Due Monday 20th February

Let χ denote a character modulo q and define the Gauss sum by $\tau(\chi)=\sum_{x=1}^{q} \chi(x) e(x / q)$.

1. (i) Prove that if either $(a, q)=1$ or q is prime and $\chi \neq \chi_{0}$, then $\sum_{x=1}^{q} \chi(x) e(a x / q)=\bar{\chi}(a) \tau(\chi)$.
(ii) Prove that if the c_{x} are arbitrary complex numbers, then $\frac{1}{q} \sum_{a=1}^{q}\left|\sum_{x=1}^{q} c_{x} e(a x / q)\right|^{2}=\sum_{x=1}^{q}\left|c_{x}\right|^{2}$.
(Compare Homework 1, question 2(ii).)
(iii) Prove that $|\tau(\chi)| \leq q^{1 / 2}$, and that equality occurs when q is prime and $\chi \neq \chi_{0}$.
2. Suppose that $M, N \in \mathbb{N}$ and χ is a non-principal character modulo p.
(i) Prove that $\sum_{a=M+1}^{M+N} e(a x / p)=\frac{e(N x / p)-1}{e(x / p)-1} e((M+1) x / p)$.
(ii) Prove that $\tau(\bar{\chi}) \sum_{M<a \leq M+N} \chi(a)=\sum_{x=1}^{p-1} \bar{\chi}(x) \frac{e(N x / p)-1}{e(x / p)-1} e((M+1) x / p)$.
(iii) Prove that $\sum_{x=1}^{p-1} \frac{1}{\sin (\pi x / p)}=\frac{2}{\pi} p \log p+O(p)$ and that $\left|\sum_{M<a \leq M+N} \chi(a)\right| \leq \frac{2}{\pi} p^{1 / 2} \log p+$ $O\left(p^{1 / 2}\right)$.

This is the Pólya-Vinogradov inequality discovered by them independently in 1919. The above is Schur's [1919] proof, and was discovered independently by Vinogradov [1920]. Burgess in his Ph.D. thesis in 1959 showed that this bound can be replaced by εN whenever $N \gg p^{1 / 4+\varepsilon}$.
3. Given an odd prime p let $n(p)$ denote the least quadratic non-residue modulo p, i.e the smallest positive n such that $x^{2} \equiv n(\bmod p)$ is insoluble.
(i) Prove that $n(p)$ is prime.
(ii) Prove that there is an r with $1 \leq r<n(p)$ such that $n(p) \mid p+r$, and show that $(p+r) / n(p)$ is a quadratic non-residue modulo p. Deduce that $n(p) \leq \frac{1}{2}+\sqrt{p-3 / 4}$.
4. Let χ denote the Legendre symbol modulo p, the non-principal character χ modulo p with $\chi^{2}=\chi_{0}$. It has the property that $1+\chi(n)$ is the number of solutions of $x^{2}=n(\bmod p)$.
(i) Suppose that Q is an integer with $n(p)<Q<n(p)^{2}$. Prove that if $a \leq Q$ and $\chi(a)=-1$, then a is divisible by exactly one prime p^{\prime} with $n(p) \leq p^{\prime}<Q$ and that $\chi\left(p^{\prime}\right)=-1$. Deduce that $\sum_{a \leq Q} \chi(a) \geq Q-\sum_{n(p) \leq p^{\prime} \leq Q} 2\left\lfloor Q / p^{\prime}\right\rfloor$ and that the right hand side is $Q-2 Q \log \frac{\log Q}{\log n(p)}+O\left(\frac{Q}{\log Q}\right)$. (Merten's theorem is useful here.)
(ii) Let $Q=p^{1 / 2}(\log p)^{2}$ and assume that $n(p)>Q^{1 / 2}$. Prove that $n(p) \ll p^{\frac{1}{2 \sqrt{e}}}(\log p)^{\frac{2}{\sqrt{e}}}$ (and note this is also true when $n(p) \leq Q^{1 / 2}$).

Vinogradov discovered this argument. Burgess obtained $n(p) \ll p^{\frac{1}{4 \sqrt{e}}+\varepsilon}$. Vinogradov had conjectured that $n(p) \ll p^{\varepsilon}$. Ankeny [1952] proved that on the assumption of the RH for $L(s ; \chi)$ one has $n(p) \ll(\log p)^{2}$. Perhaps $n(p) \ll \log p$ is true. There is a probabilistic argument which suggests this. Linnik [1941] has shown that the number $N(X)$ of primes $p \leq X$ such that $n(p) \gg p^{\delta}$ satisfies $N(X) \ll \delta \log \log X$.

