Math 568, Analytic Number Theory I, Spring 2020, Problems 10

This homework is a continuation of the previous one. Here we investigate the zero—free region
for L—functions formed from quadratic characters. We suppose throughout that x is real but
non—principal and that pg = By + i is a zero of L(s,x). Now we have an additional problem
in that x? = o, so that L(s,x?) has a pole at s = 1. This homework is an example of how a
simple idea which works in an original situation can be adapted and amended to deal with more
awkward ones.

1. Suppose that |y9| > 6(1 — fp). Since we know that L(1,x) # 0 we may suppose that vy # 0.
(i) Prove that there is a positive constant C' such that if 1 < o < 2, then
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(ii) Prove that there is a positive constant C' such that if o > 1, then
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and deduce that 8y # 1 and that 0 < U

— C1 4 .
o1 0P (012114401 G0 " oglald+hol)
(iii) Prove that there is a positive constant ¢ such that Sy < 1 — ¢/log(q(4 + |70]))-

2. Suppose that 0 < |y9| < 6(1 — By). Note that then 5y # 1. (i) Prove that L(8y — iy0, x) = 0.
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(iii) Prove that if ¢ > 1, then
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(iv) Prove that there is a positive constant C' such that if o > 1, then
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(v) Prove that there is a positive constant ¢ such that Sy <1 — ¢/log(q(4 + |0]))-
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3. Suppose the L(s, x) has two real zeros Sy and f; with By < 57 < 1. Note that from the proof
of Dirichlet’s theorem we have 1 < 1. (i) Prove that there is a positive constant C' such that if
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(ii) Prove that there is a constant C' > 0 such that if ¢ > 1, then (2(ii) is useful)
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(iii) Prove that there is a positive constant ¢ such that gy < 1 — ¢/ log(4q).

To summarise. The above shows that there is a region {s : ¢ > 1 — ¢/(log(q(4 + [t])))} in
which L(s, x) has at most one zero, and if such a zero exists, then it is real and x is real but
non—principal. Such a zero is known as a Siegel zero. No such zero has ever been found.



