Math 568, Analytic Number Theory I, Spring 2020, Problems 6

Due Tuesday 25th February

As in homework 5 question 2 let $S(q, a) = \sum_{x=1}^{q} e(ax^2/q)$. The conclusions of that homework will be useful here. Throughout we suppose that $p \nmid a$. We call a a quadratic residue (QR) when $x^2 \equiv a \pmod{p}$ is soluble, and quadratic non-residue (QNR) when it is insoluble. We define the Legendre symbol by $\left(\frac{x}{p}\right)_L$ to be 0 when p|x, 1 when x is a QR and -1 when x is a QNR.

- 1. Recall the Fermat-Euler theorem that states that $a^{p-1} \equiv 1 \pmod{p}$.
 - (i) Prove that $a^{\frac{p-1}{2}} \equiv \pm 1 \pmod{p}$.
 - (ii) Prove that a is a QR iff $a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$, and hence that $\left(\frac{x}{p}\right)_L \equiv x^{\frac{p-1}{2}} \pmod{p}$.
 - (iii) Prove that $\left(\frac{x}{p}\right)_L$ is a totally multiplicative function of x.
 - (iv) Prove that if $xa \equiv 1 \pmod{p}$, then $\left(\frac{x}{p}\right)_L = \left(\frac{a}{p}\right)_L$.
- 2. Throughout p and q are different odd primes, $p \nmid a, q \nmid b.$ (i) Prove that

$$S(p,a) = \sum_{y=1}^{p} \left(1 + \left(\frac{y}{p}\right)_L \right) e(ay/p) = \left(\frac{a}{p}\right)_L S(p,1).$$

(ii) Prove that S(pq, aq + bp) = S(p, a)S(q, b).

(iii) Choose a, b so that $aq \equiv 1 \pmod{p}$ and $bp \equiv 1 \pmod{q}$. Prove that S(pq, aq+bp) = S(pq, 1).

(iv) Prove that if n is odd, then

$$S(n,1) = \begin{cases} n^{1/2} & n \equiv 1 \pmod{4}, \\ n^{1/2}e(1/4) & n \equiv 3 \pmod{4}. \end{cases}$$

(v) Deduce the law of quadratic reciprocity, $\left(\frac{q}{p}\right)_L \left(\frac{p}{q}\right)_L = (-1)^{\frac{(p-1)(q-1)}{4}}$. This is Dirichlet's variation of one of Gauss' proofs.

- 3. Throughout p is an odd prime.
 - (i) Prove that S(8, p)S(p, 8) = S(8p, 1).
 - (ii) Prove that $S(p, 8) = \left(\frac{2}{p}\right)_L S(p, 1)$.
 - (iii) Prove that S(8, p) = 4e(p/8).
 - (iv) Prove that $S(8p, 1) = 4p^{1/2}e(1/8)$.

(v) Prove that $\binom{2}{p}_L = \begin{cases} 1 & p \equiv \pm 1 \pmod{8}, \\ -1 & p \equiv \pm 3 \pmod{8}. \end{cases}$ Of course, this is the "2-adic" part of the law of quadratic reciprocity.