## MATH 568 ANALYTIC NUMBER THEORY I, SPRING 2020, PROBLEMS 9

1. Let  $\chi$  denotes a non-principal character modulo  $q, M, N \in \mathbb{Z}, x \in \mathbb{R}, x, N > 0$  $M \ge 0$ , and  $S(x;\chi) = \sum_{M \le \infty} \chi(n)$ . For brevity define  $\tau = 2 + |t|$ . Also, recall that

for all M, x and non-principal  $\chi$  modulo q,  $|S(x;\chi)| \leq q$ .

- (i) Prove that  $\sum_{M=1}^{N} \chi(n) n^{-s} = S(N; \chi) N^{-s} + \int_{M+1}^{N} S(x; \chi) s x^{-s-1} dx$ .
- (ii) Prove that if  $\sigma > 0$ , then  $L(s,\chi) = \sum_{k=1}^{M} n^{-s} \chi(n) + \int_{M+1}^{\infty} S(x;\chi) s x^{-s-1} dx$ .
- (iii) Let  $T = \sum_{n=1}^{M} \chi(n) n^{-s}$ . Prove that if  $0 < \sigma < 1$ , then  $|T| < \frac{M^{1-\sigma}}{1-\sigma}$ , if  $\sigma > 1$ , then  $|T| < \frac{\sigma}{\sigma-1}$ , and if  $|\sigma 1| \le \frac{1}{\log M}$ , then  $|T| \le 1 + e \log M$ .
- (iv) Prove that  $\left| \int_{M+1}^{\infty} S(x;\chi) s x^{-s-1} dx \right| \le |s| q (M+1)^{-\sigma} \sigma^{-1}$ .
- (v) Prove that if  $\sigma \leq 1 \frac{1}{\log q\tau}$ , then  $|L(s;\chi)| \leq (q\tau)^{1-\sigma} \left(\frac{1}{1-\sigma} + \frac{1}{\sigma}\right)$ .

- (vi) Prove that if  $\sigma \geq 1 + \frac{1}{\log q\tau}$ , then  $|L(s;\chi)| \leq \frac{1}{\sigma-1} + 1$ . (vii) Prove that if  $|\sigma 1| \leq \frac{1}{\log q\tau}$ , then  $|L(s;\chi)| \leq 1 + e \log q\tau + e\sigma^{-1}$ . (viii) Suppose that  $0 < \delta < 1$ . Prove that uniformly for  $\sigma \geq \delta$  we have  $|L(s;\chi)| \ll 1$  $(1+(q\tau)^{1-\sigma})\min\left(1+\frac{1}{|1-\sigma|},\log q\tau\right).$

By the way, note the symmetry between the q-aspect and t-aspect of these bounds. Also that we showed in class that they hold for  $\zeta(s) - \frac{1}{s-1}$  (with q = 1).