MATH 571, SPRING 2023, PROBLEMS 8

Due Monday 13th March

1. Suppose $\alpha, x, y \in \mathbb{R}$ with $x \geq 1, y \geq 1$ and that there is an $A \in \mathbb{R}$ such that for $m \leq y$ the complex numbers a_{m} satisfy $\left|a_{m}\right| \leq A .\|\alpha\|=\min _{n \in \mathbb{Z}}|\alpha-n|$.
(i). Prove the triangle inequality $\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|$.
(ii) Prove that

$$
\sum_{m \leq y} a_{m} \sum_{n \leq x / m} e(\alpha m n) \ll A \sum_{m \leq y} \min \left(\frac{x}{m}, \frac{1}{\|\alpha m\|}\right) .
$$

Suppose further that there are $q \in \mathbb{N}, a \in \mathbb{Z}$ with $(q, a)=1$ such that $|\alpha-a / q| \leq q^{-2}$. When $1 \leq m \leq y$ put $m=h q+j$ where $-q / 2<j \leq q / 2$ so that $0 \leq h \leq \frac{y}{q}+\frac{1}{2}$ and $j>0$ when $h=0$.
(iii) Suppose $h=0$. Prove that $\|\alpha m\| \geq\|a j / q\|-\frac{1}{2 q} \geq \frac{1}{2}\|a j / q\|$. Deduce that

$$
\sum_{m \leq \min (y, q / 2)} \min \left(\frac{x}{m}, \frac{1}{\|\alpha m\|}\right) \ll \sum_{1 \leq j \leq \min (y, q / 2)}\|a j / q\|^{-1} \ll \sum_{l \leq \min (y, q)} \frac{q}{l} \ll q \log 2 y
$$

(iv) Suppose $h>0$. Put $\beta=q^{2}(\alpha-a / q)$ and let k be a nearest integer to βh. Prove that if

$$
\left\|\frac{j a+k}{q}\right\| \geq \frac{2}{q}
$$

then

$$
\|\alpha m\| \geq \frac{1}{2}\left\|\frac{j a+k}{q}\right\|
$$

Deduce that

$$
\sum_{h q-q / 2<m \leq h q+q / 2} \min \left(\frac{x}{m}, \frac{1}{\|\alpha m\|}\right) \ll \frac{x}{h q}+\sum_{l=1}^{q-1} \frac{q}{l} \ll \frac{x}{h q}+q \log 2 q .
$$

(v) Prove that

$$
\sum_{m \leq y} a_{m} \sum_{n \leq x / m} e(\alpha m n) \ll\left(\frac{x}{q}+y+q\right) A \log 2 x
$$

