Math 571 Analytic Number Theory, Spring 2023, Problems 5 Return by Monday 13th February

Let

$$
\mathcal{A}(X, Y)=\{n \leq X: p \mid n \Rightarrow p \leq Y\}
$$

sometimes called " Y-factorable or Y-smooth numbers", and let

$$
\psi(X, Y)=\operatorname{card} \mathcal{A}(X, Y)
$$

be their counting function.

1. Suppose that u and v are real numbers with $1 \leq u \leq v$. Prove the following variant of Buchstab's identity

$$
\psi\left(X, X^{1 / v}\right)=\psi\left(X, X^{1 / u}\right)-\sum_{X^{1 / v}<p \leq X^{1 / u}} \psi(X / p, p) .
$$

Hint: Sort the elements of

$$
\mathcal{A}\left(X, X^{1 / v}\right) \backslash \mathcal{A}\left(X, X^{1 / u}\right)
$$

according to their largest prime factor.
2. Suppose that $u \leq 2$ and $u \neq 0$. Prove that

$$
\psi\left(X, X^{1 / u}\right)= \begin{cases}1 & (u<0) \\ X+O(1) & (0<u \leq 1) \\ (1-\log u) X+O(X / \log X) & (1<u \leq 2)\end{cases}
$$

One might guess that there is a function $\rho(\alpha)$ such that if $1 \leq u \leq v$, then

$$
\rho(v)=\rho(u)-\int_{X^{1 / v}}^{X^{1 / u}} \rho\left(\frac{\log (X / \alpha)}{\log \alpha}\right) \frac{d \alpha}{\alpha \log \alpha}=\rho(u)-\int_{u}^{v} \frac{\rho(\beta-1)}{\beta} d \beta
$$

and that, at least for fixed u,

$$
\psi\left(X, X^{1 / u}\right) \sim \rho(u) X
$$

Thus we define $\rho(u): \mathbb{R} \rightarrow \mathbb{R}$ to be continuous for all $u \neq 0$, differentiable for all $u \neq 0,1$ and to satisfy

$$
\rho(u)= \begin{cases}0 & (u \leq 0) \\ 1 & (0<u \leq 1) \\ u \rho^{\prime}(u)=-\rho(u-1) & (u>1)\end{cases}
$$

3. (i) Prove that ρ is positive and strictly decreasing on $[1, \infty)$.
(ii) Prove that $\rho(u) \leq u^{-1}$.

By working harder one can show that $\rho(u) \ll \exp (-u(\log u-1))$.

It is also possible to prove using only elementary prime number theory that there is a real number $B>1$ such that for all $X \geq 1$ and $u>0$,

$$
\left|\psi\left(X, X^{1 / u}\right)-X \rho(u)\right| \leq B^{u} X(\log 2 X)^{-1} .
$$

In particular one can use questions 1-3 and induction on $n=0,1,2, \ldots$ to show that

$$
\left|\psi\left(X, X^{1 / u}\right)-X \rho(u)\right| \leq B^{n} X(\log 2 X)^{-1} \quad(n<u \leq n+1)
$$

There is quite a bit of detail. For those interested in doing research in analytic number trheory it is a useful example of what one can get in to.

