_{2 \leq n \leq x}\left(\log \frac{\log X}{\log n}\right)^{2} \\
& \ll \sum_{n \leq X} \frac{\log X}{\log n} \\
& =\sum_{n \leq X} \int_{n}^{X} \frac{d t}{t} \\
& =\int_{1}^{X} \frac{\lfloor t\rfloor}{t} d t \\
& \leq X .
\end{aligned}
$$

Math 571
Chapter 1
Elementary
Results
Robert C. Vaughan

- Thus it suffices to prove the second statement in the theorem.
- Thus it suffices to prove the second statement in the theorem.
- We have

$$
\begin{aligned}
\sum_{n \leq X} \omega(n)^{2} & =\sum_{p_{1} \leq X} \sum_{\substack{p_{2} \leq X \\
p_{2} \neq p_{1}}}\left\lfloor\frac{X}{p_{1} p_{2}}\right\rfloor+\sum_{p \leq X}\left\lfloor\frac{X}{p}\right\rfloor \\
& \leq X(\log \log X)^{2}+O(X \log \log X)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n \leq X}(\omega(n)- & \log \log X)^{2} \leq 2 X(\log \log X)^{2} \\
& -2(\log \log X) \sum_{n \leq X} \omega(n)+O(X \log \log X)
\end{aligned}
$$

and this is $\ll X \log \log X$.

```
Math 571
- One way of interpreting this theorem is to think of it probabilistically.
- One way of interpreting this theorem is to think of it probabilistically.
- It is saying that the events \(p \mid n\) are approximately independent and occur with probability \(\frac{1}{p}\).
- One way of interpreting this theorem is to think of it probabilistically.
- It is saying that the events \(p \mid n\) are approximately independent and occur with probability \(\frac{1}{p}\).
- One might guess that the distribution is normal, and this indeed is true and was established by Erdős and Kac about 1941.
- One way of interpreting this theorem is to think of it probabilistically.
- It is saying that the events \(p \mid n\) are approximately independent and occur with probability \(\frac{1}{p}\).
- One might guess that the distribution is normal, and this indeed is true and was established by Erdős and Kac about 1941.
- Let
\[
\Phi(a, b)=\lim _{x \rightarrow \infty} \frac{1}{x} \operatorname{card}\left\{n \leq x: a<\frac{\omega(n)-\log \log n}{\sqrt{\log \log n}} \leq b\right\} .
\]

Then
\[
\Phi(a, b)=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-t^{2} / 2} d t
\]
- One way of interpreting this theorem is to think of it probabilistically.
- It is saying that the events \(p \mid n\) are approximately independent and occur with probability \(\frac{1}{p}\).
- One might guess that the distribution is normal, and this indeed is true and was established by Erdős and Kac about 1941.
- Let
\[
\Phi(a, b)=\lim _{x \rightarrow \infty} \frac{1}{x} \operatorname{card}\left\{n \leq x: a<\frac{\omega(n)-\log \log n}{\sqrt{\log \log n}} \leq b\right\} .
\]

Then
\[
\Phi(a, b)=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-t^{2} / 2} d t
\]
- The proof uses sieve theory, which we might explore later.

Math 571
Chapter 1 Elementary

Results
Robert C. Vaughan
- Multiplicative functions oscillate quite a bit.

Arithmetical Functions

Averages of arithmetical functions

Elementary
Prime number theory

Orders of magnitude of arithmetical functions.
- Multiplicative functions oscillate quite a bit.
- For example \(d(p)=2\) but if \(n\) is the product of the first \(k\) primes \(n=\prod_{p \leq X} p\), then \(\log n=\vartheta(X)\) so that \(X \ll \log n \ll X\) by Chebyshev.
- Multiplicative functions oscillate quite a bit.
- For example \(d(p)=2\) but if \(n\) is the product of the first \(k\) primes \(n=\prod_{p<X} p\), then \(\log n=\vartheta(X)\) so that \(X \ll \log n \ll X\) by Chebyshev.
- Thus \(\log X \sim \log \log n\), but \(d(n)=2^{\pi(X)}\) so that
\[
\begin{aligned}
\log d(n) & =(\log 2) \pi(X) \geq(\log 2) \frac{\vartheta(X)}{\log X} \\
& \sim(\log 2) \frac{\log n}{\log \log n}
\end{aligned}
\]

Math 571
Chapter 1 Elementary Results

Robert C. Vaughan Functions

Averages of arithmetical functions

Elementary Prime number theory

Orders of magnitude of arithmetical functions.
- We have

\section*{Theorem 23}

For every \(\varepsilon>0\) there are infinitely many \(n\) such that
\[
d(n)>\exp \left(\frac{(\log 2-\varepsilon) \log n}{\log \log n}\right) .
\]
- We have

\section*{Theorem 23}

For every \(\varepsilon>0\) there are infinitely many \(n\) such that
\[
d(n)>\exp \left(\frac{(\log 2-\varepsilon) \log n}{\log \log n}\right)
\]
- The function \(d(n)\) also arises in comparisons, for example in deciding the convergence of certain important series.
- Thus it is useful to have a simple universal upper bound.

\section*{Theorem 24}

Let \(\varepsilon>0\). Then there is a positive number \(C\) which depends at most on \(\varepsilon\) such that for every \(n \in \mathbb{N}\) we have
\[
d(n)<C n^{\varepsilon}
\]
- Thus it is useful to have a simple universal upper bound.

\section*{Theorem 24}

Let \(\varepsilon>0\). Then there is a positive number \(C\) which depends at most on \(\varepsilon\) such that for every \(n \in \mathbb{N}\) we have
\[
d(n)<C n^{\varepsilon} .
\]
- Note, such a statement is often written as
\[
d(n)=O_{\varepsilon}\left(n^{\varepsilon}\right)
\]
or
\[
d(n) \lll \varepsilon n^{\varepsilon} .
\]
- Thus it is useful to have a simple universal upper bound.

\section*{Theorem 24}

Let \(\varepsilon>0\). Then there is a positive number \(C\) which depends at most on \(\varepsilon\) such that for every \(n \in \mathbb{N}\) we have
\[
d(n)<C n^{\varepsilon} .
\]
- Note, such a statement is often written as
\[
d(n)=O_{\varepsilon}\left(n^{\varepsilon}\right)
\]
or
\[
d(n) \lll \varepsilon n^{\varepsilon} .
\]
- It suffices to prove the theorem when
\[
\varepsilon \leq \frac{1}{\log 2}
\]
- Thus it is useful to have a simple universal upper bound.

\section*{Theorem 24}

Let \(\varepsilon>0\). Then there is a positive number \(C\) which depends at most on \(\varepsilon\) such that for every \(n \in \mathbb{N}\) we have
\[
d(n)<C n^{\varepsilon} .
\]
- Note, such a statement is often written as
\[
d(n)=O_{\varepsilon}\left(n^{\varepsilon}\right)
\]
or
\[
d(n) \ll_{\varepsilon} n^{\varepsilon} .
\]
- It suffices to prove the theorem when
\[
\varepsilon \leq \frac{1}{\log 2}
\]
- Write \(n=p_{1}^{k_{1}} \ldots p_{r}^{k_{r}}\) where the \(p_{j}\) are distinct.

Math 571 Chapter 1 Elementary
Results
Robert C. Vaughan

\section*{Arithmetical} Functions

Averages of arithmetical functions

Elementary
Prime number theory
Orders of magnitude of arithmetical functions.
- Recall that \(d(n)=\left(k_{1}+1\right) \ldots\left(k_{r}+1\right)\).

Math 571
Chapter 1 Elementary
Results
Robert C. Vaughan
- Recall that \(d(n)=\left(k_{1}+1\right) \ldots\left(k_{r}+1\right)\).
- Thus
\[
\frac{d(n)}{n^{\varepsilon}}=\prod_{j=1}^{r} \frac{k_{j}+1}{p_{j}^{\varepsilon k_{j}}} .
\]

\section*{Arithmetical} Functions

Averages of arithmetical functions

Elementary
Prime number theory
Orders of magnitude of arithmetical functions.

Math 571 Chapter 1 Elementary Results

Robert C. Vaughan
- Recall that \(d(n)=\left(k_{1}+1\right) \ldots\left(k_{r}+1\right)\).
- Thus
\[
\frac{d(n)}{n^{\varepsilon}}=\prod_{j=1}^{r} \frac{k_{j}+1}{p_{j}^{\varepsilon k_{j}}} .
\]
- Since we are only interested in an upper bound, the terms for which \(p_{j}^{\varepsilon}>2\) can be thrown away since \(2^{k} \geq k+1\).
- Recall that \(d(n)=\left(k_{1}+1\right) \ldots\left(k_{r}+1\right)\).
- Thus
\[
\frac{d(n)}{n^{\varepsilon}}=\prod_{j=1}^{r} \frac{k_{j}+1}{p_{j}^{\varepsilon k_{j}}} .
\]
- Since we are only interested in an upper bound, the terms for which \(p_{j}^{\varepsilon}>2\) can be thrown away since \(2^{k} \geq k+1\).
- However there are only \(\leq 2^{1 / \varepsilon}\) primes \(p_{j}\) for which
\[
p_{j}^{\varepsilon} \leq 2
\]
- Recall that \(d(n)=\left(k_{1}+1\right) \ldots\left(k_{r}+1\right)\).
- Thus
\[
\frac{d(n)}{n^{\varepsilon}}=\prod_{j=1}^{r} \frac{k_{j}+1}{p_{j}^{\varepsilon k_{j}}} .
\]
- Since we are only interested in an upper bound, the terms for which \(p_{j}^{\varepsilon}>2\) can be thrown away since \(2^{k} \geq k+1\).
- However there are only \(\leq 2^{1 / \varepsilon}\) primes \(p_{j}\) for which
\[
p_{j}^{\varepsilon} \leq 2
\]
- Morever for any such prime we have
\[
\begin{aligned}
p_{j}^{\varepsilon k_{j}} & \geq 2^{\varepsilon k_{j}}=\exp \left(\varepsilon k_{j} \log 2\right) \\
& \geq 1+\varepsilon k_{j} \log 2 \geq\left(k_{j}+1\right) \varepsilon \log 2
\end{aligned}
\]
- Recall that \(d(n)=\left(k_{1}+1\right) \ldots\left(k_{r}+1\right)\).
- Thus
\[
\frac{d(n)}{n^{\varepsilon}}=\prod_{j=1}^{r} \frac{k_{j}+1}{p_{j}^{\varepsilon k_{j}}} .
\]
- Since we are only interested in an upper bound, the terms for which \(p_{j}^{\varepsilon}>2\) can be thrown away since \(2^{k} \geq k+1\).
- However there are only \(\leq 2^{1 / \varepsilon}\) primes \(p_{j}\) for which
\[
p_{j}^{\varepsilon} \leq 2
\]
- Morever for any such prime we have
\[
\begin{aligned}
p_{j}^{\varepsilon k_{j}} & \geq 2^{\varepsilon k_{j}}=\exp \left(\varepsilon k_{j} \log 2\right) \\
& \geq 1+\varepsilon k_{j} \log 2 \geq\left(k_{j}+1\right) \varepsilon \log 2
\end{aligned}
\]
- Thus
\[
\frac{d(n)}{n^{\varepsilon}} \leq\left(\frac{1}{\varepsilon \log 2}\right)^{2^{1 / \varepsilon}}
\]
- The above proof can be refined to give a companion to Theorem 23

Theorem 25
Let \(\varepsilon>0\). Then for all \(n>n_{0}\) we have
\[
d(n)<\exp \left(\frac{(\log 2+\varepsilon) \log n}{\log \log n}\right) .
\]
- The above proof can be refined to give a companion to Theorem 23

\section*{Theorem 25}

Let \(\varepsilon>0\). Then for all \(n>n_{0}\) we have
\[
d(n)<\exp \left(\frac{(\log 2+\varepsilon) \log n}{\log \log n}\right)
\]
- We follow the proof of the previous theorem until the final inequality. Then replace the \(\varepsilon\) there with
\[
\frac{(1+\varepsilon / 2) \log 2}{\log \log n}
\]
which for large \(n\) certainly meets the requirement of being no larger than \(1 / \log 2\).
- Now
\[
\begin{aligned}
& \left(\frac{1}{\varepsilon \log 2}\right)^{2^{1 / \varepsilon}} \\
& =\exp \left(\exp \left(\frac{\log \log n}{1+\varepsilon / 2}\right) \log \frac{\log \log n}{(1+\varepsilon / 2) \log 2}\right) \\
& <\exp \left(\frac{\varepsilon(\log n) \log 2}{2 \log \log n}\right)
\end{aligned}
\]
for sufficiently large \(n\). Hence
\[
\begin{aligned}
d(n) & <n^{\frac{(1+\varepsilon / 2) \log 2}{\log \log n}} \exp \left(\frac{\varepsilon(\log n) \log 2}{2 \log \log n}\right) \\
& =\exp \left(\frac{(1+\varepsilon)(\log n) \log 2}{\log \log n}\right) \\
& <\exp \left(\frac{(\log 2+\varepsilon)(\log n)}{\log \log n}\right) .
\end{aligned}
\]```

