MATH 571 ANALYTIC NUMBER THEORY, SPRING 2023, PROBLEMS 2

Return by Monday 23rd January

1. Let $\sigma(n)=\sum_{m \mid n} m$. Prove that, for every $n \in \mathbb{N}$ we have

$$
\sum_{m \mid n} \mu(m) \sigma(n / m)=n
$$

2. For each $n \in \mathbb{N}$, let $f(n)=\sum_{m \mid n} d(m)^{3}$ and $g(n)=\sum_{m \mid n} d(m)$.
(i) Prove that $f \in \mathcal{M}$ and $g \in \mathcal{M}$.
(ii) Prove that

$$
\sum_{j=0}^{k}(j+1)=\frac{1}{2}(k+1)(k+2)
$$

(iii) Prove that

$$
\sum_{j=0}^{k}(j+1)^{3}=\frac{1}{4}(k+1)^{2}(k+2)^{2}
$$

(iv) Prove that, for every $n \in \mathbb{N}, f(n)=g(n)^{2}$.
3. Let $\chi_{1}(n)=1$ when $n \equiv 1(\bmod 4),=-1$ when $n \equiv 3(\bmod 4)$ and $=0$ otherwise. Prove that $\chi_{1}(n)$ is totally multiplicative.
4. Let χ be totally multiplicative, i.e. $\chi(m n)=\chi(m) \chi(n)$ for all m, n, and suppose further that for every $n, \chi(n)= \pm 1$ or 0 . Let

$$
\rho(n)=\sum_{m \mid n} \chi(m) .
$$

(i) Prove that ρ is multiplicative.
(ii) Prove that for every $n, \rho(n) \geq 0$.
(iii) Prove that for every $n, \rho\left(n^{2}\right) \geq 1$.

