Math 571, Spring 2023, Project
 Do one of the following by Friday 28th April

1. Project 1

Let

$$
A(n)=\sum_{\substack{p_{1}, p_{2}, p_{3} \leq n \\ p_{1}+p_{3}=2 p_{2}}}\left(\log p_{1}\right)\left(\log p_{2}\right)\left(\log p_{3}\right)
$$

Since $p_{3}-p_{2}=p_{2}-p_{1}=d$ the p_{j} are three successive members of the arithmetic progression $p_{1}+x d$. In fact we are counting, with weight $\left(\log p_{1}\right)\left(\log p_{2}\right)\left(\log p_{3}\right)$ all such triples of primes not exceeding n. Note that $d<0$ and $d=0$ are allowed, so each triple with $d \neq 0$ is being counted essentially twice. The terms with $d=0$ only contribute $\pi(n)$. It is this which Green and Tao famously generalised in 2004 to k primes in a.p. The object is to show that for any fixed $B \geq 1$,

$$
\begin{equation*}
A(n)=\frac{C_{2}}{2} n^{2}+O_{B}\left(n^{2}(\log n)^{-B}\right) \tag{1.1}
\end{equation*}
$$

where C_{2} is the twin prime constant $C_{2}=2 \prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right)$.
It is easily deduced that $\operatorname{card}\left\{p_{1}<p_{2}<p_{3} \leq n: p_{1}+p_{2}=2 p_{3}\right\} \sim \frac{1}{4} C_{2} n^{2}(\log n)^{-3}$.

Suggested outline:

1. In the notation of Theorem 7.6, show that $\int_{\mathfrak{m}} S(\alpha)^{2} S(-2 \alpha) d \alpha \ll n^{2}(\log n)^{(7-A) / 2}$.
2. Show that $\left.\int_{\mathfrak{M}} S(\alpha)^{2} S(-2 \alpha) d \alpha=C_{2} J(n)+O\left(n^{2}(\log n)^{1-A}\right)\right)$ where

$$
J(n)=\int_{-(\log n)^{A} n^{-1}}^{(\log n)^{A} n^{-1}} T(\beta)^{2} T(-2 \beta) d \beta
$$

3. There is a problem in that $T(2 \times 1 / 2)=n$. To get round this, prove that

$$
\begin{gathered}
\int_{-1 / 2}^{1 / 2}|T(2 \beta)|^{2} d \beta=\frac{1}{2} \int_{-1}^{1}|T(\beta)|^{2} d \beta=\int_{-1 / 2}^{1 / 2}|T(\beta)|^{2} d \beta=n \quad \text { and } \\
\int_{(\log n)^{A} n^{-1} \leq|\beta| \leq 1 / 2}\left|T(\beta)^{2} T(-2 \beta)\right| d \beta \ll \frac{n}{(\log n)^{A}} \int_{-1 / 2}^{1 / 2}|T(\beta) T(-2 \beta)| d \beta \ll \frac{n^{2}}{(\log n)^{A}} .
\end{gathered}
$$

4. Prove that $\int_{-1 / 2}^{1 / 2} T(\beta)^{2} T(-2 \beta) d \beta=\operatorname{card}\left\{n_{1}, n_{3} \leq n: 2 \mid n_{1}+n_{3}\right\}=\frac{1}{2} n^{2}+O(1)$ and

$$
\left.\int_{\mathfrak{M}} S(\alpha)^{2} S(-2 \alpha) d \alpha=\frac{1}{2} C_{2} n^{2}+O\left(n^{2}(\log n)^{1-A}\right)\right)
$$

5. Deduce (1.1).

2. Project 2 (Pillai 1936)

The object here is to prove the analogue of the Hardy and Littlewood prime k-tuples conjecture for squarefree numbers. Given a set \mathbf{h} of distinct non-negative integers h_{1}, \ldots, h_{k}, for each prime p let $\nu_{p}(\mathbf{h})$ denote the number of different residue classes modulo p^{2} amongst them. If $\nu_{p}(\mathbf{h})<p^{2}$, then we call $\mathbf{h} s f$-admissible. Let $S(x ; \mathbf{h})$ be the number of $n \leq x$ so that $n+h_{1}, \ldots, n+h_{k}$ are simultaneously squarefree.
Suggested outline. 1. Let $f(n)$ denote the characteristic function of the squarefree numbers. Prove that $S(x ; \mathbf{h})=\sum_{n \leq x} f\left(n+h_{1}\right) \ldots f\left(n+h_{k}\right) \quad$ and $\quad f(n)=\sum_{d^{2} \mid n} \mu(d)$.
2. Suppose that $0<\delta<1 /(3 k)$ and let $y=x^{\delta}$ and $f(n ; y)=\sum_{\substack{d \leq y \\ d^{2} \mid n}} \mu(d)$. Prove that for $j=1, \ldots, k S(x ; \mathbf{h})=T_{j}(x ; y)+O\left(x^{1+\varepsilon} y^{-1}\right)$ where $T_{j}(x ; y)=\sum_{n \leq x} f(n+$ $\left.h_{1} ; y\right) \ldots f\left(n+h_{j} ; y\right) f\left(n+h_{j+1}\right) \ldots f\left(n+h_{k}\right)$.
3. Given a k-tuple of positive integers $\mathbf{d}=d_{1}, \ldots, d_{k}$ let $d=d_{1} \ldots d_{k}$ and given another one \mathbf{r} we use $\mathbf{d} \mid \mathbf{r}$ to mean $d_{j} \mid r_{j}(j=1, \ldots, k)$ and \mathbf{d}^{2} to mean $d_{1}^{2}, \ldots, d_{k}^{2}$. Write $n+\mathbf{h}$ for the k-tuple $n+h_{1}, \ldots, n+h_{k}$. Let $\rho(\mathbf{d})$ denote the number of solutions of $\mathbf{d}^{2} \mid n+\mathbf{h}$ in n modulo d^{2}. Prove that $\rho(\mathbf{d}) \leq d^{2}$ and $T_{k}(x ; y)=$ $x \sum_{d_{1} \leq y, \ldots, d_{k} \leq y} \frac{\mu\left(d_{1}\right) \ldots \mu\left(d_{k}\right)}{d^{2}} \rho(\mathbf{d})+O\left(y^{3 k}\right)$.
4. Let $\rho^{*}(\mathbf{d})$ denote the number of solutions of $\mathbf{d}^{2} \mid n+\mathbf{h}$ in n modulo $\operatorname{lcm}\left[d_{1}, \ldots, d_{k}\right]^{2}$. Prove that $\rho(\mathbf{d})=d^{2} \operatorname{lcm}\left[d_{1}, \ldots, d_{k}\right]^{-2} \rho^{*}(\mathbf{d})$ and $\rho^{*}(\mathbf{d}) \leq 1$.
5. Prove $\sum_{\max d_{j}>y} \frac{\mu\left(d_{1}\right) . . \mu\left(d_{k}\right)}{d^{2}} \rho(\mathbf{d}) \ll \sum_{\max d_{j}>y} \frac{\mu\left(d_{1}\right)^{2} . . \mu\left(d_{k}\right)^{2}}{\left[d_{1}, . ., d_{k}\right]^{2}} \ll \sum_{m>y} \frac{2^{k \omega(m)}}{m^{2}} \ll y^{\varepsilon-1}$
and $T_{k}(x, y)=x \sum_{m=1}^{\infty} \frac{g(m)}{m^{2}}+O\left(x y^{\varepsilon-1}\right)$ where $g(m)=\sum_{\substack{\mathbf{d} \\\left[d_{1}, \ldots, d_{k}\right]=m}} \mu\left(d_{1}\right) \ldots \mu\left(d^{k}\right) \rho^{*}(\mathbf{d})$.
6. Prove that $\rho(\mathbf{d})$ is multiplicative, i.e. given \mathbf{d}, \mathbf{e}, define $\mathbf{d e}=d_{1} e_{1}, \ldots, d_{k} e_{k}$ and deduce that if $(d, e)=1$, then $\rho(\mathbf{d e})=\rho(\mathbf{d}) \rho(\mathbf{e})$.
7. Prove that $g(m)$ is multiplicative and has its support on the squarefree numbers.
8. Deduce that $\sum_{m=1}^{\infty} \frac{g(m)}{m^{2}}=\prod_{p}\left(1+g(p) p^{-2}\right)$ and $1+g(p) p^{-2}=1-\nu_{p}(\mathbf{h}) p^{-2}$.
9. Prove that $S(x ; h)=x \prod_{p}\left(1-\frac{\nu_{p}(\mathbf{h})}{p^{2}}\right)+O\left(x^{1-\delta}\right)$ and that if \mathbf{h} is sf-admissible, then there are infinitely many n such that $n+h_{j}$ are simultaneously square free for $j=1, \ldots, k$.

