MATH 571, SPRING 2023, PROBLEMS 9

Due Monday 20th March

Suppose throughout that $a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots$ are complex numbers and $\alpha \in \mathbb{R}$, and given $M \leq X$ write $N=\lfloor X / M\rfloor$ define

$$
T=\sum_{M<m \leq 2 M} \sum_{n \leq X / m} a_{m} b_{n} e(\alpha m n)
$$

1. Prove that

$$
\begin{aligned}
|T|^{2} & \leq\left(\sum_{M<m \leq 2 M}\left|a_{m}\right|^{2}\right) \sum_{n_{1} \leq N} \sum_{n_{2} \leq N} b_{n_{1}} \overline{b_{n_{2}}} \sum_{M<m \leq \min \left(2 M, X / n_{1}, X / n_{2}\right)} e\left(\alpha m\left(n_{1}-n_{2}\right)\right) \\
& \leq\left(\sum_{M<m \leq 2 M}\left|a_{m}\right|^{2} \sum_{n=1}^{N}\left|b_{n}\right|^{2}\right) \max _{n_{1} \leq N} \sum_{n_{2}=1}^{N}\left|\sum_{M<m \leq \min \left(2 M, X / n_{1}, X / n_{2}\right)} e\left(\alpha m\left(n_{1}-n_{2}\right)\right)\right| \\
& \ll\left(\sum_{M<m \leq 2 M}\left|a_{m}\right|^{2} \sum_{n=1}^{N}\left|b_{n}\right|^{2}\right) \max _{n_{1} \leq N} \sum_{n_{2}=1}^{N} \min \left(M, \frac{X}{n_{1}}, \frac{X}{n_{2}}, \frac{1}{\left\|\alpha\left(n_{1}-n_{2}\right)\right\|}\right) \\
& \ll\left(\sum_{M<m \leq 2 M}\left|a_{m}\right|^{2} \sum_{n=1}^{N}\left|b_{n}\right|^{2}\right)\left(M+\sum_{h=1}^{N} \min \left(\frac{X}{h}, \frac{1}{\|\alpha h\|}\right)\right)
\end{aligned}
$$

2. Suppose further that there are $q \in \mathbb{N}, a \in \mathbb{Z}$ with $(q, a)=1$ such that $|\alpha-a / q| \leq q^{-2}$. Prove that

$$
|T|^{2} \ll\left(\sum_{M<m \leq 2 M}\left|a_{m}\right|^{2} \sum_{n \leq X / M}\left|b_{n}\right|^{2}\right)\left(X q^{-1}+M+X / M+q\right) \log (2 X)
$$

The bound that was obtained for $\sum_{m \leq y} \min (x / m, 1 /\|\alpha m\|)$ in last week's homework is useful here.

