MATH 571 ANALYTIC NUMBER THEORY, SPRING 2023, PROBLEMS 2

Return by Monday 23rd January

1. Let $\sigma(n) = \sum_{m|n} m$. Prove that, for every $n \in \mathbb{N}$ we have

$$\sum_{m|n} \mu(m)\sigma(n/m) = n.$$

- 2. For each $n \in \mathbb{N}$, let $f(n) = \sum_{m|n} d(m)^3$ and $g(n) = \sum_{m|n} d(m)$. (i) Prove that $f \in \mathcal{M}$ and $g \in \mathcal{M}$.
 - (ii) Prove that

$$\sum_{j=0}^{k} (j+1) = \frac{1}{2}(k+1)(k+2).$$

(iii) Prove that

$$\sum_{j=0}^{k} (j+1)^3 = \frac{1}{4} (k+1)^2 (k+2)^2.$$

(iv) Prove that, for every $n \in \mathbb{N}$, $f(n) = g(n)^2$.

3. Let $\chi_1(n) = 1$ when $n \equiv 1 \pmod{4}$, = -1 when $n \equiv 3 \pmod{4}$ and = 0 otherwise. Prove that $\chi_1(n)$ is totally multiplicative.

4. Let χ be totally multiplicative, i.e. $\chi(mn) = \chi(m)\chi(n)$ for all m, n, and suppose further that for every $n, \chi(n) = \pm 1$ or 0. Let

$$\rho(n) = \sum_{m|n} \chi(m).$$

- (i) Prove that ρ is multiplicative.
- (ii) Prove that for every $n, \rho(n) \ge 0$.
- (iii) Prove that for every $n, \rho(n^2) \ge 1$.