
Chapter 7

Applications of the Prime Number Theorem

We now use the Prime Number Theorem, and other estimates obtained by similar methods,
to estimate the number of integers whose multiplicative structure is of a specified type.

1. Numbers composed of small primes

Let ψ(x, y) denote the number of integers n, 1 ≤ n ≤ x, all of whose prime factors are ≤ y.
Obviously, if y ≥ x then

(1) ψ(x, y) = [x] = x+O(1).

Also, if n ≤ x then n can have at most one prime factor p >
√
x, and hence if x1/2 ≤ y ≤ x

then

ψ(x, y) = [x]−
∑

y<p≤x

∑
n≤x
p|n

1

= [x]−
∑

y<p≤x

[x/p]

= x− x
∑

y<p≤x

1

p
+O(π(x)).

By estimates of Chebyshev and Mertens (Corollary 2.6 and Theorem 2.7(d)), this is

= x
(
1− log

log x

log y

)
+O

( x

log x

)
.

Thus if we take u = (log x)/(log y), so that y = x1/u, then we see that

(2) ψ(x, x1/u) = (1− log u)x+O
( x

log x

)
uniformly for 1 ≤ u ≤ 2. We shall show more generally that there is a function ρ(u) > 0
such that

(3) ψ(x, x1/u) ∼ ρ(u)x
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192 CHAPTER 7. APPLICATIONS OF THE PRIME NUMBER THEOREM

as x → ∞ with u bounded. The function ρ(u) that arises here is known as the Dickman
function; it may be defined to be the unique continuous function on [0,∞) satisfying the
differential-delay equation

(4) uρ′(u) = −ρ(u− 1)

for u > 1 together with the initial condition that

(5) ρ(u) = 1

for 0 ≤ u ≤ 1. Before proceeding further we note some simple properties of this function.
By dividing both sides of (4) by u and then integrating, we find that

(6) ρ(v) = ρ(u)−
∫ v

u

ρ(t− 1)
dt

t

for 1 ≤ u ≤ v. Also, from (4) we see that
(
uρ(u)

)′
= ρ(u)−ρ(u−1), so that by integrating

it follows that

uρ(u) =

∫ u

u−1

ρ(v) dv + C

for u ≥ 1, where C is a constant of integration. On taking u = 1 we deduce that C = 0,
and hence that

(7) uρ(u) =

∫ u

u−1

ρ(v) dv

for u ≥ 1.

0

1

1 2 3 4

Figure 1. The Dickman function ρ(u) for 0 ≤ u ≤ 4.

As might be surmised from Figure 1, ρ(u) is positive and decreasing. To prove this, let
u0 be the infimum of the set of all solutions of the equation ρ(u) = 0. By the continuity
of ρ it follows that ρ(u0) = 0. But ρ(u) > 0 for 0 ≤ u < u0, and hence if we take u = u0
in (7) then the left hand side is 0 while the right hand side is positive, a contradiction.
Thus ρ(u) > 0 for all u ≥ 0, and by (4) it follows that ρ′(u) < 0 for all u > 1. Figure 1
also suggests that ρ(u) tends to 0 rapidly as u → ∞. We now establish a crude estimate
in this direction.
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Lemma 1. The function ρ(u) is positive and decreasing for u ≥ 0, and satisfies the
inequalities

1

2Γ(2u+ 1)
≤ ρ(u) ≤ 1

Γ(u+ 1)
.

Proof. For positive integers U we prove by induction that the upper bound holds for
0 ≤ u ≤ U . To provide the basis of the induction we need to show that Γ(s) ≤ 1 for
1 ≤ s ≤ 2. This is immediate from the relations

(8) Γ(1) = Γ(2) = 1, Γ′′(s) =

∫ ∞

0

e−xxs−1(log x)2 dx > 0 (0 < s <∞).

Since ρ(u) is decreasing, we see by (7) that uρ(u) ≤ ρ(u − 1). Thus if the desired upper
bound holds for u ≤ U and if U ≤ u ≤ U + 1, then

ρ(u) ≤ ρ(u− 1)

u
≤ 1

uΓ(u)
=

1

Γ(u+ 1)

by (C.4).
After making the change of variables u = v/2, the desired lower bound asserts that

ρ(v/2) ≥ 1/(2Γ(v + 1)). We let V run through positive integral values, and prove by
induction on V that the lower bound holds for 0 ≤ v ≤ V . To establish the lower bound
for 0 ≤ v ≤ 2 it suffices to show that Γ(s) ≥ 1/2 for all s > 0. From (8) we see that
Γ(s) ≥ 1 for 0 < s ≤ 1 and for s ≥ 2; thus it remains to note that if 1 ≤ s ≤ 2 then

Γ(s) =

∫ ∞

0

e−xxs−1 dx ≥
∫ 1

0

e−xx dx+

∫ ∞

1

e−x dx = 1− 1

e
>

1

2
.

(The actual fact of the matter is that mins>0 Γ(s) = Γ(1.4616 . . . ) = 0.8856 . . . .) Since
ρ(u) is decreasing, we see by (7) that uρ(u) ≥ ρ(u−1/2)/2. Thus if the lower bound holds
for 0 ≤ v ≤ V and if V ≤ v ≤ V + 1 then

ρ(v/2) ≥ ρ((v − 1)/2)

v
≥ 1

2vΓ(v)
=

1

2Γ(v + 1)

by (C.4). This completes the inductive step, so the proof is complete.

We now use elementary reasoning to show that (3) holds uniformly for u in bounded
intervals.

Theorem 2. (Dickman) Let ψ(x, y) be the number of positive integers not exceeding x
composed entirely of prime numbers not exceeding y, and let ρ(u) be defined as above.
Then for any U ≥ 0 we have

(9) ψ(x, x1/u) = ρ(u)x+O
( x

log x

)
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uniformly for 0 ≤ u ≤ U and all x ≥ 2.

Proof. We restrict U to integral values, and induct on U . The basis of the induction is
provided by (1) and (5). Also, (2) gives (9) for 1 ≤ u ≤ 2 since from (6) we see that

(10) ρ(u) = 1− log u

for 1 ≤ u ≤ 2. Suppose now that U is an integer, U ≥ 2, and that (9) holds uniformly for
0 ≤ u ≤ U . We show that (9) holds uniformly for U ≤ u ≤ U + 1. To this end we classify
n according to size of the largest prime factor P (n) of n. Thus we see that

ψ(x, y) = 1 +
∑
p≤y

card{n ≤ x : P (n) = p}.

Here the first term on the right reflects the fact that if x ≥ 1 then ψ(x, y) counts the
number n = 1 for which P (1) is undefined. In the sum on the right, the summand is
ψ(x/p, p), and hence we see that

(11) ψ(x, y) = 1 +
∑
p≤y

ψ(x/p, p).

On differencing, it follows that if y ≤ z then

(12) ψ(x, y) = ψ(x, z)−
∑

y<p≤z

ψ(x/p, p).

Suppose that z = x1/U and that y = x1/u with U ≤ u ≤ U + 1. Define up by the relation

p = (x/p)1/up . That is,

up =
log x

log p
− 1,

which is ≤ u − 1 ≤ U if p ≥ y. Hence by the inductive hypothesis the right hand side of
(12) is

(13) ρ(U)x+O
( x

log x

)
− x

∑
y<p≤z

ρ((log x)/(log p)− 1)

p
+O

(
x

∑
y<p≤z

1

p log x/p

)
.

Let s(w) =
∑

p≤w 1/p, and write Mertens’ estimate (Theorem 2.7(d)) in the form s(w) =

log logw + c+ r(w). Then the sum in the main term above is

(14)

∫ z

y

ρ((log x)/(logw)− 1) ds(w) =

∫ z

y

ρ((log x)/(logw)− 1) d log logw

+

∫ z

y

ρ((log x)/(logw)− 1) dr(w).

We put t = (log x)/(logw). Since

d log logw =
dw

w logw
= − dt

t
,
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the first integral on the right hand side of (14) is

(15)

∫ u

U

ρ(t− 1)
dt

t
.

By integrating by parts and the estimate r(w) ≪ 1/ logw we see that the second integral
on the right hand side of (14) is

ρ((log x)/(logw)− 1)r(w)

∣∣∣∣z
y

−
∫ z

y

r(w) dρ((log x)/(logw)− 1)

≪ 1

log x

(
1 +

∫ z

y

1 |dρ((log x)/(logw)− 1)|
)

≪ 1

log x

since ρ is monotonic and bounded. By Mertens’ estimate (Theorem 2.7(d)) we also see
that the error term in (13) is

≪ x

log x

∑
y<p≤z

1

p
≪ x

log x

since log log z = log log y +O(1). On combining our estimates in (12) we find that

ψ(x, x1/u) = x

(
ρ(U)−

∫ u

U

ρ(t− 1)
dt

t

)
+O

( x

log x

)
.

Thus by (6) we have the desired estimate for U ≤ u ≤ U + 1, and the proof is complete.

As for ψ(x, y) when y < xε, we show next that

(16) ψ(x, (log x)a) = x1−1/a+o(1)

for any fixed a ≥ 1. The upper bound portion of this is obtained by means of bounds for
an associated Dirichlet series, while the lower bound is derived by combinatorial reasoning.

An upper bound for ψ(x, y) can be constructed by observing that if σ > 0 then

(17) ψ(x, y) ≤
∑
n≤x

p|n⇒p≤y

(x
n

)σ
≤ xσ

∑
p|n⇒p≤y

1

nσ
= xσ

∏
p≤y

(
1− 1

pσ

)−1

.

Rankin used this chain of inequalities to derive an upper bound for ψ(x, y). This approach
is fruitful in a variety of settings, and has become known as ‘Rankin’s method’.

To use the above, we must establish an upper bound for the product on the right hand
side. The size of this product is a little difficult to describe, because its behaviour depends
on the size of σ. If σ is near 0 then most of the factors are approximately (1 − y−σ)−1,
and hence we expect the product to be approximately (1 − y−σ)−y/ log y. If σ is larger
(but still < 1) then the general factor is approximately exp(p−σ), and hence the product
is approximately the exponential of∑

p≤y

p−σ ∼
∫ y

2

dt

tσ log t
∼ y1−σ

(1− σ) log y
.

We begin by making these relations precise.
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Lemma 3. If 0 ≤ σ ≤ 1, then

(18)
∑
p≤y

p−σ =

∫ y

2

du

uσ log u
+O

(
y1−σ exp(−c

√
log y)

)
+O(1).

Proof. We write the left hand side as∫ y

2−
u−σ dπ(u) =

∫ y

2−
u−σ d li(u) +

∫ y

2−
u−σ dr(u)

where r(u) = π(u) − li(u). The first integral on the right is
∫ y

2
u−σ(log u)−1 du. By

integrating by parts we find that the second integral is

y−σr(y)− 2−σr(2−) + σ

∫ y

2

r(u)u−σ−1 du.

Suppose that b is a positive constant chosen so that r(u) ≪ u exp(−b
√

log u). Then the
first two terms above can be absorbed into the error terms in (18) if c < b. To complete
the proof it suffices to show that

(19)

∫ y

2

u−σ exp(−b
√

log u) du≪ 1 + y1−σ exp(− b
3

√
log y),

for then we have (18) with c = b/3.
To prove (19) we note that if σ ≥ 1− b/(2

√
log y) then

u1−σ exp(− b
2

√
log u) = exp

(
(1− σ) log u− b

2

√
log u

)
≤ exp

(
b
2 (log u)/

√
log y − b

2

√
log u

)
≤ 1

for 2 ≤ u ≤ y. Hence for σ in this range the integral in (19) is

≤
∫ y

2

du

u exp( b2
√
log u)

<

∫ ∞

2

du

u exp( b2
√
log u)

≪ 1.

Now suppose that

(20) σ ≤ 1− b

2
√
log y

.

We write the integral in (19) as
∫ y1/4

2
+
∫ y

y1/4 = I1 + I2, say. Then

I1 ≤
∫ y1/4

2

u−σ du <
y(1−σ)/4

1− σ
,

which by (20) is

≪ y1−σ
√

log y exp
(
− 3

4 (1− σ) log y
)
≪ y1−σ exp

(
− b

3

√
log y

)
.

As for I2, we note that if u ≥ y1/4 then log u ≥ 1
4 log y. Hence

I2 ≤ exp
(
− b

2

√
log y

) ∫ y

2

u−σ du ≤ exp
(
− b

2

√
log y

) y1−σ

1− σ

≪ exp
(
− b

2

√
log y

)
y1−σ

√
log y ≪ y1−σ exp

(
− b

3

√
log y

)
.

These estimates combine to give (19), so the proof is complete.
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Lemma 4. If y ≥ 2 and 1− 4/ log y ≤ σ ≤ 1 then

(21)
∑
p≤y

p−σ = log log y +O(1).

If y ≥ 2 and 0 ≤ σ ≤ 1− 4/ log y then

(22)
∑
p≤y

p−σ =
y1−σ

(1− σ) log y
+ log

1

1− σ
+O

( y1−σ

(1− σ)2(log y)2

)
.

Proof. Suppose that 1− 4/ log y ≤ σ ≤ 1. If u ≤ y then

u−σ = u−1u1−σ = u−1 exp
(
(1− σ) log u

)
= u−1

(
1 +O((1− σ) log u)

)
= u−1 +O

(
u−1(1− σ) log u

)
.

Hence ∫ y

2

du

uσ log u
=

∫ y

2

du

u log u
+O

(
(1− σ)

∫ y

2

du

u

)
= log log y +O(1).

Thus (21) follows from Lemma 3.
To prove (22) we let v = exp(4/(1− σ)), and observe that v ≤ y. We write the integral

in Lemma 3 as
∫ v

2
+
∫ y

v
= I1 + I2, say. By the above we see that I1 = log log v + O(1) =

log 1/(1− σ) +O(1). By integration by parts we see that

I2 =
y1−σ

(1− σ) log y
− v1−σ

(1− σ) log v
+

1

1− σ

∫ y

v

du

uσ(log u)2
.

Here the first term on the right is one of the main terms in (22), and the second term is
O(1). Let J denote the integral on the right. To complete the proof it suffices to show
that

(23) J ≪ y1−σ

(1− σ)(log y)2
.

To this end we integrate by parts again:

J =
y1−σ

(1− σ)(log y)2
− v1−σ

(1− σ)(log v)2
+

2

1− σ

∫ y

v

dw

wσ(logw)3
.

Here the second term on the right hand side is e42−4(1− σ) ≪ 1− σ, while the first term
on the right hand side is larger. As for the integral on the right, we observe that if w ≥ v
then (logw)3 ≥ 4(logw)2/(1 − σ). Hence the last term on the right above has absolute
value not exceeding J/2. Thus we have (23), and the proof is complete.
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Lemma 5. Suppose that y ≥ 2. If max
(
2/ log y, 1− 4/ log y

)
≤ σ ≤ 1, then

(24)
∏
p≤y

(
1− p−σ

)−1 ≍ log y.

If 2/ log y ≤ σ ≤ 1− 4/ log y then

(25)
∏
p≤y

(
1− p−σ

)−1
=

1

1− σ
exp

( y1−σ

(1− σ) log y

(
1 +O

( 1

(1− σ) log y

)
+O

(
y−σ

)))
.

Proof. The bound (24) is trivial when σ ≤ 2/3 since then y ≤ e12. The estimate (1 −
δ)−1 = exp

(
δ + O(δ2)

)
holds uniformly for |δ| ≤ 1/2. We take δ = p−σ for p > v = e1/σ

to deduce that ∏
v<p≤y

(
1− p−σ

)−1
= exp

( ∑
v<p≤y

p−σ +O
( ∑

v<p≤y

p−2σ
))
.

Now (24) follows at once from Lemma 4 when σ ≥ 2/3. Thus it remains to establish (25).
The sum in the error term above is ≪ 1 for σ > 5/8. If 3/8 ≤ σ ≤ 5/8, then by Lemma
4 it is ≪ y1/4/ log y. If 2/ log y ≤ σ ≤ 3/8, then by Lemma 4 the sum is ≪ y1−2σ/ log y.
Thus in any case this error term is majorized by the error terms on the right hand side of
(25). By Lemma 4, the main term is

∑
v<p≤y

p−σ =
y1−σ

(1− σ) log y
+ log

1

1− σ
+O

( y1−σ

(1− σ)2(log y)2

)
+O

( v

log v

)
.

Since 2/ log y ≤ σ ≤ 1−4/ log y, y satisfies y ≥ e6, and σ(1−σ) log y ≥ 2(1−2/ log y) ≥ 4/3.

Hence
(
y1−σ

)3/4 ≥ v and the second error term above is dominated by the first.
It remains to consider the contribution of the primes p ≤ v. If σ > 1/3 then the

contribution of these primes is ≪ 1, so we may suppose that 2/ log y ≤ σ ≤ 1/3. In this
range

1− p−σ ≍ σ log p =
log p

log v
.

Since ∑
p≤v

log
(
C
log v

log p

)
≪ v,

it follows that ∏
p≤v

(
1− p−σ

)−1
< exp(Cv) = exp

(
Ce1/σ

)
≤ exp

(
Cy1/2

)
,

which suffices. Thus the proof is complete.

We now bound ψ(x, y) by combining Lemma 5 with the inequalities (17).
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Theorem 6. If y = x1/u and log x ≤ y ≤ x1/9 then

ψ(x, y) < x(log y) exp
(
−u log u−u log log u+u− u log log u

log u
+O

( u

log u

)
+O

(u2 log u
y

))
.

Here the first error term is larger than the second if y ≥ (log x) log log x, while if y is
smaller then the second error term dominates.

Proof. We first note that we may suppose that y ≥ 9 log x, since the bound for smaller
y follows by taking y = 9 log x. To motivate the choice of σ in (17) we note that the
expression to be minimized is approximately

xσ exp
(∫ y

2

u−σ

log u
du

)
.

On taking logarithmic derivatives, this suggests that we should take σ to be the root of
the equation

(26) log x =
y1−σ

1− σ
.

In actual fact we take

(27) σ = 1− log u+ log log u

log y
.

It is easy to see that for this σ the right hand side of (26) is

log x
log u

log u+ log log u
,

so it is reasonable to expect that the simple choice (27) is close enough to the root of (26)
for our present purposes.

From the inequalities 9 log x ≤ y ≤ x1/9 it follows that the σ given by (27) satisfies
2/ log y ≤ σ ≤ 1− 1/ log y. Hence the stated upper bound follows by combining (17) with
the estimates of Lemma 5.

To obtain companion lower bounds we observe that if k is chosen so that yk ≤ x, then
ψ(x, y) certainly counts all integers n composed of primes p ≤ y such that Ω(n) ≤ k. Put
r = π(y), and suppose that p1, p2, . . . , pr are the primes not exceeding y. Then n is of the
form n = pa1

1 p
a2
2 · · · par

r , and ψ(x, y) is at least as large as the number of solutions of the
inequality a1 + a2 + · · ·+ ar ≤ k in non-negative integers ai. For this quantity we have an
exact formula, as follows.

Lemma 7. Let A(r, k) denote the number of solutions of the inequality a1+a2+· · ·+ar ≤ k

in non-negative integers ai. Then A(r, k) =
(
r+k
k

)
.

Analytic Proof. Let ar+1 = k−
∑r

i=1 ai. Then A(r, k) is the number of ways of writing
k = a1 + a2 + · · ·+ ar+1, which is the coefficient of xk in the power series( ∞∑

a=0

xa
)r+1

= (1− x)−r−1 =
∞∑
k=0

(r + k

k

)
xk
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by the ‘negative’ binomial theorem.

Combinatorial Proof. Suppose that we have k circles ◦ and r bars | arranged in a line.
Let a1 be the number of circles to the left of the first bar, let a2 be the number of circles
between the first and second bar, and so on, so that ar is the number of circles between
the last two bars. (The number of circles to the right of the last bar is k −

∑
ai.) Thus

a configuration of circles and bars determines a choice of non-negative ai with a1 + a2 +
· · ·+ ar ≤ k. But conversely, a choice of such ai determines a configuration of circles and
bars. The number of ways of choosing the positions of the k circles in the r + k available
places is

(
r+k
k

)
.

Theorem 8. If log x ≤ y ≤ x then

ψ(x, y) ≫ x

y
exp(−u log log x+ u/2).

Proof. Let r = π(y) and let k be the largest integer such that yk ≤ x. That is, k = [u].
Then by Lemma 7 and Stirling’s formula we see that

(28) ψ(x, y) ≥
(r + k

k

)
≍

(r + k

k

)k(r + k

r

)r 1√
k
.

The identity

k log(1 + r/k) + r log(1 + k/r) =

∫ r

0

log(1 + k/t) dt

shows that the left hand side is an increasing function of r. It can be supposed that x is
sufficiently large. Let z = y/(k log y). Then the expression (28) is

≫
(
1 +

y

k log y

)k(
1 +

k log y

y

)y/ log y 1√
k
≥ (z(1 + 1/z)z)

k
,

Moreover u− 1 < k ≤ u ≤ y/ log y and z(1+ 1/z)z is increasing for z ≥ 1. Thus the above

is ≥
(
z′(1 + 1/z′)z

′
)k

≥
(
z′(1 + 1/z′)z

′
)u−1

where z′ = y/(u log y). As z′ ≤ y/
√
k this is

≥ 1

y

( y

u log y

)u(
1 +

u log y

y

)y/ log y

=
x

y
exp

(
−u log log x+

y

log y
log(1 + (log x)/y)

)
.

The stated inequality now follows on noting that log(1 + δ) ≥ δ/2 for 0 ≤ δ ≤ 1.

When y is of the form y = (log x)a with a not too large, the upper bound of Theorem 6
and the lower bound of Theorem 8 are quite close, and we have

Corollary 9. If y = (log x)a and 1 ≤ a ≤ (log x)1/2/(2 log log x) then

x1−1/a exp
( log x

5a log log x

)
< ψ(x, y) < x1−1/a exp

( (log a+O(1)) log x

a log log x

)
.

Proof. The lower bound follows from Theorem 8 since log y ≤ (log x)/(4a log log x) in the
range under consideration. As for the upper bound, we note that log u ≍ log log x, so that
log log u = log log log x + O(1). Hence log u + log log u = log log x − log a + O(1), and the
result follows from Theorem 6.

For 1 ≤ u ≤ 4 we may use the differential equation (4) and the initial condition (5)
to derive formulæ for ρ(u) (see Exercise 6 below), but for larger u we take a different
approach.
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Theorem 10. For any real or complex number s we have

(29)

∫ ∞

0

ρ(u)e−us du = exp
(
C0 +

∫ s

0

e−z − 1

z
dz

)
where C0 is Euler’s constant. Conversely, for any u > 0 and any real σ0 we have

(30) ρ(u) =
eC0

2πi

∫ σ0+i∞

σ0−i∞
exp

(∫ s

0

e−z − 1

z
dz

)
eus ds.

Proof. Let F (s) denote the integral on the left hand side of (29); this is the Laplace
transform of ρ(u). In view of the rapid decay of ρ(u) established in Lemma 1, we see that
the integral converges for all s, and hence that F (s) is an entire function. On integrating
by parts we see that

F (s) =
1

s
+

1

s

∫ ∞

1

ρ′(u)e−us du,

and hence that (
sF (s)

)′
= −

∫ ∞

1

uρ′(u)e−us du.

The differential–delay identity (4) for ρ(u) thus yields a differential equation for F (s),

(
sF (s)

)′
= e−sF (s).

By separation of variables it follows that

F (s) = F (0) exp
(∫ s

0

e−z − 1

z
dz

)
.

To determine the value of F (0) we note that

1 = lim
s→+∞

sF (s) = F (0) exp
(∫ 1

0

e−z − 1

z
dz +

∫ ∞

1

e−z

z
dz

)
.

By integration by parts we see that

(31)

∫ 1

0

e−z − 1

z
dz +

∫ ∞

1

e−z

z
dz =

∫ ∞

0

e−z log z dz = Γ′(1) = −C0

by (C.12) and Theorem C.2. Hence F (0) = eC0 . An arithmetic proof of this is found in
Exercise 7 below. Thus we have the identity (29), and (30) follows by applying the inverse
Laplace transform to both sides.
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7.1. Exercises

1. (Chowla and Vijayaraghavan (1947)) Show that if f(x) is a function that tends to
infinity in such a way that log f(x) = o(log x) then almost all integers n have a prime
factor larger than f(n). That is

lim
x→∞

1

x
card{n ≤ x : P (n) > f(n)} = 1

where P (n) denotes the largest prime factor of n.

2. (de Bruijn (1951b) Let P (n) denote the largest prime factor of n. Show that∑
n≤x

logP (n) ∼ Dx log x

where D =
∫∞
0
ρ(u)(u+ 1)−2 du is called Dickman’s constant .

3. (See Alladi & Erdős (1977)) Let P (n) denote the largest prime factor of n.
(a) Show that ∑

n≤x

P (n) =
∑

√
x<p≤x

p
[x
p

]
+O

(
x3/2

)
.

(b) Show that the sum on the right above is

=
∑

1≤k≤
√
x

k
∑

x/(k+1)<p≤x/k

p+O
(
x3/2

)
.

(c) Show that ∑
p≤y

p =
y2

2 log y
+O

( y2

(log y)2

)
.

(d) Show that
∞∑
k=1

k
( 1

k2
− 1

(k + 1)2

)
=
π2

6
.

(e) Conclude that ∑
n≤x

P (n) =
π2

12

x2

log x
+O

( x2

(log x)2

)
.

4. Show that ρ(k)(u) has a jump discontinuity at u = k, and is continuous for u > k.

5. (a) Show that ρ(u) is convex upwards for all u ≥ 1.
(b) Show that if u ≥ 2 then uρ(u) ≥ ρ(u− 1/2).
(c) Show that if u ≥ 2 then (2u− 1)ρ(u) ≤ ρ(u− 1).
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6. (a) Show that if 1 ≤ u ≤ 2 then ρ(u) = 1− log u.
(b) Show that if 2 ≤ u ≤ 3 then

ρ(u) = 1− log u+

∫ u

2

log(t− 1)

t
dt.

(c) Show that if 3 ≤ u ≤ 4 then

ρ(u) = 1− log u+

∫ u

2

log(t− 1)

t
dt−

∫ u

3

(log u/t) log(t− 2)

t− 1
dt.

7. Let P (σ) =
∏

p≤y(1− p−σ)−1.

(a) Explain why

P (1) =
∑

p|n⇒p≤y

1

n
= eC0 log y +O(1).

(b) Show that if σ ≥ 1 then P ′

P (σ) ≪ log y.
(c) Deduce that

−P ′(1) =
∑
n

p|n⇒p≤y

log n

n
≪ (log y)2.

(d) Conclude that ∑
n>x

p|n⇒p≤y

1

n
≪ (log y)2

log x
.

(e) Show that ∑
n≤x

p|n⇒p≤y

1

n
= (log y)

∫ u

0

ψ(yv, y)

yv
dv +O(1)

where u = (log x)/ log y.
(f) Deduce that ∫ ∞

0

ρ(u) du = eC0 .

(g) Show that
∑∞

n=1 nρ(n) = eC0 .

8. (Erdős & Nicolas (1981)) Let α be fixed, 0 < α < 1.
(a) Let k be the least integer > α(log x)/ log log x, put y = x1/k, and set r = π(y). Show
that there are at least

(
r
k

)
integers n ≤ x such that ω(n) > α(log x)/ log log x.

(b) Show that the number of integers n ≤ x such that ω(n) > α(log x)/ log log x is at least
x1−α+o(1).
(c) Show that if σ > 1 and A ≥ 1 then the number of integers n ≤ x such that ω(n) >
α(log x)/ log log x is at most

xσA−k
∞∑

n=1

Aω(n)

nσ
.
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(d) Show that if A = log x and σ = 1+(log log log x)/ log log x then the above is x1−α+o(1).

9. (de Bruijn (1966)) Assume that 0 < σ ≤ 3/ log y, and note that this interval covers a
range is not treated in Lemma 5.
(a) Show that 1− p−σ ≍ σ log p, and hence deduce that

(32)
∏
p≤y

(
1− p−σ

)−1

≤ exp
(∑

p≤y

log
C

σ log p

)
≤ exp

( Cy

log y
log

4

σ log y

)
for a suitable constant C.
(b) Write ∏

p≤y

(
1− p−σ

)−1

=
(
1− y−σ

)−π(y) ∏
p≤y

1− y−σ

1− p−σ
= F1 · F2,

say. Show that

F1 ≤
(
1− y−σ

)−y/ log y
exp

( Cy

(log y)2
log

4

σ log y

)
.

(c) Note that

(33)
1− p−σ

1− y−σ
= 1− (y/p)σ − 1

yσ − 1
,

and hence deduce that the above is ≥ 1− c log y/p
log y , so that

F2 ≤ exp
( C

log y

∑
p≤y

log y/p
)
≤ exp

(
Cy/(log y)2

)
.

(d) Conclude that∏
p≤y

(
1− p−σ

)−1 ≤
(
1− y−σ

)−y/ log y
exp

( Cy

(log y)2
log

4

σ log y

)
for 0 < σ ≤ 3/ log y.

10. (de Bruijn (1966)) Lemma 5 suffers from a loss of precision when 3/ log y ≤ σ ≤
(log log y)/ log y. To obtain a refined estimate in this range, write∏

p≤y

(
1− p−σ

)−1
= F1 · F2 · F3

where the Fi are products over the intervals p ≤ exp(1/σ), exp(1/σ) < p ≤ y/ exp(1/σ),
and y/ exp(1/σ) < p ≤ y, respectively.
(a) Use (32) to show that F1 ≤ exp

(
Cσe1/σ

)
.

(b) Use Lemma 5 to show that

F2 ≤ exp
( Cy1−σ

e1/σ log y

)
.
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(c) Use the identity (33) to show that

1− p−σ

1− y−σ
≥ 1− cσ log y/p

yσ
,

and hence deduce that

F3 ≤
(
1− y−σ

)−π(y)
exp

(
Cσ

∑
p≤y

log y/p

yσ

)
≤

(
1− y−σ

)−y/ log y
exp

( y1−σ

(log y)2
+
Cσy1−σ

log y

)
.

(d) Conclude that

∏
p≤y

(
1− p−σ

)−1 ≤
(
1− y−σ

)−y/ log y
exp

(Cσy1−σ

log y

)
when 3/ log y ≤ σ ≤ (log log y)/ log y.

11. (de Bruijn (1966)) (a) For σ > 0 let f(σ) = xσ
(
1 − y−σ

)−y/ log y
. Show that f(σ) is

minimized precisely when

σ =
log

(
1 + y/ log x

)
log y

.

(b) Show that for the above σ,

f(σ) = exp
( log x
log y

log
(y + log x

log x

)
+

y

log y
log

(y + log x

y

))
.

(c) Show that if y ≤ log x then

ψ(x, y) ≤ exp
( log x
log y

log
(y + log x

log x

)
+

y

log y

(
1 +O

( 1

log y

))
log

(y + log x

y

))
.

(d) Show that if log x ≤ y ≤ (log x)2 then

ψ(x, y) ≤ exp
( log x
log y

(
1 +O

( 1

log y

))
log

(y + log x

log x

)
+

y

log y
log

(y + log x

y

))
.

12. (Erdős (1963)) Show that

ψ(x, log x) = exp
(
(2 log 2 + o(1))

log x

log log x

)
.

13. (de Bruijn (1966)) Show that if a is fixed, 0 < a < 1, then

ψ(x, (log x)a) = exp
(
(1/a− 1 + o(1))(log x)a

)
.
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14. Let ψ2(x, y) denote the number of squarefree integers n ≤ x composed entirely of
primes p ≤ y.
(a) Show that

ψ2(x, y) =
∑
d≤x

p|d⇒p≤y

µ(d)ψ(x/d2, y).

(b) (Ivić) Let δ > 0 be fixed. Then

ψ2(x, y) ∼
6

π2
ψ(x, y)

uniformly for xδ ≤ y ≤ x.
(c) Show that ψ2(x, log x) = ψ(x, log x)1/2+o(1).
(d) Show that if a > 1 and y ≥ (log x)a then ψ2(x, y) = ψ(x, y)1+o(1).
(e) Show that if 0 < a < 1 and y ≤ (log x)a then ψ2(x, y) = ψ(x, y)o(1).
(f) Show that ψ2(x, c log x) = ψ(x, c log x)ϕ(c)+o(1) for any fixed c > 0, where

ϕ(c) =

{ c log 2
(c+1) log(c+1)−c log c (0 < c ≤ 2),

c log c−(c−1) log(c−1)
(c+1) log(c+1)−c log c (c ≥ 2).

2. Numbers composed of large primes

Let Φ(x, y) denote the number of integers n ≤ x composed entirely of primes p ≥ y. The
number 1 is such a number as it is an empty product. Thus it is clear that if y > x then

(34) Φ(x, y) = 1

Also, if x1/2 ≤ y ≤ x then

(35) Φ(x, y) = π(x)− π(y−) +O(1) =
x

log x
− y

log y
+O

( x

(log x)2

)
For smaller values of y we show that

(36) Φ(x, y) ∼ w(u)x

log y

where u = (log x)/ log y and w(u) is a function determined by the initial condition

(37) w(u) = 1/u

for 1 < u ≤ 2 and for u > 2 by the differential–delay equation

(38)
(
uw(u)

)′
= w(u− 1).
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0 1 2 3 4

Figure 2. Buchstab’s function w(u) and its horizontal asymptote e−C0 for 1 ≤ u ≤ 4.

Before proceeding further we first derive some of the simplest properties of the function

w(u). By integrating (38) we deduce that uw(u) =
∫ u−1

1
w(v) dv + C for u > 2, and by

letting u tend to 2 we find that C = 1 so that

(39) uw(u) =

∫ u−1

1

w(v) dv + 1

for u ≥ 2. From this it is evident that if w(v) ≤ 1 for v ≤ u− 1 then w(v) ≤ 1 for v ≤ u,
and that if w(v) ≥ 1/2 for v ≤ u − 1 then w(v) ≥ 1/2 for v ≤ u. Thus we conclude that
1/2 ≤ w(u) ≤ 1 for all u > 1. From the identity uw′(u) = w(u− 1)−w(u) we deduce that
|w′(u)| ≤ 1/(2u) for all u > 2. LetM(u) = maxv≥u |w′(v)|. Since w(u−1)−w(u) = −w′(ξ)
for some ξ, u− 1 < ξ < u, we know that

M(u) ≤M(u− 1)/u.

Let k be chosen so that 1 < u− k ≤ 2. By using the above inequality k times we find that

M(u) ≤ M(u− k)

u(u− 1) · · · (u− k + 1)
≪ 1

Γ(u+ 1)
.

That is,

(40) w′(u) ≪ 1

Γ(u+ 1)

for u > 2. Since w′(u) tends to 0 rapidly, it follows that the integral
∫∞
2
w′(v) dv converges

absolutely, and hence we see that limu→∞ w(u) exists. Since it is to be expected that
Φ(x, y) is approximately x

∏
p<y(1− 1/p) when y is small, it is not surprising that

(41) lim
u→∞

w(u) = e−C0 .

We shall prove this later, as a consequence of Theorem 12. First we establish the basic
asymptotic estimate (36).
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Theorem 11. (Buchstab) Let Φ(x, y) denote the number of positive integers n ≤ x com-
posed entirely of prime numbers p ≥ y, and let w(u) be defined as above. Then

(42) Φ(x, y) =
w(u)x

log y
− y

log y
+O

( x

(log x)2

)
uniformly for 1 ≤ u ≤ U and all y ≥ 2. Here u = (log x)/ log y, which is to say that
y = x1/u.

The term −y/ log y can be included in the error term when y ≪ x/ log x but, in view of
(35), has to be present when y is close to x. It might be difficult to prove that the above
holds uniformly for all u ≥ 1 because of the precise form of the error term, but the weaker
assertion (36) can be shown to hold for u ≥ 1 + ε, since sieve methods can be used when
u is large.

Proof. The number of positive integers n ≤ x whose least prime factor is p is exactly
Φ(x/p, p). Hence by classifying integers according to their least prime factor we see that

(43) Φ(x, y) = 1 +
∑

y≤p≤x

Φ(x/p, p).

This is an identity of Buchstab; similar ‘Buchstab identities’ are important in sieve theory.
We show by induction on U that

(44) Φ(x, y) =
w(u)x

log y
− y

log y
+O

( x

(log x)2

)
for U ≤ u ≤ U + 1. When U = 1 this is (35), and it is only in this first range that the
second main term is significant. For the inductive step we apply (43) with y = x1/u and
with y = x1/U and subtract to see that

Φ(x, x1/u) = Φ(x, x1/U ) +
∑

x1/u≤p<x1/U

Φ(x/p, p).

Choose up so that p = (x/p)1/up . Then the above is

Φ(x, x1/U ) +
∑

x1/u≤p<x1/U

Φ
(
x/p, (x/p)1/up

)
.

But up = (log x)/ log p − 1 ∈ [U − 1, U ], so by the inductive hypothesis, when U ≥ 2, the
above is

Uw(U)x

log x
+O

(
x

(log x)2

)
+

∑
x1/u≤p<x1/U

(
upw(up)x

p log x/p
+O

(
x

p(log x)2

)
+O

(
p

log p

))
.

The sum over p of the first error term is ≪ x/(log x)2, and the sum over p of the second
is ≪ x2/U/(log x)2, which is acceptable since U ≥ 2. To estimate the contribution of the
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main term in the sum we write the Prime Number Theorem in the form π(t) = li(t)+R(t),
apply Riemann–Stieltjes integration, and integrate the term involving R(t) by parts, to
see that the sum of the main term is

(45)

∫ x1/U

x1/u

xw( log x
log t − 1)

t(log t)2
dt+

[
f(t)R(t)

∣∣∣x1/U−

x1/u−
−

∫ x1/U

x1/u

R(t) df(t)

where

f(t) =
xw( log x

log t − 1)

t log t
.

Since f ′(t) ≪ x/(t2 log t) and R(t) ≪ t/(log t)A, the terms involving R(t) contribute an
amount ≪U x/(log x)A. By the change of variables v = (log x)/ log t − 1 we see that the
first integral in (45) is

x

log x

∫ u−1

U−1

w(v) dv,

which by (39) is

=
x

log x
(uw(u)− Uw(U)).

On combining our estimates we obtain (44), so the inductive step is complete.

We now derive formulæ for w(u) similar to those in Theorem 10 involving ρ(u).

Theorem 12. If ℜs > 0 then

(46) s+ s

∫ ∞

1

w(u)e−us du = exp
(
− C0 +

∫ s

0

1− e−z

z
dz

)
where C0 is Euler’s constant. If u > 1 and σ0 > 0, then

(47) w(u) =
1

2πi

∫ σ0+i∞

σ0−i∞

(
exp

(∫ ∞

s

e−z

z
dz

)
− 1

)
eus ds.

Since the right hand side of (46) is an entire function, we see that the Laplace transform
of w(u) is entire apart from a simple pole at s = 0 with residue e−C0 .

Proof. Let G(s) denote the left hand side of (46). Then(G(s)
s

)′
= −

∫ ∞

1

w(u)ue−us du.

By integrating by parts we see that this is[w(u)ue−us

s

∣∣∣∞
1

− 1

s

∫ ∞

2

w(u− 1)e−us du =
−e−sG(s)

s2

by (37) and (38). That is,

G′(s) = G(s)
1− e−s

s
,
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which by the method of separation of variables implies that

G(s) = A exp
(∫ s

0

1− e−z

z
dz

)
where A is a positive constant. To determine the value of A we note that

1 = lim
s→∞

G(s)

s
= A exp

(∫ 1

0

1− e−z

z
dz −

∫ ∞

1

e−z

z
dz

)
.

From (31) we deduce that A = e−C0 , and hence we have (46). To obtain (47) it suffices to
take the inverse Laplace transform, since∫ s

0

1− e−z

z
dz =

∫ ∞

s

e−z

z
dz + log s+ C0 .

7.2. Exercises

1. By using (31), or otherwise, show that∫ s

0

1− e−z

z
dz = C0 + log s+

∫ ∞

s

e−z

z
dz

when ℜs > 0.

2. (a) Show that

w(u) =
1 + log(u− 1)

u

for 2 ≤ u ≤ 3.
(b) Show that

w(u) =
1

u

(
1 + log(u− 1) +

∫ u

3

log(v − 2)

v − 1
dv

)
for 3 ≤ u ≤ 4.
(c) Show that

w(u) =
1

u

(
1 + log(u− 1) +

∫ u

3

log(v − 2)

v − 1
dv +

∫ u

4

log u−1
v−1 log(v − 3)

v − 2
dv

)
for 4 ≤ u ≤ 5.

3. (Friedlander (1972)) Let S be a set of positive integers not exceeding X, and suppose
that (a, b) ≤ Y whenever a ∈ S, b ∈ S, a ̸= b. Let M(X,Y ) denote the maximum
cardinality of all such sets S.
(a) Let S0 be the set of those positive integers n ≤ X such that if d|n, d < n, then d ≤ Y .
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Show that card S0 =M(X,Y ).
(b) Show that if Y ≤ X1/2 then

M(X,Y ) = 1 + π(X)− π(Y ) +
∑
p≤Y

Φ(Y, p).

(c) Show that if X1/2 < Y ≤ X then

M(X,Y ) = 1 + π(X)− π(Y ) +
∑

p<X/Y

Φ(Y, p) +
∑

X/Y≤p≤Y

Φ(X/p, p).

3. Primes in short intervals

Let Jacobstal’s function g(q) be the length of the longest gap between consecutive reduced
residues modulo q. We show that there are long gaps between primes by showing that
there exist integers q for which g(q) is large. Since the average gap between consecutive
reduced residues (mod q) is q/φ(q), it is obvious that

g(q) ≥ q

φ(q)
.

If p1 < p2 < . . . < pk are the distinct primes dividing q, then by the Chinese remainder
theorem there is an x such that x ≡ −i (mod pi) for 1 ≤ i ≤ k. Then (x + i, q) > 1 for
1 ≤ i ≤ k, and hence

g(q) ≥ ω(q) + 1.

These observations can be combined: It can be shown that

(48) g(q) ≫ qω(q)

φ(q)
.

This is not quite enough to produce long gaps between primes, but for certain q we improve
on the above to establish

Lemma 13. Let P = P (z) =
∏

p≤z p. Then

lim
z→∞

g
(
P (z)

)
z

= ∞.

This immediately yields

Theorem 14. (Westzynthius) Let pn denote the nth prime number in increasing order.
Then

lim sup
n→∞

pn+1 − pn
log pn

= ∞.

Proof of Theorem 14. Suppose that N = g(P )−1 and thatM is chosen, P ≤M < 2P ,
so that (M +m,P ) > 1 for 1 ≤ m ≤ N . ButM +m > P ≥ (M +m,P ), and henceM +m
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is composite because it has the proper divisor (M +m,P ). If n is chosen so that pn is the
largest prime not exceeding M then pn+1 − pn ≥ g(P ) and pn < 2P , which is < e2z when
z is large. Hence

pn+1 − pn
log pn

≥ g(P )

2z

which tends to infinity as z → ∞.

Proof of Lemma 13. Let L be large and fixed, and put N = [zL/3]. We show that if
z > z0(L) then there exists an integer M such that (M +n, P (z)) > 1 for 1 ≤ n ≤ N . Put

P1 =
∏
p≤L

p P2 =
∏

L<p≤LL

p, P3 =
∏

LL<p≤z/3

p P4 =
∏

z/3<p≤z

p,

and let N be the set of those integers n, 1 ≤ n ≤ N , such that (n, P1P3) = 1. The
members of N are (i) 1; (ii) integers n composed entirely of prime factors of P2; (iii)
primes p, z/3 < p ≤ N . Thus

cardN ≤ 1 + ψ(N,LL) + π(N)− π(z/3).

If z is sufficiently large then LL < logN , so that ψ(N,LL) < Nε by Corollary 9. Hence

cardN < π(N).

We choose M ≡ 0 (mod P1P3), so that (M +n, P1P3) > 1 if 1 ≤ n ≤ N , n /∈ N. To bound
the number of n ∈ N such that (M + n, P2) = 1 we average as in the proof of Lemma 3.5.
Clearly

q∑
m=1

∑
n∈N

(m+n,q)=1

1 =
∑
n∈N

q∑
m=1

(m+n,q)=1

1 =
∑
n∈N

φ(q) = φ(q) cardN

for any integer q. Hence

min
m

∑
n∈N

(m+n,q)=1

1 ≤ (cardN)
∏
p|q

(
1− 1

p

)
.

By taking q = P2 we see that there is an M (mod P2) such that

card{n ∈ N : (M + n, P2) = 1} ≤ (cardN)
∏
p|P2

(
1− 1

p

)
.

For such an M ,

card{1 ≤ n ≤ N : (M + n, P1P2P3) = 1} ≤ π(N)
∏
p|P2

(
1− 1

p

)
.
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By Mertens’ theorem (Theorem 2.7(e)), the product on the right is ∼ 1/L as L → ∞.
Suppose that L is chosen sufficiently large to ensure that this product is ≤ 3/(2L). Then
the right hand side above is

. 3N

2L logN
∼ z

2 log z
.

The number of primes dividing P4 is π(z) − π(z/3) ∼ 2z/(3 log z) as z → ∞. Thus if z
is large then there are more such primes than there are integers n, 1 ≤ n ≤ N , for which
(M + n, P1P2P3) = 1. Hence for each such n we may associate a prime pn, pn|P4, in a
one-to-one manner, and take M ≡ −n (mod pn). Then (M + n, P4) > 1 and we are done.

The success of the argument just completed can be attributed to the fact that the
number of n, 1 ≤ n ≤ N for which (n, P1P3) = 1 is considerably smaller thanN

∏
p|P1P3

(1−
1/p). By considering how L may be chosen as a function of z we obtain a quantitative
improvement of Lemma 13 and hence also of Theorem 14.

Theorem 15. (Rankin) Let pn denote the nth prime number in increasing order. There
is a constant c > 0 such that

lim sup
n→∞

pn+1 − pn(
(log pn)(log log pn)(log log log log pn)

(log log log pn)
2

) ≥ c.

Proof. We repeat the argument in the proof of Lemma 13, with the sole change that L
is allowed to depend on z. If L is chosen so that

(49) ψ(N,LL) <
N

(logN)2

then L = o(logN), and hence

ψ(N,LL) = o
( z

logN

)
.

Since z/ logN ≤ z/ log z ≪ π(z/3), it follows that

ψ(N,LL) = o
(
π(z/3)

)
,

and the proof proceeds as before.
By Theorem 6 we see that

ψ(N,N1/u) <
N

(logN)2

if u log u ≥ 3 log logN , which is the case if u ≥ 4(log logN)/ log log logN . Taking u =
(logN)/ logLL, we deduce that (49) holds if

L logL <
(logN)(log log logN)

4 log logN
.
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This is satisfied if

L <
(logN)(log log logN)

4(log logN)2

since then logL < log logN . Since N > z when L ≥ 3, we conclude that we may take

L =
(log z)(log log log z)

4(log log z)2
.

Hence

g
(
P (z)

)
>
z(log z)(log log log z)

13(log log z)2

for all z > z0, and this gives the stated result.

Concerning the maximum number of primes in a short interval, by the Brun–Titchmarsh
inequality (Theorem 3.9) and the Prime Number Theorem we see that

π(x+ y)− π(x) < (2 + ε)π(y)

for y > y0(ε). Let

(50) ρ(y) = lim sup
x→∞

(
π(x+ y)− π(x)

)
.

Thus ρ(y) < (2 + ε)π(y). Very little is known about ρ(y). It was once conjectured that

(51) π(M +N) ≤ π(M) + π(N)

for M > 1, N > 1, but there is now serious doubt as to the validity of this inequality.
Indeed, it seems likely that ρ(y) > π(y) for all large y. To see why, let

(52) ρ(N) = max
M

M+N∑
n=M+1

p|n⇒p>N

1.

Clearly ρ(N) ≤ ρ(N). We expect that

(53) ρ(N) = ρ(N)

for all N , since this would follow from the

Prime k-tuple Conjecture. Let a1, a2, . . . ak be given integers. Then there exist infin-
itely many positive integers n such that n+a1, n+a2, . . . , n+ak are all prime, provided that
for every prime number p there is an integer n such that (n+ai, p) = 1 for i = 1, 2, . . . , k.

We now show that ρ(N) > π(N) for all large N , so that (51) and (53) are inconsistent.
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Theorem 16. There is an absolute constant N0 such that if N > N0 then ρ(N)−π(N) ≫
N(logN)−2.

Proof. Suppose that N is even and that N > 2. Then for every M ,

M+N∑
n=M+1

p|n⇒p>N

1 =

M+N∑
n=M+1

p|n⇒p≥N

1 ≥
M+N−1∑
n=M+1

p|n⇒p>N−1

1.

Hence ρ(N) ≥ ρ(N − 1) when N is even, N > 2, so it suffices to treat the case when N is
odd, say N = 2K + 1. Let P(K) denote the set of integers n with K/(2 logK) < |n| ≤ K
and |n| prime. Then

cardP(K) = 2(π(K)− π(K/(2 logK))),

so by Theorem 6.9,

cardP(K) = π(2K + 1) + (c+ o(1))
K

(logK)2

where c = 2 log 2 − 1 > 0. We now show that P(K) can be translated to form a set of
integers {M + n : n ∈ P(K)} with each member coprime to

∏
p≤N p. By the Chinese

Remainder Theorem it suffices to show that for every prime number p ≤ N there is a
residue class rp (mod p) that contains no element of P(K).

Obviously each element of P(K) is coprime to each prime p ≤ K/(2 logK), so we may
take rp = 0 for such primes. It remains to treat the primes p for which K/(2 logK) < p ≤
2K+1. This is accomplished by means of a clever application of Lemma 13. Suppose that
K/(2 logK) < p ≤ 2K + 1. We show that there is an rp such that if |hp+ rp| ≤ K, then
hp+rp /∈ P(K). By Lemma 13 there is an interval J = [M1−3 logK,M1+3 logK] in which
every integer j is divisible by a prime pj with pj ≤ 1

3 logK. By the Chinese Remainder
Theorem, we can choose rp so that rp ≡ M1p (mod pj) for each j ∈ J. This can be done

with 0 < rp ≤ exp
(
ϑ( 13 logK)

)
< K1/2. If |h| ≤ 3 logK then h = j −M1 for some j ∈ J

and so h ≡ −M1 (mod pj). Hence hp+ rp ≡ −M1p+ rp ≡ 0 (mod pj), which implies that
hp+ rp /∈ P(K). On the other hand, if |h| > 3 logK, then |hp+ rp| ≥

(
3
2 − o(1)

)
K > K,

so that hp+ rp /∈ P(K) in this case also. Since the arithmetic progression hp+ rp has no
element in common with P(K) the proof is complete.

7.3. Exercises

1. Show that the function ρ(N) is weakly increasing.

2. (a) Show that in the prime k-tuple conjecture, the hypothesis that for every prime p
the numbers aj do not cover all residue classes (mod p) is satisfied for all p > k, so that it
is enough to verify the hypothesis for p ≤ k (a finite calculation for any given set of aj).
(b) Prove the converse of the prime k-tuple conjecture: If there exist infinitely many
integers n for which n+ aj is prime for all j, 1 ≤ j ≤ k, then for every prime p there is a
residue class x (mod p) such that x+ aj ̸≡ 0 (mod p) (1 ≤ j ≤ k).
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3. Show that g(q) ≫ qω(q)/φ(q).

4. (cf Erdős (1951)) Show that if 0 < c < 1/2 then there exist arbitrarily large numbers x
such that the interval (x, x+ c(log x)/ log log x) contains no squarefree number.

5. (cf Erdős (1946), Montgomery (1987)) Suppose that 2 ≤ h ≤ x. Let P denote the set
of all primes p ≤ h, let D denote the set of positive integers composed entirely of primes
in P, and let f(n) =

∏
p|n,p∈P(1− 1/p).

(a) Show that f(n) =
∑

d|n,d∈D µ(d)/d.

(b) Show that ∑
x<n≤x+h

f(n) =
6

π2
h+O(log h)

uniformly in x.
(c) Show that

φ(n)

n
≥ f(n)−

∑
p|n
p>h

1

p
.

(d) Among those primes p > h that divide an integer in the interval (x, x + h], let Q be
those for which p ≤ h log x, and R those for which p > h log x. Show that∑

p∈Q

1

p
≪ log log log x.

(e) Explain why ∏
p∈R

U<p≤2U

p

∣∣∣∣ ∏
x<n≤x+h

n,

and deduce that

card{p ∈ R : U < p ≤ 2U} ≪ h log x

logU
.

(f) By summing over U = 2kh log x, show that∑
p∈R

1

p
≪ 1

log(h log x)
.

(g) Show that

6

π2
h+O(log h) +O(log log log x) ≤

∑
x<n≤x+h

φ(n)

n
≤ 6

π2
h+O(log h).

6. (cf Pillai & Chowla (1930)) Show that there is an absolute constant c > 0 such that
there exist arbitrarily large x for which φ(n)/n < 1/4 when x < n ≤ x + c log log log x.
Deduce that ∑

n≤x

φ(n)

n
− 6

π2
x = Ω(log log log x).
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7. (Hausman & Shapiro (1973); cf Montgomery & Vaughan (1986)) (a) Show that

q∑
n=1

( h∑
m=1

(m+n,q)=1

1− φ(q)

q
h

)2

=
φ(q)2

q

∑
r|q
r>1

µ(r)2
r2

φ(r)2
{h/r}(1− {h/r})

∏
p|q
p-r

p(p− 2)

(p− 1)2
.

(b) Use the inequality {α}(1− {α}) ≤ α to show that

q∑
n=1

( h∑
m=1

(m+n,q)=1

1− φ(q)

q
h

)2

≤ hφ(q).

8. (Erdős (1951)) Put P =
∏

p≤y p
2, set k = π(y), and let 2 = p1 < p2 < · · · < pk denote

the primes p ≤ y.
(a) Explain why there is an x, 1 ≤ x ≤ P , such that p2i |(x+ i) for 1 ≤ i ≤ k.
(b) Show that k ≫ (log x)/ log log x.
(c) Show that there exist arbitrarily large integers x such that there is no squarefree integer
between x and x+ c(log x)/ log log x. Here c is a suitably small positive constant.

9. (Erdős (1951)) (a) For a positive integer q, let S(q) denote the set of those residue
classes s modulo q2 such that (s, q) is a perfect square. Show that if q is squarefree, then
S(q) contains exactly

∏
p|q(p

2 − p+ 1) elements.

(b) Show that if q is squarefree and 1 ≤ h ≤ q2, then there is an integer a such that the
number of members of S(q) in the interval (a, a+ h] is at most

h
∏
p|q

(
1− 1

p
+

1

p2

)
.

(c) From now on, suppose that q is the product of those primes p ≤ y such that p ≡ 3
(mod 4). By recalling Corollary 4.12, or otherwise, show that the expression above is
≍ h/

√
log y.

(d) Show that if an integer n can be expressed as a sum of two squares, then n ∈ S(q).
(e) Let R be the set of those primes p, y < p ≤ Cy, such that p ≡ 3 (mod 4). Here C is
an absolute constant, taken to be sufficiently large to ensure that R has at least y/ log y
elements. Note that such a constant exists, in view of Exercise 4.3.5(e). Let r denote the
product of all members of R. Suppose that the number of members of S(q) lying in the
interval (a, a + h] is < y/ log y. For each s ∈ S(q) satisfying a < s ≤ a + h, associate a
prime p ∈ R. Suppose that the integer b is chosen modulo p2 so that s+bq2 ≡ p (mod p2).
Show that the interval (a+ bq2, a+ bq2 + h] does not contain a sum of two squares.
(f) Show that a and b can be chosen so that 0 < a+ bq2 < (qr)2.
(g) Show that log qr ≪ y.
(h) Show that this construction succeeds with h ≍ y/

√
log y ≫ (log qr)/(log log qr)1/2.

(i) Conclude that there exist arbitrarily large x such that there is no sum of two squares
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between x and x + c(log x)/(log log x)1/2. Here c is a suitably small positive constant.
(Note that a stronger result is established in the next exercise.)

10. (Richards (1982)) For every prime p ≤ y, let β(p) denote the greatest positive integer
such that pβ ≤ y, and put

q =
∏
p≤y

p≡3 (4)

p2β(p).

(a) Show that q = exp(2ψ(y; 4, 3)).
(b) Show that log q ≪ y.
(c) Suppose that 1 ≤ n ≤ y. Show that if n ≡ 3 (mod 4), then there is a prime p|q such
that p divides n to an odd power.
(d) Let x = (q − 1)/4. Show that x is an integer, and that 4x ≡ −1 (mod q).
(e) Show that if 1 ≤ i ≤ y/4 and p|q, then the power of p that exactly divides x+ i is the
same as the power of p that exactly divides 4i− 1.
(f) Deduce that no integer in the interval (x, x + y/4] can be expressed as a sum of two
squares.
(g) Conclude that there exist arbitrarily large numbers x such that no number between x
and x+ c log x is a sum of two squares. Here c is a suitably small positive constant.

4. Numbers composed of a prescribed number of primes

Let σk(x) denote the number of integers n with 1 ≤ n ≤ x and Ω(n) = k. Then σ1(x) =
π(x) ∼ x/ log x. Consider σ2(x). Clearly

σ2(x) =
∑
p1,p2
p1≤p2
p1p2≤x

1 =
∑

p≤
√
x

(
π(x/p)− π(p) +O(1)

)
.

By the Prime Number Theorem this is

=
∑

p≤
√
x

(1 + o(1))
x

p(log x/p)
+O

( x

log x

)
.

Thus, by partial summation and a further application of the Prime Number Theorem we
find that

(54) σ2(x) ∼
x log log x

log x
.

By inducting on k in this manner it can be shown that

(55) σk(x) ∼
x(log log x)k−1

(k − 1)! log x

for any fixed k. Since the sum over all k ≥ 1 of the right hand side is exactly x, it
is tempting to think that the above holds quite uniformly in k. However this is not
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the case, as we shall presently discover. To obtain precise estimates that are uniform in
k we apply analytic methods. In §2.4 we determined the asymptotic distribution of the
additive function Ω(n)−ω(n) by establishing the mean value of the multiplicative function
zΩ(n)−ω(n). In the same spirit we shall derive information concerning the distribution of
Ω(n) from mean value estimates of zΩ(n). Since the Euler product of this latter function
behaves badly when |z| is large, we start not with zΩ(n) but with dz(n) defined by the
identities

(56) ζ(s)z =
∏
p

(
1− p−s

)−z
=

∞∑
n=1

dz(n)n
−s (σ > 1).

Since dz(p) = z = zΩ(p), the functions dz(n) and z
Ω(n) are ‘nearby’, and hence the mean

value of zΩ(n) can be derived from that for dz(n) by elementary reasoning.

Theorem 17. Let Dz(x) =
∑

n≤x dz(n), and let R be any positive real number. If x ≥ 2,
then

Dz(x) =
x(log x)z−1

Γ(z)
+O

(
x(log x)ℜz−2

)
uniformly for |z| ≤ R.

Proof. Let a = 1 + 1/ log x. Then by Corollary 5.3,
(57)

Dz(x)−
1

2πi

∫ a+iT

a−iT

ζ(s)z
xs

s
ds≪

∑
1
2x<n<2x

|dz(n)|min
(
1,

x

T |x− n|

)
+
xa

T

∑
n

|dz(n)|n−a.

Since |dz(n)| is erratic, we must exercise some care in estimating the error terms above.
Let A = {n : |n− x| ≤ x/(log x)2R+1}. Without loss of generality we may suppose that R
is an integer. We note that |dz(n)| ≤ d|z|(n) ≤ dR(n). By the method of the hyperbola we
see by induction on R that

DR(x) = xPR(log x) +OR

(
x1−1/R

)
where PR is a polynomial of degree R− 1. Hence the contribution to the first sum in the
error term in (57) of the n ∈ A is

≪
∑
n∈A

|dz(n)| ≪ x(log x)−R−2

The contribution of the n /∈ A is

≪ T−1(log x)2R+1x(log x)R−1.

We take T = exp
(√

log x
)
to see that this is also ≪ x(log x)−R−2. The second sum in the

error term in (57) is ≪ ζ(a)R ≪ (log x)R. Thus the total error term is ≪ x(log x)−R−2.
If z is a positive integer then ζ(s)z has a pole at s = 1, and we can extract a main

term by the calculus of residues, as in our proof of the Prime Number Theorem (Theorem
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6.9). On the other hand, if z is not an integer then ζ(s)z has a branch point at s = 1,
so greater care must be exercised in moving the path of integration. Put b = 1− c/ log T
where c is a small positive constant, and replace the contour from a − iT to a + iT by a
path consisting of C1, C2, C3 where C1 is polygonal with vertices a− iT , b− iT , b− i/ log x,
C2 begins with a line segment from b− i/ log x to 1− i/ log x, continues with the semicircle
{1 + eiθ/ log x : −π/2 ≤ θ ≤ π/2}, and concludes with the line segment from 1 + i/ log x
to b + i/ log x, and finally C3 is polygonal with vertices b + i/ log x, b + iT , a + iT . By
Theorem 6.7, ζ(s)z ≪ (log x)R on the new path, so the integrals over C1 and C3 contribute
an amount ≪ x(log x)−R−2. On C2 we have ζ(s)z/s = (s− 1)−z

(
1 +O(|s− 1|)

)
. Hence

(58)
1

2πi

∫
C2

ζ(s)z
xs

s
ds =

1

2πi

∫
C2

(s− 1)−zxs ds+O
(∫

C2

|s− 1|1−ℜzxσ |ds|
)
.

By the change of variables s = 1 + w/ log x we see that the main term above is

x(log x)z−1 1

2πi

∫
H2

w−zew dw

where H2 starts at −β − i, loops around 0, and ends at −β + i where β = c(log x)/ log T .
Let H1 be the contour H1 = {w = u − i : −∞ < u ≤ −β}, and similarly let H3 = {w =
u+ i : −∞ < u ≤ −β}. If we integrate over the union of the Hi then we obtain Hankel’s
formula (see Theorem C.3) for 1/Γ(z). The integral over H1 is ≪R

∫∞
β
e−u/2 du ≪R

e−β/2, which is small since T = exp
(√

log x
)
. Thus we see that the main term in (58)

is x(log x)z−1/Γ(z) +OR(x exp(−c
√
log x)

)
for some constant c. On the semicircular part

of C2 the integrand in the error term in (58) is ≪ x(log x)ℜz−1, so the contribution is
≪ x(log x)ℜz−2. By the change of variables s = 1+w/ log x we see that the linear portions
of C2 contribute an amount

≪ x(log x)ℜz−2

∫ ∞

0

(u2 + 1)(R−1)/2e−u du≪R x(log x)ℜz−2.

Thus we have the stated estimate, and the proof is complete.

We now establish a procedure by which we can pass from dz(n) to other nearby functions.

Theorem 18. Suppose that
∑∞

m=1 |bz(m)|(logm)2R+1/m is uniformly bounded for |z| ≤
R, and for σ ≥ 1 let

F (s, z) =
∞∑

m=1

bz(m)m−s.

Let az(n) be defined by the relation

ζ(s)zF (s, z) =
∞∑

n=1

az(n)n
−s (σ > 1)

and let Az(x) =
∑

n≤x az(n). Then for x ≥ 2,

Az(x) =
F (1, z)

Γ(z)
x(log x)z−1 +O

(
x(log x)ℜz−2

)
.
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Proof. Since az(n) =
∑

m|n bz(m)dz(n/m), we see by Theorem 17 that

Az(x) =
∑

m≤x/2

bz(m)Dz(x/m) +
∑

x/2<m≤x

bz(m)

=
x

Γ(z)

∑
m≤x/2

bz(m)

m
(log x/m)z−1 +O

(
x
∑
m≤x

|bz(m)|
m

(log 2x/m)ℜz−2
)
.(59)

The error term here is

≪ x(log x)ℜz−2
∑

m≤
√
x

|bz(m)|
m

+ x(log x)−R−2
∑

m>
√
x

|bz(m)|
m

(logm)2R ≪ x(log x)ℜz−2.

In the main term, when m ≤ x1/2 we write

(log x/m)z−1 = (log x)z−1 +O
(
(logm)(log x)ℜz−2

)
.

Thus the first sum on the right hand side of (59) is

= (log x)z−1
∑

m≤x/2

bz(m)

m
+O

(
(log x)ℜz−2

∑
m≤

√
x

|bz(m)|
m

logm+ (log x)R−1
∑

m>
√
x

|bz(m)|
m

)
= (log x)z−1F (1, z) +O

(
(log x)ℜz−2

∑
m

|bz(m)|
m

(logm)2R+1
)
,

which gives the result.

Suppose that R < 2, and let

(60) F (s, z) =
∏
p

(
1− z

ps

)−1(
1− 1

ps

)z
for σ > 1, |z| ≤ R. Then az(n) = zΩ(n) in the notation of Theorem 18. Hence, with σk(x)
defined as at the beginning of this section we find that

Az(x) =
∑
n≤x

zΩ(n) =

∞∑
k=0

σk(x)z
k.

Here the power series on the right is actually a polynomial, since σk(x) = 0 for sufficiently
large k, when x is fixed. Our asymptotic estimate for Az(x) enables us to recover an
estimate for the power series coefficients σk(x), since Cauchy’s formula asserts that

(61) σk(x) =
1

2πi

∫
|z|=r

Az(x)

zk+1
dz

for r < 2.
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Theorem 19. Suppose that R < 2, that F (s, z) is given by (60), and that G(z) =
F (1, z)/Γ(z + 1). Then

(62) σk(x) = G
( k − 1

log log x

)x(log log x)k−1

(k − 1)! log x

(
1 +OR

( k

(log log x)2

))
uniformly for 1 ≤ k ≤ R log log x.

Since G(0) = G(1) = 1, we see that (55) holds when k = o(log log x), and also when
k = (1 + o(1)) log log x, but that (55) does not hold in general. The restriction to R < 2
is necessary because of the contribution of the prime p = 2 in the Euler product (60) for
F (s, z). If z ≥ 2 then the behaviour is different; see Exercises 5 and 6, below.

Proof. Our quantitative form of the Prime Number Theorem (Theorem 6.9) gives the
case k = 1, so we may assume that k > 1. We substitute the estimate of Theorem 18 in
(61) with r = (k − 1)/ log log x. The error term contributes an amount

≪ x(log x)r−2r−k =
x

(log x)2
ek−1 (log log x)

k

(k − 1)k
≪ x(log log x)k

(k − 1)!(log x)2
≪ x(log log x)k−3

(k − 1)! log x
.

This is majorized by the error term in (62) since G((k−1)/ log log x) ≫ 1. The main term
we obtain from (61) is xI/ log x where

I =
1

2πi

∫
|z|=r

G(z)(log x)zz−k dz

=
G(r)

2πi

∫
|z|=r

(log x)zz−k dz +
1

2πi

∫
|z|=r

(G(z)−G(r))(log x)zz−k dz.

By integration by parts we find that

r

2πi

∫
|z|=r

(log x)zz−k dz =
1

2πi

∫
|z|=r

(log x)zz1−k dz.

We multiply both sides by G′(r) and combine with the former identity to see that

(63) I =
G(r)

2πi

∫
|z|=r

(log x)zz−k dx+
1

2πi

∫
|z|=r

(G(z)−G(r)−G′(r)(z−r))(log x)zz−k dz.

Here the first integral is (log log x)k−1/(k−1)! by Cauchy’s theorem, which gives the desired
main term. On the other hand,

G(z)−G(r)−G′(r)(z − r) =

∫ z

r

(z − w)G′′(w) dw ≪ |z − r|2,

so that if we write z = re2πiθ then the second integral in (63) is

≪ r3−k

∫ 1/2

−1/2

(sinπθ)2e(k−1) cos 2πθ dθ.
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But | sinx| ≤ |x| and cos 2πθ ≤ 1− 8θ2 for −1/2 ≤ θ ≤ 1/2, so the above is

≪ r3−kek−1

∫ ∞

0

θ2e−8(k−1)θ2

dθ ≪ r3−kek−1(k − 1)−3/2 =
(log log x)k−3ek−1

(k − 1)k−3/2

≪ k(log log x)k−3/(k − 1)!.

This completes the proof of the theorem.

The decomposition in (63) is motivated by the observation that |(log x)z| is largest, for
|z| = r, when z = r. We take the Taylor expansion to the second term because∣∣∣ ∫ (z − r)2(log x)zz−k dz

∣∣∣ ≍ ∫
|z − r|2|(log x)zz−k| |dz|,

whereas ∣∣∣ ∫ (z − r)(log x)zz−k dz
∣∣∣ = o

(∫
|z − r||(log x)zz−k| |dz|

)
.

By the calculus of residues we may write

I =
1

(k − 1)!

dk−1

dzk−1

(
G(z)(log x)z

)∣∣∣
z=0

=
k−1∑
ν=0

G(ν)(0)

ν!

(log log x)k−1−ν

(k − 1− ν)!
.

This gives a more accurate, but more complicated, main term.
In §2.3 we saw that Ω(n) rarely differs very much from log log n. In particular, from

Theorem 2.12 we see that if r < 1 then the number of n ≤ x for which Ω(n) < r log log n is
≪r x/ log log x. We now give a much sharper upper bound for the number of occurrences
of such large deviations.

Theorem 20. Let A(x, r) denote the number of n ≤ x such that Ω(n) ≤ r log log x, and
let B(x, r) denote the number of n ≤ x for which Ω(n) ≥ r log log x. If 0 < r ≤ 1 and
x ≥ 2 then

A(x, r) ≪ x(log x)r−1−r log r.

If 1 ≤ r ≤ R < 2 and x ≥ 2 then

B(x, r) ≪R x(log x)r−1−r log r.

Proof. We argue directly from Theorem 18, using a modified form of Rankin’s method.
If 0 ≤ r ≤ 1 and Ω(n) ≤ r log log x then rr log log x ≤ rΩ(n). Hence

A(x, r) ≤ (log x)−r log r
∑
n≤x

rΩ(n).
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By Theorem 18 this is

∼ F (1, r)

Γ(r)
x(log x)r−1−r log r

where F (s, z) is taken as in (60). This gives the result since F (1, r) ≪ 1 and Γ(r) ≫ 1
uniformly for 0 < r ≤ 1.

Now suppose that 1 ≤ r ≤ R < 2 and that Ω(n) ≥ r log log x. Then rΩ(n) ≥ rr log log x,
and hence

B(x, r) ≤ (log x)−r log r
∑
n≤x

rΩ(n).

Thus we have only to proceed as before to obtain the result.

In discussing Theorem 2.12 we proposed a probabilistic model, which in conjunction
with the Central Limit Theorem would predict that the quantity

(64) αn =
Ω(n)− log log n√

log log n

is asymptotically normally distributed. We now confirm this.

Theorem 21. Let αn be given by (64) and suppose that Y > 0. Then the number of n,
3 ≤ n ≤ x, such that αn ≤ y is

Φ(y)x+OY

( x√
log log x

)
uniformly for −Y ≤ y ≤ Y where

Φ(y) =
1√
2π

∫ y

−∞
e−t2/2 dt.

Proof. Let

βn =
Ω(n)− log log x√

log log x
.

Since Φ′(y) ≪ 1 and αn − βn ≪ 1/
√

log log x when x1/2 ≤ n ≤ x and Ω(n) ≤ 2 log log x,
it suffices to consider βn in place of αn. We may of course also suppose that x is large.

Let k be a natural number and let u be defined by writing k = u + log log x. If
|u| ≤ 1

2 log log x then by Stirling’s formula (see (B.26) or the more general Theorem C.1)
we see that

(log log x)k−1

(k − 1)!
=

eu log x√
2π log log x

(
1 +

u

log log x

) 1
2−log log x−u(

1 +O
( 1

log log x

))
.

The estimate log(1 + δ) = δ − δ2/2 + O(|δ|3) holds uniformly for |δ| ≤ 1/2. By taking
δ = u/ log log x we find that(
1 +

u

log log x

) 1
2−log log x−u

= exp
(
− u+

u− u2

2 log log x
− u2

4(log log x)2
+O

( |u|3

(log log x)2

))
.
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Suppose now that |u| ≤ (log log x)2/3. By considering separately |u| ≤ (log log x)1/2 and
(log log x)1/2 < |u| ≤ (log log x)2/3 we see that

u

log log x
≪ 1√

log log x
+

|u|3

(log log x)2
.

Similarly, by considering |u| ≤ 1 and |u| > 1 we see that

u2

(log log x)2
≪ 1√

log log x
+

|u|3

(log log x)2
.

On combining these estimates we deduce that

(log log x)k−1

(k − 1)!
=

log x√
2π log log x

exp
( −u2

2 log log x

)(
1 +O

( 1√
log log x

)
+O

( |u|3

(log log x)2

))
uniformly for |u| ≤ (log log x)2/3. In Theorem 19 we have G(1) = 1 and

G
( k − 1

log log x

)
= G(1) +O

( 1 + |u|
log log x

)
.

Hence by Theorem 19,

σk(x) =
x exp

(
−(k−log log x)2

2 log log x

)
√
2π log log x

(
1 +O

( 1√
log log x

)
+O

( |k − log log x|3

(log log x)2

))
.

By Theorem 20 we know that the contribution of k ≤ log log x− (log log x)2/3 is negligible.
We sum over the range

log log x− (log log x)2/3 ≤ k ≤ log log x+ y(log log x)1/2.

This gives rise to three sums, one for the main term and two for error terms. Each of these
sums can be considered to be a Riemann sum for an associated integral, and the stated
result follows.

7.4. Exercises

1. Let p1, p2, . . . , pK be distinct primes. Show that the number of n ≤ x composed entirely
of the pk is

(log x)K

K!
∏K

k=1 log pk
+O

(
(log x)K−1

)
.

2. (a) Let dz(n) be defined as in (56), and suppose that |z| ≤ R. Show that |dz(n)| ≤
d|z|(n) ≤ dR(n).
(b) Let F (s, z) be defined as in (60). Show that if 0 < r < 1 and σ > 1/2 then 0 <
F (σ, r) < 1.
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(c) Let F (s, z) be defined as in (60). Show that if 1 < r < 2 then the Dirichlet series
coefficients of F (s, r) are all non-negative.

3. (a) Show that if

F (s, z) =
∏
p

(
1 +

z

ps − 1

)(
1− 1

ps

)z
then F (s, z) converges for σ > 1/2, uniformly for |z| ≤ R.
(b) Show that if F (s, z) is taken as above, and if az(n) is defined as in Theorem 18 then
az(n) = zω(n).
(c) Let ρk(x) denote the number of n ≤ x for which ω(n) = k. Show that if x ≥ 2 then

ρk(x) = G
( k − 1

log log x

)x(log log x)k−1

(k − 1)! log x

(
1 +OR

( k

(log log x)2

))
uniformly for 1 ≤ k ≤ R log log x where G(z) = F (1, z)/Γ(z + 1).
(d) Show that G(0) = G(1) = 1.
(e) Let A(x, r) denote the number of n ≤ x for which ω(n) ≤ r log log x. Show that

A(x, r) ≪ x(log x)r−1−r log r

uniformly for 0 < r ≤ 1.
(f) Let B(x, r) denote the number of n ≤ x for which ω(n) ≥ r log log x. Show that

B(x, r) ≪ x(log x)r−1−r log r

uniformly for 1 ≤ r ≤ R.

4. (a) Show that if

F (s, z) =
∏
p

(
1 +

z

ps

)(
1− 1

ps

)z
then F (s, z) converges for σ > 1/2, uniformly for |z| ≤ R.
(b) Show that if F (s, z) is taken as above, and if az(n) is defined as in Theorem 18 then
az(n) = µ(n)2zω(n).
(c) Let πk(x) denote the number of squarefree n ≤ x for which ω(n) = k. Show that if
x ≥ 2 then

πk(x) = G
( k − 1

log log x

)x(log log x)k−1

(k − 1)! log x

(
1 +OR

( k

(log log x)2

))
uniformly for 1 ≤ k ≤ R log log x where G(z) = F (1, z)/Γ(z + 1).
(d) Show that G(0) = G(1) = 1.

5. (a) Show that if x ≥ 2 then∑
n≤x

2Ω(n) = cx(log x)2 +O(x log x)
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where c is a positive constant.
(b) Show that if x ≥ 2 then ∑

n≤x

2ω(n) = cx log x+O(x)

where c is a positive constant.

6. Show that if (2 + ε) log log x ≤ k ≤ R log log x then σk(x) ∼ c2−kx log x.

7. Show that if δ ≤ r ≤ 1− δ (or 1 + δ ≤ r ≤ 2− δ) then A(x, r) (or B(x, r) respectively)
is ≍ x(log x)r−1−r log r/

√
log log r.

8. Show that if x is large then there is a k such that

σk(x) ≥
x

3
√
log log x

.

9. Show that the mean value
∑

n≤x d(n) ∼ x log x is due to the numbers n ≤ x for which

|ω(n)− 2 log log x| ≪
√

log log x.

10. Suppose that 1/2 ≤ r ≤ R. Show that the number of squarefree n ≤ x that can be
written as a sum of two squares and for which ω(n) ≥ r log log x is ≪R x(log x)r−1−r log 2r.

11. (Addison (1957)) Let Mq,k(x) denote the number of n ≤ x such that Ω(n) ≡ k
(mod q).
(a) Show that if q is fixed then Mq,k(x) ∼ x/q as x→ ∞.
(b) Show that if q is fixed, q > 2, then

Mq,k(x)−
x

q
= Ω±

( x

(log x)κ

)
where κ = 1− cos 2π/q.

12. Show that ∑
1<n≤x

1

ω(n)
∼ x

log log x

as x→ ∞.

13. Show that if x ≥ 2 then

∑
1<n≤x

Ω(n)

ω(n)
= x+O

( x

log log x

)
.
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14. Suppose that 0 ≤ α ≤ 1. Show that∑
n≤x

card{m : m|n,m ≤ nα}
d(n)

=
2

π
x arcsin

√
α+O

( x√
log x

)
.

15. Show that if x ≥ 16 then∑
n≤x

(n,Ω(n))=1

1 =
6

π2
x+O

( x

log log log x

)
.

7. Notes

§1. Theorem 2 was first proved by Dickman (1930), and was rediscovered by Chowla
and Vijayaraghavan (1947), Ramaswami (1949), and Buchstab (1949). de Bruijn (1951a)
gave a more precise estimate for ψ(x, y), over a longer range of y. There is a considerable
range of applications of Ψ(x, y), such as those to the distribution of kth power residues,
Waring’s problem, and the complexity of arithmetical algorithms in computer science. As
a reflection of this there have been two significant survey articles, by Norton (1971) and
by Hildebrand and Tenenbaum (1993).

Our treatment of ψ(x, y) is fairly elementary, but it would be natural to take a more
analytic approach, and use Perron’s formula to write

ψ(x, y) =
1

2πi

∫ c+i∞

c−i∞

∏
p≤y

(
1− p−s

)−1xs

s
ds =

1

2πi

∫ c+i∞

c−i∞
ζ(s)

∏
p>y

(
1− p−s

)xs
s
ds.

For s not too large an approximation to the product over p > y is provided by the Prime
Number Theorem, and this suggests the main term

Λ(x, y) =
1

2πi

∫ c+i∞

c−i∞
ζ(s) exp

(
−

∫ ∞

y

v−s(log v)−1 dv
)xs
s
ds.

It can be shown that this is indeed a good approximation to ψ(x, y) over a very long range,
but the technical details are rather heavy. By Theorem 10 it is not hard to show that

Λ(x, y) = x

∫ ∞

0−
ρ(u− v)d

(
[yv] y−v

)
where we use (30) to extend the definition of ρ(u) to u ≤ 0. It follows that

Λ(x, y) ∼ ρ(u)x

for a large range of u. For the further development of the theory, especially on the analytic
side, see Hildebrand and Tenenbaum (1993).
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§2. Theorem 11 is due to Buchstab (1937). The finer details of the behaviour of Φ(x, y)
when u is large are intimately connected with sieve theory, especially that of the linear
sieve, i.e., the sieve in which on average one residue class (mod p) is removed. The standard
references are Greaves (2001), Halberstam and Richert (1974), Selberg (1991).

§3. Theorem 14 was first proved by Westzynthius (1931). Erdős (1935) showed that

lim sup
n→∞

pn+1 − pn
(log pn)(log log pn)/(log log log pn)2

> 0,

and then Rankin (1938) obtained Theorem 15 with c = 1/3. The value of c has been
successively improved by Schönhage (1963), Rankin (1963), Maier and Pomerance (1990),
culminating in the value c = 2eC0 of Pintz (1997). Erdős offered a $10,000 prize for the
first proof that Theorem 15 is valid for all c > 0.

Early studies of g(P (z)) were conducted by Backlund (1929), Brauer & Zeitz (1930),
Ricci (1935), and Chang (1938). The size of g(P (z)) is not known; possibly it is ≍ z log z.
However, it is conceivable that infinitely often pn+1 − pn is as large as (log pn)

θ where
θ > 1. In particular, Cramér (1936) conjectured that

lim sup
n→∞

pn+1 − pn
(log pn)2

= 1.

Theorem 16 is due to Hensley & Richards (1973).

§4. The analysis of σk(x) is based on Selberg’s exposition (1954) of Sathe (1953a,b,
1954a,b). Sathe (1954b) also shows that the bound R log log x cannot be replaced by
2 log log x+1. Arguments giving rise to versions of Theorem 20 occur in Erdős (1935b). A
qualitative version of Theorem 21 is a special case of Erdős and Kac (1940). Quantitative
versions with various weaker error terms were obtained by LeVeque (1949) and Kubilius
(1956). Theorem 21 had been conjectured by LeVeque and was established by Rényi and
Turán (1958). They also showed that the error term is both uniform in x and best possible.
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P. Erdős & J.-L. Nicolas (1981). Sur la fonction: nombre de facteurs premiers de n, Enseign.
Math. (2) 27, 3–27.



7. LITERATURE 231

J. B. Friedlander (1972). Maximal sets of integers with small common divisors, Math. Ann.
195, 107–113.

G. Greaves (2001). Sieves in number theory, Ergeb. Math. (3) 43, Springer-Verlag (Berlin),
xii+304 pp.

H. Halberstam (1970). On integers all of whose prime factors are small, Proc. London
Math. Soc. (3) 21, 102–107.

H. Halberstam & H.-E. Richert (1974). Sieve methods, London Mathematical Society
Monographs No. 4, Academic Press (London), 1974, xiv+364 pp.

G. H. Hardy & J. E. Littlewood (1923). Some problems of “Partitio Numerorum”: III On
the expression of a number as a sum of primes, Acta Math. 44, 1–70.

M. Hausman & H. N. Shapiro (1973). On the mean square distribution of primitive roots
of unity, Comm. Pure Appl. Math. 26, 539–547.

D. Hensley & I. Richards (1973). Two conjectures concerning primes, Proc. Sympos. Pure
Math. 24, Amer. Math. Soc. (Providence), 123–128.

(1973/4). Primes in intervals, Acta Arith. 25, 375–391.

A. Hildebrand (1984). Integers free of large prime factors and the Riemann Hypothesis,
Mathematika 31, 258–271.

(1985). Integers free of large prime divisors in short intervals, Oxford Quart. J.
36, 57–69.

(1986a). On the number of positive integers ≤ x and free of prime factors > y, J.
Number Theory 22, 289–307.

(1986b). On the local behavior of ψ(x, y), Trans. Amer. Math. Soc. 297, 729–751.

(1987). On the number of prime factors of integers without large prime divisors,
J. Number Theory 25, 81–106.

A. Hildebrand & G. Tenenbaum (1986). On integers free of large prime factors, Trans.
Amer. Math. Soc. 296, 265–290.

(1993). Integers without large prime factors, J. Théor. Nombres Bordeaux. 5,
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