
Chapter 5

Dirichlet Series — II

1. The inverse Mellin transform

In Chapter 1 we saw that we can express a Dirichlet series α(s) =
∑∞

n=1 ann
−s in terms

of the coefficient sum A(x) =
∑

n≤x an, by means of the formula

(1) α(s) = s

∫ ∞

1

A(x)x−s−1 dx,

which holds for σ > max(0, σc). This is an example of a Mellin transform. In the reverse
direction, Perron’s formula asserts that

(2) A(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
α(s)

xs

s
ds

for σ0 > max(0, σc). This is an example of an inverse Mellin transform.
To understand why we might expect that (2) should be true, note that if σ0 > 0, then

by the calculus of residues

(3)
1

2πi

∫ σ0+i∞

σ0−i∞
ys

ds

s
=

{
1 if y > 1,

0 if 0 < y < 1.

Thus we would expect that

(4)
1

2πi

∫ σ0+i∞

σ0−i∞
α(s)

xs

s
ds =

∑
n

an
2πi

∫ σ0+i∞

σ0−i∞

(x
n

)s ds

s
=

∑
n≤x

an.

The interchange of limits here is difficult to justify, since α(s) may not be uniformly
convergent, and because the integral in (3) is neither uniformly nor absolutely convergent.
Moreover, if x is an integer then the term n = x in (4) gives rise to the integral (3) with
y = 1, and this integral does not converge, although its Cauchy principal value exists:

(5) lim
T→∞

1

2πi

∫ σ0+iT

σ0−iT

ds

s
=

1

2

for σ0 > 0. We now give a rigorous form of Perron’s formula.
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Theorem 1. (Perron’s formula) If σ0 > max(0, σc) and x > 0 then

∑′

n≤x

an = lim
T→∞

1

2πi

∫ σ0+iT

σ0−iT

α(s)
xs

s
ds.

Here
∑′

indicates that if x is an integer then the last term is to be counted with weight
1/2.

Proof. Choose N so large that N > 2x + 2, and write

α(s) =
∑
n≤N

ann
−s +

∑
n>N

ann
−s = α1(s) + α2(s),

say. By (4), modified in recognition of (5), we see that

∑′

n≤x

an = lim
T→∞

1

2πi

∫ σ0+iT

σ0−iT

α1(s)
xs

s
ds;

here the justification is trivial since there are only finitely many terms. As for α2(s), we
observe that

α2(s) =

∫ ∞

N

u−s d(A(u) −A(N)) = s

∫ ∞

N

(A(u) −A(N))u−s−1 du.

But A(u) −A(N) ≪ uθ for θ > max(0, σc), and hence

α2(s) ≪
(

1 +
|s|

σ − θ

)
Nθ−σ

for σ > θ > max(0, σc). Implicit constants here and in the rest of this proof may depend
on the an. Hence∫ T±iT

σ0±iT

α2(s)
xs

s
ds ≪ Nθ

σ0 − θ

∫ ∞

σ0

( x

N

)σ
dσ ≪ Nθ

σ0 − θ

(x/N)σ0

logN/x
,

and ∫ T+iT

T−iT

α2(s)
xs

s
ds ≪ Nθ(x/N)σ0

for large T . We take θ so that σ0 > θ > max(0, σc). Hence by Cauchy’s theorem∫ σ0+iT

σ0−iT

=

∫ T−iT

σ0−iT

+

∫ T+iT

T−iT

+

∫ σ0+iT

T+iT

≪ xσ0Nθ−σ0 .

On combining our estimates, we see that

lim sup
T→∞

∣∣∣∣∑′

n≤x

an − 1

2πi

∫ σ0+iT

σ0−iT

α(s)
xs

s
ds

∣∣∣∣ ≪ xσ
0N

θ−σ0 .
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Since this holds for arbitrarily large N , it follows that the lim sup is 0, and the proof is
complete.

We have now established a precise relationship between (1) and (2), but Theorem 1
is not sufficiently quantitative to be useful in practice. We express the error term more
explicitly in terms of the sine integral

si(x) = −
∫ ∞

x

sinu

u
du.

By integration by parts we see that si(x) ≪ 1/x for x ≥ 1, and hence that

(6) si(x) ≪ min(1, 1/x)

for x > 0. We also note that

(7) si(x) + si(−x) = −
∫ +∞

−∞

sinu

u
du = −π.

Theorem 2. If σ0 > max(0, σa) and x > 0 then

(8)
∑′

n≤x

an =
1

2πi

∫ σ0+iT

σ0−iT

α(s)
xs

s
ds + R

where

R =
1

π

∑
x/2<n<x

an si(T log
x

n
) − 1

π

∑
x<n<2x

an si(T log
n

x
) + O

( (2x)σ0

T

∑
n

|an|
nσ0

)
.

Proof. Since the series α(s) is absolutely convergent on the interval [σ0− iT, σ0 + iT ], we
see that

1

2πi

∫ σ0+iT

σ0−iT

α(s)
xs

s
ds =

∑
n

an
1

2πi

∫ σ0+iT

σ0−iT

(x
n

)s ds

s
.

Thus it suffices to show that

(9)
1

2πi

∫ σ0+iT

σ0−iT

ys
ds

s
=


1 + O(yσ0/T ) if y ≥ 2,

1 + 1
π si(T log y) + O(2σ0/T ) if 1 ≤ y ≤ 2,

− 1
π si(T log 1/y) + O(1/T ) if 1/2 ≤ y ≤ 1,

O(yσ0/T ) if y ≤ 1/2

for σ0 > 0.
To establish the first part of this formula, suppose that y ≥ 2, and let C be the piecewise

linear path from −∞ − iT to σ0 − iT to σ0 + iT to −∞ + iT . Then by the calculus of
residues we see that

1

2πi

∫
C

ys
ds

s
= 1,
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since the integrand has a pole with residue 1 at s = 0. In addition,∫ σ0±iT

−∞±iT

ys
ds

s
=

∫ σ0

−∞

yσ±iT

σ ± iT
dσ ≪ 1

T

∫ σ0

−∞
yσ dσ =

yσ0

T log y
≪ yσ0

T
,

so we have (9) in the case y ≥ 2. The case y ≤ 1/2 is treated similarly, but the contour is
taken to the right, and there is no residue.

Suppose now that 1 ≤ y ≤ 2, and take C to be the closed rectangular path from σ0− iT
to σ0 + iT to iT to −iT to σ0 − iT , with a semicircular indentation of radius ε at s = 0.
Then by Cauchy’s theorem

1

2πi

∫
C

ys
ds

s
= 0.

We note that ∫ σ0±iT

±iT

ys
ds

s
≪ 1

T

∫ σ0

0

yσ dσ ≤ 1

T

∫ σ0

0

2σ dσ ≪ 2σ0

T
.

The integral around the semicircle tends to 1/2 as ε → 0, and the remaining integral is

1

2πi
lim
ε→0

(∫ iT

iε

+

∫ −iε

−iT

)
ys

ds

s
=

1

2πi
lim
ε→0

∫ T

ε

(
yit − y−it

) dt
t

=
1

π

∫ T log y

0

sin v
dv

v

=
1

2
+

1

π
si(T log y)

by (7). This gives (9) when 1 ≤ y ≤ 2 and the case 1/2 ≤ y ≤ 1 is treated similarly, but
note that when 0 ≤ σ ≤ σ0 we have yσ ≤ 1 and when y = x/n we have 1 ≤ 2σ0(x/n)σ0 .

In many situations, Theorem 2 contains more information than is really needed—it is
often more convenient to appeal to the following less precise result.

Corollary 3. In the situation of Theorem 2,

R ≪
∑

x/2<n<2x
n ̸=x

|an|min
(

1,
x

T |x− n|

)
+

(2x)σ0

T

∞∑
n=1

|an|
nσ0

.

Proof. From (6) we see that

si
(
T | log n/x|

)
≪ min

(
1,

1

T | log n/x|

)
.

But n/x = 1 + (n− x)/x and | log(1 + δ)| ≍ |δ| uniformly for −1/2 ≤ δ ≤ 1, so the above
is

≍ min
(

1,
x

T |x− n|

)
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if x/2 ≤ n ≤ 2x. Thus the stated bound follows from Theorem 2.

In classical harmonic analysis, for f ∈  L1(T) we define Fourier coefficients f̂(k) =∫ 1

0
f(x)e(−kα) dα, and we expect that the Fourier series

∑
f̂(k)e(kα) provides a useful

formula for f(α). As it happens, the Fourier series may diverge, or converge to a value
other than f(α), but for most f a satisfactory alternative can be found. For example, if f
is of bounded variation then

f(α−) + f(α+)

2
= lim

K→∞

K∑
−K

f̂(k)e(kα).

A sharp quantitative form of this is established in Appendix D.1. Analogously, if f ∈
L1(R), then we can define the Fourier transform of f ,

(10) f̂(t) =

∫ +∞

−∞
f(x)e(−tx) dx,

and we expect that

(11) f(x) =

∫ +∞

−∞
f̂(t)e(tx) dt.

As in the case of Fourier series, this may fail, but it is not difficult to show that if f is of
bounded variation on [−A,A] for every A then

(12)
f(α−) + f(α+)

2
= lim

T→∞

∫ T

−T

f̂(t)e(tx) dt.

The relationship between (1) and (2) is precisely the same as between (10) and (11).
Indeed, if we take f(x) = A(e2πx)e−2πσx then f ∈ L1(R) by Theorem 1.3, and by changing
variables in (1) we find that

f̂(t) =
α(σ + it)

2π(σ + it)
.

Thus (2) is equivalent to (11), and an appeal to (12) provides a second (real variable) proof
of Theorem 1.

In general, if

(13) F (s) =

∫ ∞

0

f(x)xs−1 dx,

then we say that F (s) is the Mellin transform of f(x). By (10) and (11) we expect that

(14) f(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
F (s)x−s ds,
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and when this latter formula holds we say that f is the inverse Mellin transform of F .
Thus if A(x) is the summatory function of a Dirichlet series α(s) then α(s)/s is the Mellin
transform of A(1/x) for σ > max(0, σc), and Perron’s formula (Theorem 1) asserts that if
σ0 > max(0, σc) then A(1/x) is the inverse Mellin transform of α(s)/s. Further instances
of this pairing arise if we take a weight function w(x), and form a weighted summatory
function

Aw(x) =
∞∑

n=1

anw(n/x).

Let K(s) denote the Mellin transform of w(x),

K(s) =

∫ ∞

0

w(x)xs−1 dx.

Then we expect that

(15) α(s)K(s) =

∫ ∞

0

Aw(x)x−s−1 dx,

and that

(16) Aw(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
α(s)K(s)xs ds.

Alternatively, we may start with a kernel K(s), and define the weight w(x) to be its inverse
Mellin transform. The precise conditions under which these identities hold depends on the
weight or kernel; we mention several important examples.

1. Cesàro weights. For a positive integer k, put

(17) Ck(x) =
1

k!

∑
n≤x

an(x− n)k.

Then Ck(x) =
∫ x

0
Ck−1(u) du for k ≥ 1 where C0(x) = A(x), and hence Ck(x) ≪ xθ for

θ > k + max(0, σc). (The implicit constant here may depend on k, on θ, and on the an.)
By integrating (1) by parts repeatedly, we see that

(18) α(s) = s(s + 1) · · · (s + k)

∫ ∞

1

Ck(x)x−s−k−1 dx

for σ > max(0, σc). By following the method used to prove Theorem 1, it may also be
shown that

(19) Ck(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
α(s)

xs+k

s(s + 1) · · · (s + k)
ds



1. THE INVERSE MELLIN TRANSFORM 137

when x > 0 and σ0 > max(0, σc). Here the critical step is to show that if y ≥ 1 and σ0 > 0
then

1

2πi

∫ σ0+i∞

σ0−i∞

ys

s(s + 1) · · · (s + k)
ds =

k∑
j=0

Res

(
ys

s(s + 1) · · · (s + k)

∣∣∣∣
s=−j

by the calculus of residues; this is

=

k∑
j=0

(−1)jy−j

j!(k − j)!
=

1

k!
(1 − 1/y)k

by the binomial theorem.

2. Riesz typical means. For positive integers k and positive real x put

(20) Rk(x) =
1

k!

∑
n≤x

an(log x/n)k.

Then Rk(x) =
∫ x

0
Rk−1(u)/u du where R0(x) = A(x), so that Rk(x) ≪ xθ for θ >

max(0, σc). (The implicit constant here may depend on k, on θ, and on the an.) By
integrating (1) by parts repeatedly we see that

(21) α(s) = sk+1

∫ ∞

1

Rk(x)x−s−1 dx

for σ > max(0, σc). By following the method used to prove Theorem 1 we also find that

(22) Rk(x) =
1

2πi

∫ σ0+i∞

σ0−i∞
α(s)

xs

sk+1
ds

when x > 0 and σ0 > max(0, σc). Here the critical observation is that if y ≥ 1 and σ0 > 0
then

1

2πi

∫ σ0+i∞

σ0−i∞

ys

sk+1
ds = Res

(
ys

sk+1

∣∣∣∣
s=0

=
1

k!
(log y)k.

3. Abelian weights. For σ > 0 we have

Γ(s) =

∫ ∞

0

e−uus−1 du = ns

∫ ∞

0

e−nxxs−1 dx.

We multiply by ann
−s and sum, to find that

(23) α(s)Γ(s) =

∫ ∞

0

P (x)xs−1 dx
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where

(24) P (x) =
∞∑

n=1

ane
−nx.

These operations are valid for σ > max(0, σa), but by partial summation P (x) ≪ x−θ as
x → 0+ for θ > max(0, σc), so that the integral in (23) is absolutely convergent in the
halfplane σ > max(0, σc). Hence the integral is an analytic function in this halfplane, so
that by the principle of uniqueness of analytic continuation it follows that (23) holds for
σ > max(0, σc). In the opposite direction,

(25) P (x) =
1

2πi

∫ σ0+i∞

σ0−i∞
α(s)Γ(s)x−s ds

for x > 0, σ > max(0, σc). To prove this we recall from Theorem 1.5 that α(s) ≪ τ
uniformly for σ ≥ ε + max(0, σc), and from Stirling’s formula (Theorem C.1) we see that
|Γ(s)| ≍ e−

π
2 |t||t|σ−1/2 as |t| → ∞ with σ bounded. Thus the value of the integral is

independent of σ0, and in particular we may assume that σ0 > max(0, σa). Consequently
the terms in α(s) can be integrated individually, and it suffices to appeal to Theorem C.4.

The formulæ (23) and (25) provide an important link between the Dirichlet series α(s)
and the power series generating function P (x). Indeed, these formulæ hold for complex x,
provided that ℜx > 0. In particular, by taking x = δ − 2πiα we find that

∞∑
n=1

ane(nα)e−nδ =
1

2πi

∫ σ0+i∞

σ0−i∞
α(s)Γ(s)(δ − 2πiα)−s ds.

It may be noted in the above examples that smoother weights w(x) give rise to kernels
K(s) that tend to 0 rapidly as |t| → ∞. Further useful kernels can be constructed as linear
combinations of the above kernels.

Since the Mellin transform is a Fourier transform with altered variables, all results
pertaining to Fourier transforms can be reformulated in terms of Mellin transforms. Par-
ticularly useful is Plancherel’s identity, which asserts that if f ∈ L1(R) ∩ L2(R) then

∥f∥2 = ∥f̂∥2. This is the analogue for Fourier transforms of Parseval’s identity for Fourier

series, which asserts that
∑

k |f̂(k)|2 = ∥f∥22. By the changes of variables we noted before,
we obtain

Theorem 4. (Plancherel’s identity) Suppose that
∫∞
0

|w(x)|x−σ−1 dx < ∞, and also that∫∞
0

|w(x)|2x−2σ−1 dx < ∞. Put K(s) =
∫∞
0

w(x)x−s−1 dx. Then

2π

∫ ∞

0

|w(x)|2x−2σ−1 dx =

∫ +∞

−∞
|K(σ + it)|2 dt.

Among the many possible applications of this theorem, we note in particular that

(26) 2π

∫ ∞

0

|A(x)|2x−2σ−1 dx =

∫ +∞

−∞

∣∣∣α(σ + it)

σ + it

∣∣∣2 dt
for σ > max(0, σc).
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5.1. Exercises

1. Show that if σc < σ0 < 0 then

lim
T→∞

1

2πi

∫ σ0+it

σ0−iT

α(s)
xs

s
ds =

∑′

n>x

an.

2. (a) Show that if y ≥ 0 then

− π

2
= si(0) ≤ si(y) ≤ si(π) = 0.28114 . . . .

(b) Show that if y ≥ 0 then

ℑ
∫ ∞

y

eiu

u
du = ℑ

∫ y+i∞

y

eiz

z
dz.

(c) Deduce that if y ≥ 0 then | si(y)| < 1/y.

3. (a) Let β > 0 be fixed. Show that if σ0 > 0 then

1

2πi

∫ σ0+i∞

σ0−i∞
Γ(s/β)ys ds = βe−y−β

.

(b) Let β > 0 be fixed. Show that if x > 0 and σ0 > max(0, σc) then

1

2πi

∫ σ0+i∞

σ0−i∞
α(s)Γ(s/β)xs ds = β

∞∑
n=1

ane
−(n/x)β .

4. (a) Suppose that a > 0 and that b is real. Explain why

1

2πi

∫ σ0+i∞

σ0−i∞
ea

2s2/2+bs ds =
e−b2/(2a2)

2πi

∫ σ0+i∞

σ0−i∞
ea

2(s+b/a2)2/2 ds .

(b) Explain why the values of the integrals above are independent of the value of σ0. Hence
show that if σ0 = −b/a2 then the above is

=
e−b2/(2a2)

2π

∫ +∞

−∞
e−a2t2/2 dt =

1√
2π a

e−b2/a2

.

(c) Show that if a > 0, x > 0 and σ0 > σc then

1

2πi

∫ σ0+i∞

σ0−i∞
α(s)ea

2s2/2xs ds =
1√
2π a

∞∑
n=1

an exp
(
− (log x/n)2

2a2

)
.
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5. Take k = 1 in (22) for several different values of x, and form a suitable linear combina-
tion, to show that if x ≥ 0 and and σc < 0 then

2

π

∫ +∞

−∞
α(it)

( sin 1
2 t log x

t

)2
dt =

∑
n≤x

an log x/n.

6. Let w(x) ↗, and suppose that w(x) ≪ xσ as x → ∞ for some fixed σ. Let σw be the
infimum of those σ such that

∫∞
0

w(x)x−σ−1 dx < ∞, and put

K(s) =

∫ ∞

0

w(x)x−s−1 dx

for σ > σw.
(a) Show that Aw(x) =

∑∞
n=1 anw(x/n) satisfies Aw(x) ≪ xθ for θ > max(σw, σc).

(b) Show that

K(s)α(s) =

∫ ∞

0

Aw(x)x−s−1 dx

for σ > max(σw, σc).
(c) Show that

1

2

(
Aw(x−) + Aw(x+)

)
=

1

2πi
lim

T→∞

∫ σ0+iT

σ0−iT

α(s)K(s)xs ds

for σ0 > max(σw, σc), x > 0.

7. Show that

ζ(s) = −s

∫ ∞

0

{x}
xs+1

dx

for 0 < σ < 1, and that

2π

∫ ∞

0

{x}2x−2σ−1 dx =

∫ +∞

−∞

∣∣∣ζ(σ + it)

σ + it

∣∣∣2 dt
for 0 < σ < 1.

8. (a) Show that if f ∈ L1(R) and if f ′ ∈ L1(R) then f̂ ′(t) = 2πitf̂(t).
(b) Suppose that f ∈ L1(R), that xf(x) ∈ L2(R), and that f ′ ∈ L1(R)∩L2(R). Show that∫ +∞

−∞
|f(x)|2 dx = −

∫ +∞

−∞
x
(
f ′(x)f(x) + f(x)f ′(x)

)
dx.

The Cauchy–Schwarz inequality asserts that∣∣∣∣ ∫ +∞

−∞
a(x)b(x) dx

∣∣∣∣2 ≤
(∫ +∞

−∞
|a(x)|2 dx

)(∫ +∞

−∞
|b(x)|2 dx

)
.
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By means of this inequality, or otherwise, show that(∫ +∞

−∞
|xf(x)|2 dx

)(∫ +∞

−∞
|tf̂(t)|2 dt

)
≥ 1

16π2

(∫ +∞

−∞
|f(x)|2 dx

)2

.

This is a form of the Heisenberg uncertainty principle. From it we see that if f tends to 0

rapidly outside [−A,A], and if f̂ tends to 0 rapidly outside [−B,B], then AB ≫ 1.

9. (a) Note the identity

fg =
1

2
|f + g|2 − 1

2
|f − g|2 +

i

2
|f + ig|2 − i

2
|f − ig|2.

(b) Show that if f ∈ L1(R) ∩ L2(R) and if g ∈ L1(R) ∩ L2(R) then∫ +∞

−∞
f(x)g(x) dx =

∫ +∞

−∞
f̂(t)ĝ(t) dt.

10. Suppose that F is strictly increasing, and that for i = 1, 2 the functions fi are real-
valued with fi ∈ L1(R) ∩ L2(R) and F (fi) ∈ L1(R) ∩ L2(R).
(a) Show that∫ +∞

−∞

(
f1(x) − f2(x)

)(
F (f1(x)) − F (f2(x))

)
dx

=

∫ +∞

−∞

(
f̂1(t) − f̂2(t)

)(
F̂ (f1)(t) − F̂ (f2)(t)

)
dt.

(b) Suppose additionally that f̂i(t) = 0 for |t| ≥ T , and that F̂ (f1)(t) = F̂ (f2)(t) for
−T ≤ t ≤ T . Show that f1 = f2 a.e.

2. Summability

We say that an infinite series
∑

an is Abel summable to a, and write
∑

an = a (A) if

lim
r→1−

∞∑
n=0

anr
n = a.

Abel proved that if a series converges then it is A-summable to the same value. Because of
this historical antecedent, we call a theorem ‘Abelian’ if it states that one kind of summa-
bility implies another. Perhaps the simplest Abelian theorem asserts that if

∑∞
n=1 an

converges to a then

(27) lim
N→∞

N∑
n=1

(
1 − n

N

)
an = a.
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This is the Cesàro method of summability of order 1, and so we abbreviate the relation

above as
∑

an = a (C, 1). On putting sN =
∑N

n=1 an, we reformulate the above by saying
that if limN→∞ sN = a, then

(28) lim
N→∞

1

N

N∑
n=1

sn = a.

Here, as in Abel summability and in most other summabilities, each term in the second
limit is a linear function of the terms in the first limit. Following Toeplitz and Schur, we
characterize those linear transformations T = [tmn] that preserves limits of sequences. We
call T regular if the following three conditions are satisfied:

There is a C = C(T ) such that
∞∑

n=1

|tmn| ≤ C for all m;(29)

lim
m→∞

tmn = 0 for all n;(30)

lim
m→∞

∞∑
n=1

tmn = 1.(31)

We now show that regular transformations preserve limits, and relegate the verification of
the converse to exercises.

Theorem 5. Suppose that T satisfies (29) above. If {an} is a bounded sequence then the
sequence

(32) bm =
∞∑

n=1

tmnan

is also bounded. If T satisfies (29) and (30), and if limn→∞ an = 0, then limm→∞ bm = 0.
Finally, if T is regular and limn→∞ an = a, then limm→∞ bm = a.

The important special case (28) is obtained by noting that the (semi-infinite) matrix
[tmn] with

tmn =

{
1/m if 1 ≤ n ≤ m,

0 if n > m

is regular. Moreover, the proof of Theorem 5 requires only a straightforward elaboration
of the usual proof of (28).

Proof. If |an| ≤ A and (29) holds, then

|bm| ≤
∞∑

n=1

|tmnan| ≤ A
∞∑

n=1

|tmn| ≤ CA.

To establish the second assertion, suppose that ε > 0 and that |an| < ε for n > N = N(ε).
Now

|bm| ≤
N∑

n=1

|tmnan| +
∑
n>N

|tmnan| = Σ1 + Σ2,
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say. From (29) and the argument above with A = ε we see that Σ2 ≤ Cε. From (30) we see
that limm→∞ Σ1 = 0. Hence lim supm→∞ |bm| ≤ Cε, and we have the desired conclusion
since ε is arbitrary. Finally, suppose that T is regular and that limn→∞ an = a. We write
an = a + αn, so that

bm = a
∞∑

n=1

tmn +
∞∑

n=1

tmnαn.

Since limn→∞ αn = 0, we may appeal to the preceding case to see that the second sum
tends to 0 as m → ∞. Hence by (31) we conclude that limm→∞ bm = a, and the proof is
complete.

In Chapter 1 we used Theorem 1.1 to show that if S is a sector of the form S = {s : σ >
σ0, |t − t0| ≤ H(σ − σ0)} where H is an arbitrary positive constant, and if the Dirichlet
series α(s) converges at the point s0, then

lim
s→s0
s∈S

α(s) = α(s0).

To see how this may also be derived from Theorem 5, let {sm} be an arbitrary sequence
of points of S for which limm→∞ sm = s0. It suffices to show that limm→∞ α(sm) = α(s0).
Take

tmn = ns0−sm − (n + 1)s0−sm ,

so that

α(sm) =
∞∑

n=1

tmn

( n∑
k=1

akk
−s0

)
.

In view of Theorem 5, it suffices to show that [tmn] is regular. The conditions (30) and
(31) are clearly satisfied, and (29) follows on observing that if s ∈ S then s−s0 ≪H σ−σ0,
so that

∣∣ns0−s − (n + 1)s0−s
∣∣ =

∣∣∣∣(s− s0)

∫ n+1

n

us0−s−1 du

∣∣∣∣
≪

H
(σ − σ0)

∫ n+1

n

uσ0−σ−1 du = nσ0−σ − (n + 1)σ0−σ.

Thus we have the result. Abel’s analogous theorem on the convergence of power series can
be derived similarly from Theorem 5.

The converse of Abel’s theorem on power series is false, but Tauber (1897) proved a
partial converse: If an = o(1/n) and

∑
an = a (A), then

∑
an = a. Following Hardy and

Littlewood, we call a theorem ‘Tauberian’ if it provides a partial converse of an Abelian
theorem. The qualifying hypothesis (‘an = o(1/n)’ in the above) is the ‘Tauberian hy-
pothesis’. For simplicity we begin with partial converses of (27).
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Theorem 6. If
∑∞

n=1 an = a (C, 1), then
∑

an = a provided that one of the following
hypotheses holds:

(a) an ≥ 0 for n ≥ 1;

(b) an = O(1/n) for n ≥ 1;

(c) There is a constant A such that an ≥ −A/n for all n ≥ 1.

Proof. Clearly (a) implies (c). If (b) holds then both ℜan and ℑan satisfy (c). Thus it
suffices to prove that

∑
an = a when (c) holds. We observe that if H is a positive integer

then

(33)

N∑
n=1

an =
N + H

H

N+H∑
n=1

an

(
1 − n

N + H

)
− N

H

N∑
n=1

an

(
1 − n

N

)
− 1

H

∑
N<n<N+H

an(N + H − n)

= T1 − T2 − T3,

say. Take H = [εN ] for some ε > 0. By hypothesis, limN→∞ T1 = a(1 + ε)/ε, and
limN→∞ T2 = a/ε. From (c) we see that

T3 ≥ −A
∑

N<n<N+H

1

n
≥ − AH

N
≥ −Aε.

Hence on combining these estimates in (33) we see that

lim sup
N→∞

N∑
n=1

an ≤ a + Aε.

Since ε can be taken arbitrarily small, it follows that

lim sup
N→∞

N∑
n=1

an ≤ a.

To obtain a corresponding lower bound we note that

(34)

N∑
n=1

an =
N

H

N∑
n=1

an

(
1 − n

N

)
− N −H

H

N−H∑
n=1

an

(
1 − n

N −H

)
+

1

H

∑
N−H<n<N

an(n + H −N).

Arguing as we did before, we find that

lim inf
N→∞

N∑
n=1

an ≥ a−Aε/(1 − ε),
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so that

lim inf
N→∞

N∑
n=1

an ≥ a,

and the proof is complete.

If we had argued from (a) or (b) then the treatment of the term T3 above would have
been simpler, since from (a) it follows that T3 ≥ 0, while from (b) we have T3 ≪ ε.

Our next object is to generalize and strengthen Theorem 6. The type of generalization
we have in mind is exhibited in the following result, which can be established by adapting
the above proof: Let β be fixed, β ≥ 0. If

N∑
n=1

an

(
1 − n

N

)
= (a + o(1))Nβ ,

and if an ≥ −Anβ−1, then

N∑
n=1

an = (a(β + 1) + o(1))Nβ .

Concerning the possibility of strengthening Theorem 6, we note that by an Abelian argu-
ment (or by an application of Theorem 5) it may be shown that

∑
an = a (C, 1) implies

that
∑

an = a (A). Thus if we replace (C, 1) by (A) in Theorem 6, then we have weak-
ened the hypothesis, and the result would therefore be stronger. Indeed, Hardy (1910)
conjectured and Littlewood (1911) proved that if

∑
an = a (A) and an = O(1/n) then∑

an = a. That is, the condition ‘an = o(1/n)’ in Tauber’s theorem can be replaced by
the condition (b) above. In fact the still weaker condition (c) suffices, as will be seen by
taking β = 0 in Corollary 9 below. We now formulate a general result for the Laplace
transform, from which the analogues for power series and Dirichlet series follow easily.

Theorem 7. (Hardy-Littlewood) Suppose that a(u) is Riemann-integrable over [0, U ] for
every U > 0, and that the integral

I(δ) =

∫ ∞

0

a(u)e−uδ du

converges for every δ > 0. Let β be fixed, β ≥ 0, and suppose that

(35) I(δ) = (a + o(1))δ−β

as δ → 0+. If, moreover, there is a constant A ≥ 0 such that

(36) a(u) ≥ −A(u + 1)β−1

for all u ≥ 0, then

(37)

∫ U

0

a(u) du =
( a

Γ(β + 1)
+ o(1)

)
Uβ .
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The basic properties of the gamma function are developed in Appendix C, but for our
present purposes it suffices to put

Γ(β) =

∫ ∞

0

uβ−1e−u du

for β > 0. From this it follows by integration by parts that

(38) βΓ(β) = Γ(β + 1)

when β > 0.
The amount of unsmoothing required in deriving (37) from (35) is now much greater

than it was in the proof of Theorem 6. Nevertheless we follow the same line of at-
tack. To obtain the proper perspective we review the preceding proof. Let I = [0, 1],
let χ

I
(u) be its characteristic function, and put K(u) = max(0, 1 − u) for u ≥ 0. Thus∑N

n=1 an =
∑

n anχI
(n/N), and

∑N
n=1 an(1 − n/N) =

∑
n anK(n/N). Our strategy was

to approximate to χ
I
(u) by linear combinations of K(κu) for various values of κ, κ > 0.

The relation underlying (33) and (34) is both simple and explicit:

(39)
1

ε

(
K(u) − (1 − ε)K(u/(1 − ε))

)
≤ χ

I
(u) ≤ 1

ε

(
(1 + ε)K(u/(1 + ε)) −K(u)

)
;

we took ε = H/N . In the present situation we wish to approximate to χ
I
(u) by linear

combinations of e−κu, κ > 0. We make the change of variable x = e−u, so that 0 ≤ x ≤ 1,
and we put J = [1/e, 1]. Then we want to approximate to χ

J
(x) by a linear combination

P (x) of the functions xκ, κ > 0. In fact it suffices to use only integral values of κ, so that
P (x) is a polynomial that vanishes at the origin. In place of (33), (34) and (39) we shall
substitute

Lemma 8. Let ε be given, 0 < ε < 1/4, and put J = [1/e, 1], K = [e−1−ε, e−1+ε]. There
exist polynomials P±(x) such that for 0 ≤ x ≤ 1 we have

(40) P−(x) ≤ χ
J
(x) ≤ P+(x)

and

(41) |P±(x) − χ
J
(x)| ≤ εx(1 − x) + 5χ

K
(x).

Proof. Let g(x) = (χ
J
(x) − x)/

(
x(1 − x)

)
. Then g is continuous in [0, 1] apart from a

jump discontinuity at x = 1/e of height e2/(e − 1) < 5. Hence by Weierstrass’s theorem
on the uniform approximation of continuous functions by polynomials we see that there
are polynomials Q±(x) such that Q−(x) ≤ g(x) ≤ Q+(x) for 0 ≤ x ≤ 1, and for which

(42) |g(x) −Q±(x)| ≤ ε + 5χ
K

(x)

for 0 ≤ x ≤ 1. Then the polynomials P±(x) = x + x(1 − x)Q±(x) have the desired
properties.
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Proof of Theorem 7. We suppose first that a = 0. We note that if P (x) is a polynomial

such that P (0) = 0, say P (x) =
∑R

r=1 crx
r, then by (35) we see that

(43)

∫ ∞

0

a(u)P (e−uδ) du =
R∑

r=1

crI(rδ) = o(δ−β)

as δ → 0+. In the notation of the above lemma,∫ U

0

a(u) du =

∫ ∞

0

a(u)χ
J
(e−u/U ) du.

If (40) holds, then by (36) we see that∫ ∞

0

a(u)
(
P+(e−u/U ) − χ

J
(e−u/U )

)
du ≥ −A

∫ ∞

0

(u + 1)β−1
(
P+(e−u/U ) − χ

J
(e−u/U )

)
du.

By (41) this latter integral is

≪ ε

∫ ∞

0

(u + 1)β−1e−u/U (1 − e−u/U ) du +

∫ (1+ε)U

(1−ε)U

(u + 1)β−1 du.

In the first term, the integrand is ≪ (u + 1)βU−1 for 0 ≤ u ≤ U ; it is ≪ uβ−1e−u/U

for u ≥ U . Hence the first integral is ≪ Uβ . The second integral is ≪ εUβ . On taking
δ = 1/U , P = P+ in (43) and combining our results, we find that∫ U

0

a(u) du ≤ A1εU
β + o(Uβ).

Since ε can be arbitrarily small, we deduce that

lim sup
U→∞

U−β

∫ U

0

a(u) du ≤ 0.

By arguing similarly with P− instead of P+, we see that the corresponding liminf is ≥ 0,
and so we have (37) in the case a = 0.

Suppose now that a ̸= 0, β > 0. We note first that∫ ∞

0

(u + 1)β−1e−uδ du = eδ
∫ ∞

1

vβ−1e−vδ dv = eδ
∫ ∞

0

vβ−1e−vδ dv + O(eδ),

and that ∫ ∞

0

vβ−1e−vδ dv = δ−β

∫ ∞

0

wβ−1e−w dw = δ−βΓ(β).

Hence if b(u) = a(u) − a(u + 1)β−1/Γ(β), then b(u) ≥ −B(u + 1)β−1, and∫ ∞

0

b(u)e−uδ du = o(δ−β).

Thus
∫ U

0
b(u) du = o(Uβ), so that∫ U

0

a(u) du =
a

βΓ(β)
Uβ + o(Uβ),

and we have (37), in view of (38).
For the remaining case, β = 0, it suffices to consider b(u) = a(u) − aχ

[0,1]
(u).
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Corollary 9. Suppose that p(z) =
∑∞

n=0 anz
n converges for |z| < 1, and that β ≥ 0. If

p(x) = (a + o(1))(1 − x)−β as x → 1−, and if an ≥ −Anβ−1 for n ≥ 1, then

N∑
n=0

an =
( a

Γ(β + 1)
+ o(1)

)
Nβ .

Proof. Put a(u) = an for n ≤ u < n + 1. Then (36) holds, and

I(δ) =

∞∑
n=0

an

∫ n+1

n

e−uδ du =
1 − e−δ

δ
p(e−δ).

But 1−e−δ ∼ δ as δ → 0+, so that (35) holds. The result now follows by taking U = N +1
in (37).

Corollary 10. If
∑

an = a (A), and if the sequence sN =
∑N

n=0 an is bounded, then∑
an = a (C, 1).

Proof. Take β = 1, p(z) =
∑∞

n=0 snz
n = (1 − z)−1

∑∞
n=0 anz

n in Corollary 9. Then∑N
n=0 sn = (a + o(1))N , which is the desired result.

For Dirichlet series we have similarly

Theorem 11. Suppose that α(s) =
∑∞

n=1 ann
−s converges for σ > 1, and that β ≥ 0. If

α(σ) = (a + o(1))(σ − 1)−β as σ → 1+, and if an ≥ −A(1 + log n)β−1, then

N∑
n=1

an
n

=
( a

Γ(β + 1)
+ o(1)

)
(logN)β .

Proof. Take a(u) =
∑

u−1≤logn<u an/n. Then I(δ) converges for δ > 0, and moreover

I(δ) =

∞∑
n=1

an
n

∫ 1+logn

logn

e−uδ du =
1 − e−δ

δ
α(1 + δ),

so that (37) follows. To obtain the desired conclusion we require a further appeal to our
Tauberian hypothesis. We note that∫ logN

0

a(u) du =
∑
n≤N

an
n

−
∑

N/e<n≤N

an
n

log
ne

N
.

By our Tauberian hypothesis this is

≤
∑
n≤N

an
n

+ A1(logN)β−1,
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so that ∑
n≤N

an
n

≥
( a

Γ(β + 1)
+ o(1)

)
(logN)β −A1(logN)β−1.

On taking U = 1 + logN in (37) we may derive a corresponding upper bound to complete
the proof.

The qualitative arguments we have given can be put in quantitative form as the need
arises. For example, it is easy to see that if

(44)
N∑

n=1

an = N + O
(√

N
)

then

(45)
N∑

n=1

an(N − n) =
1

2
N2 + O(N3/2).

This is best possible (take an = 1 + n−1/2), but if the error term is oscillatory then
smoothing may reduce its size (consider an = cos

√
n). Conversely if (45) holds and if the

sequence an is bounded, then the method used to prove Theorem 6 can be used to show
that

(46)
N∑

n=1

an = N + O(N3/4).

This conclusion, though it falls short of (44), is best possible (take an = 1 + cosn1/4).
We can also put Theorem 7 in quantitative form, but here the loss in precision is much
greater, and in general the importance of Theorem 7 and its corollaries lies in its versatility.
For example, it can be shown that if

∑∞
n=0 anr

n = (1 − r)−1 + O(1) as r → 1−, and if
an = O(1), then

N∑
n=0

an = N + O
( N

logN

)
.

This error term, though weak, is best possible (take an = 1 + cos(log n)2).
For Dirichlet series it can be shown that if

α(s) =
∞∑

n=1

ann
−s =

1

s− 1
+ O(1)

as s → 1+, and if the sequence an is bounded, then

N∑
n=1

an
n

= logN + O
( logN

log logN

)
.
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This is also best possible (take an = 1 + cos(log log n)2), but we can obtain a sharper
result by strengthening our analytic hypothesis. For example, it can be shown that if α(s)
is analytic in a neighborhood of 1 and if the sequence an is bounded, then

N∑
n=1

an
n

= O(1).

However, even this stronger assumption does not allow us to deduce that

N∑
n=1

an = o(N),

as we see by considering an = cos log n. In Chapter 8 we shall encounter further Taube-
rian theorems in which the above conclusion is derived from hypotheses concerning the
behaviour of α(s) throughout the half-plane σ ≥ 1.

5.2. Exercises

1. Let T be a regular matrix such that tmn ≥ 0 for all m,n. Show that if limn→∞ an = +∞
then limm→∞ bm = +∞.

2. Show that if T = [tmn] and U = [umn] are regular matrices then so is TU = V = [vmn]
where

vmn =

∞∑
k=1

tmkukn.

3. Show that if b = Ta and limm→∞ bm = a whenever limn→∞ an = a, then T is regular.

4. For n = 0, 1, 2, . . . let tn(x) be defined on [0, 1), and suppose that the tn satisfy the
following conditions:

(i) There is a constant C such that if x ∈ [0, 1) then
∑∞

n=0 |tn(x)| ≤ C;
(ii) For all n, limx→1− tn(x) = 0;

(iii) limx→1−
∑∞

n=0 tn(x) = 1.

Show that if limn→∞ an = a and if b(x) =
∑∞

n=0 antn(x) then limx→1− b(x) = a.

5. (Kojima (1917)) Suppose that the numbers tmn satisfy the following conditions:

(i) There is a constant C such that
∑∞

n=1 |tmn| ≤ C for all m;
(ii) For all n, limm→∞ tmn exists;

(iii) limm→∞
∑∞

n=1 tmn exists.

Show that if limn→∞ an exists and if bm =
∑∞

n=1 tmnan then limm→∞ bm exists.

6. For positive integers n let Kn(x) be a function defined on [0,∞) such that
(i)

∫∞
0

Kn(x) dx → 1 as n → ∞;
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(ii)
∫∞
0

|Kn(x)| dx ≤ C for all n;
(iii) limn→∞ Kn(x) = 0 uniformly for 0 ≤ x ≤ X.

Suppose that a(x) is a bounded function, and that bn =
∫∞
0

a(x)Kn(x) dx. Show that if
limx→∞ a(x) = a then limn→∞ bn = a.

7. Let rm be a sequence of positive real numbers with rm → 1− as m → ∞ . For m ≥ 1,
n ≥ 1, put tmn = nrn−1

m (1 − rm)2 .
(a) Show that [tmn] is regular.

(b) Show that if an =
∑n−1

k=0 ck(1−k/n) and bm is defined by (32), then bm =
∑∞

k=0 ckr
k
m .

(c) Show that if
∑

cn = c (C, 1), then
∑

cn = c (A).

8. Suppose that T = [tmn] is given by

tmn =


0 if n = 0,

m!n

mn+1(m− n)!
if m ≥ n > 0,

0 if m < n.

(a) Show that
m∑

n=k

tmn =
m!

mk(m− k)!

for 1 ≤ k ≤ m .
(b) Verify that T is regular.
(c) Show that if an =

∑n
k=0 x

k/k! for n ≥ 0, then bm = (1 + x/m)m for m ≥ 1.

9. (Mercer’s Theorem) Suppose that

bm =
1

2
am +

1

2
· a1 + a2 + · · · + am

m

for m ≥ 1. Show that

an =
2n

n + 1
bn − 2

n(n + 1)

n−1∑
m=1

mbm.

Conclude that limn→∞ an = a if and only if limm→∞ bm = a.

10. For a non-negative integer k we say that
∑

an = a (C, k) if

lim
x→∞

∑
n≤x

an

(
1 − n

x

)k
= a.

This is Cesàro summability of order k.
(a) Show that if

∑
an = a (C, j) then

∑
an = a (C, k) for all k ≥ j.

(b) Show that if
∑

an = a (C, k) for some k then
∑

an = a (A).
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11. Show that if
∑

an = a (A) then lims→0+
∑

ann
−s = a. (See Wintner (1943) for

Tauberian converses.)

12. For a non-negative integer k we say that
∑

an = a (R, k) if

lim
x→∞

∑
n≤x

an

(
1 − log n

log x

)k
= a.

This is Riesz summability of order k.
(a) Show that if

∑
an = a (R, j) then

∑
an = a (R, k) for all k ≥ j.

(b) Show that if
∑

an = a (R, k) for some k then
∑

s→0+ α(s) = a.

13. Put tmn = 0 for n > m, set

tmm =
m + 1

log(m + 1)
(log(m + 1) − logm),

while for 1 ≤ n < m put

tmn =
n + 1

log(m + 1)
(− log n + 2 log(n + 1) − log(n + 2)) .

(a) Show that if

an =
n∑

k=1

ck

(
1 − k

n + 1

)
for n ≥ 1, then the bm given in (32) satisfies

bm =
m∑

k=1

ck

(
1 − log k

log(n + 1)

)
.

(b) Show that tmn ≥ 0 for all m,n.
(c) Show that

∞∑
n=1

tmn = 1 +
log 2

log(m + 1)
.

(d) Show that limm→∞ tmn = 0 .

(e) Conclude that if
∑

ck = c (C, 1), then
∑

ck = c (R, 1) .

14. Let A(x) =
∑

0<n≤x an .

(a) Show that
N∑

n=1

an

(
1 − n

N

)
=

1

N

∫ N

0

A(x) dx .
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(b) Show that
N∑

n=1

an

(
1 − log n

logN

)
=

1

logN

∫ N

1

A(x)

x
dx .

(c) Suppose that t is a fixed nonzero real number. By Corollary 1.15, or otherwise, show
that

N∑
n=1

n−1−it
(

1 − n

N

)
=

N−it

(1 − it)2
+ ζ(1 + it) + O

( logN

N

)
.

(d) Similarly, show that

N∑
n=1

n−1−it
(

1 − log n

logN

)
= ζ(1 + it) + O

( 1

logN

)
.

(e) Conclude that
∑∞

n=1 n
−1−it is not summable (C, 1), but that it is summable (R, 1) to

ζ(1 + it) .

15. We say that a series is Lambert summable, and write
∑

an = a (L), if

lim
r→1−

(1 − r)
∞∑

n=1

nanr
n

1 − rn
= a.

(a) Show that if
∑

an = a then
∑

an = a (L).
(b) Show that if an is a bounded sequence and |z| < 1, then

∞∑
n=1

nanz
n

1 − zn
=

∞∑
n=1

(∑
d|n

dad

)
zn.

(c) Show that
∑∞

n=1 µ(n)/n = 0 (L).
(d) Deduce that if

∑∞
n=1 µ(n)/n converges, then its value is 0. (See (6.18), (8.6).)

(e) Show that
∑∞

n=1(Λ(n) − 1)/n = −2C0 (L).
(f) Deduce that if

∑
n≤x Λ(n)/n = log x + c + o(1) then c = −C0. (See Exercise 8.1.1.)

16. (Bohr (1909), Riesz (1909), Phragmén (cf Landau (1909, pp. 762, 904))) Let α(s) =∑
ann

−s, β(s) =
∑

bnn
−s, and γ(s) = α(s)β(s) =

∑
cnn

−s where cn =
∑

d|n adbn/d.

Further, put A(x) =
∑

n≤x an and B(x) =
∑

n≤x bn.

(a) Show that ∫ x

1

A(y)B(x/y)
dy

y
=

∑
n≤x

cn log x/n.

(b) Show that if
∑

an converges and
∑

bn converges, then
∑

cn = α(0)β(0) (R, 1).
(c) (Landau (1907)) By taking j = 0 in Exercise 11(a), or otherwise, show that if the three
series

∑
an,

∑
bn,

∑
cn all converge, then

∑
cn =

(∑
an

)(∑
bn
)
.
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17. Suppose that f(n) ↗ ∞. Construct an so that |an| ≤ f(n)/n for all n,

lim sup
N→∞

N∑
n=1

an = 1, lim inf
N→∞

N∑
n=1

an = −1,

but

lim
N→∞

N∑
n=1

an(1 − n/N) = 0.

18. (Landau (1908) Show that if f(x) ∼ x as x → ∞ and xf ′(x) is increasing, then
limx→∞ f ′(x) = 1.

19. (Landau (1914); cf Littlewood (1986, p. 54–55), Schoenberg (1973)) Show that if
f(x) → 0 as x → ∞, and if f ′′(x) = O(1), then f ′(x) → 0 as x → ∞.

20. (Tauber’s ‘Second Theorem’) Suppose that P (δ) =
∑∞

n=0 ane
−nδ for δ > 0, and put

sN =
∑N

n=0 an.
(a) Show that if an = O(1/n) then sN = P (1/N) + O(1).
(b) Show that if an = o(1/n) then sN = P (1/N) + o(1).

(c) Let B(N) =
∑N

n=1 nan. Show that if
∑

an converges then B(N) = o(N) as N → ∞.
(d) Show that if P (δ) converges for δ > 0 then

sN−P (1/N) =
B(N)

N
+

∫ N

1

B(u)
( 1

u2
− e−u/N

u2
− e−u/N

uN

)
du+

∫ ∞

N

B(u)e−u/N
( u

N
−1

) du

u2
.

(e) Show that if B(N) = o(N) then sN − P (1/N) = o(1).
(f) Show that if

∑
an = a (A) then

∑
an = a if and only if B(N) = o(N).

21. (a) Using Ramanujan’s identity
∑∞

n=1 d(n)2n−s = ζ(s)4/ζ(2s) and Theorem 11, show
that

∑
n≤x d(n)2/n ∼ (4π2)−1(log x)4.

(b) Show that if
∑

n≤x d(n)2 ∼ cx(log x)3 as x → ∞, then c = 1/π2.

22. Show that
∑∞

n=1 1/(d(n)ns) ∼ c(s− 1)−1/2 as s → 1+ where

c =
∏
p

(
(p2 − p)1/2 log

( p

p− 1

))
.

Deduce that ∑
n≤x

1

nd(n)
∼ 2c√

π
(log x)1/2

as x → ∞.
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23. Show that if
∑

n≤N an/n = O(1) and lims→1+
∑∞

n=1 ann
−s = a, then

lim
x→∞

∑
n≤x

an
n

(
1 − log n

log x

)
= a.

24. Show that ∫ ∞

0

sinx

x
e−sx dx = arctan 1/s

for s > 0. Using Theorem 7, deduce that∫ ∞

0

sinx

x
dx =

π

2
.

25. Suppose that f(u) ≥ 0, that
∫∞
0

f(u) du < ∞, and that
∫∞
0

(1 − e−δu) du ∼ δ1/2 as

δ → 0+. Show that
∫∞
U

f(u) du ∼ (πU)−1/2 as U → ∞.

26. Show that
∑∞

n=1 an = a if and only if

lim
r→1−

∞∑
n=0

anr
2n = a.

27. Suppose that for every ε > 0 there is an η > 0 such that
∑

N<n≤(1+η)N |an| < ε

whenever N > 1/η. Show that if
∑

n = a (A) then
∑

an = a.

28. Show that if
∑

an = a (C, 1) and if an+1 − an = O(|an|/n) then
∑

an = a.

29. (Hardy & Littlewood (1913); Theorem 27) Show that if
∑

an = a (A) and if
an+1 − an = O(|an|/n), then

∑
an = a.

30. (Hardy (1907)) Show that

lim
x→1−

∞∑
k=0

(−1)kx2k

does not exist.
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5. Notes

§1. Theorem 1 and the more general (22) were first proved rigorously by Perron (1908).
Although the Mellin transform had been used by Riemann and Cahen, it was Mellin (1902)
who first described a general class of functions for which the inversion succeeds. Hjalmar
Mellin was Finnish, but his family name is of Swedish origin, so it is properly pronounced
mĕ · lēn′. However, in English-speaking countries the uncultured pronunciation mĕl′· ı̆n is
universal.

In connection with Theorem 4, it should be noted that Plancherel’s formula ∥f∥2 = ∥f̂∥2
holds not just for all f ∈ L1(R) ∩ L2(R) but actually for all f ∈ L2(R). However, in this

wider setting one must adopt a new definition for f̂ , since the definition we have taken is
valid only for f ∈ L1(R). See Goldberg (1961, pp. 46–47) for a resolution of this issue.

For further material concerning properties of Dirichlet series, one should consult Hardy
& Riesz (1915), Titchmarsh (1939, Chapter 9), or Widder (1971, Chapter 2). Beyond the
theory developed in these sources, we call attention to two further topics of importance
in number theory. Wiener (1932, p. 91) proved that if the Fourier series of f ∈ L1(T) is
absolutely convergent and is never zero, then the Fourier series of 1/f is also absolutely
convergent. Wiener’s proof was rather difficult, but Gel’fand (1941) devised a simpler
proof depending on his theory of normed rings. Lévy (1934) proved more generally that the
Fourier series of F (f) is absolutely convergent provided that F is analytic at all points in the
range of f . Elementary proofs of these theorems have been given by Zygmund (1968, pp.
245–246) and Newman (1975). These theorems were generalized to absolutely convergent
Dirichlet series by Hewitt & Williamson (1957), who showed that if α(s) =

∑
ann

−s is
absolutely convergent for σ ≥ σ0, then 1/α(s) is represented by an absolutely convergent
Dirichlet series in the same halfplane, if and only if the values taken by α(s) in this
halfplane are bounded away from 0. Ingham (1962) noted a fallacy in Zygmund’s account
of Lévy’s theorem, corrected it, and gave an elementary proof of the generalization to
absolutely convergent Dirichlet series. See also Goodman & Newman (1984). Secondly,
Bohr (1918) developed a theory concerning the values taken on by an absolutely convergent
Dirichlet series. This is described by Titchmarsh (1986, Chapter 11), and in greater detail
by Apostol (1976, Chapter 8). For a small footnote to this theory, see Montgomery &
Schinzel (1977).

§2. That conditions (29)–(31) are necessary and sufficient for the transformation T
to preserve limits was proved by Toeplitz (1911) for upper triangular matrices, and by
Steinhaus (1911) in general. See also Kojima (1917) and Schur (1921). For more on
the Toeplitz matrix theorem and various aspects of Tauberian theorems, see Peyerimhoff
(1969).

Theorem 6 under the hypothesis (a) is trivial by dominated convergence. Theorem 6(b)
is a special case of a theorem of Hardy (1910), who considered the more general (C,k)
convergence, and Theorem 6(c) is similarly a special case of a theorem of Landau (1910,
pp. 103–113).

Tauber (1897) proved two theorems, the second of which is found in Exercise 18. Lit-
tlewood (1910) derived his strengthening of Tauber’s first theorem by using high order
derivatives. Subsequently Hardy & Littlewood (1912), (1913), (1914a), (1914b), (1926),
(1930) used the same technique to obtain Theorem 8 and its corollaries. Karamata (1930),
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(1931a), (1931b) introduced the use of Weierstrass’s approximation theorem. Karamata
also considered a more general situation, in which the right hand sides of (35) and (36) are
multiplied by a slowly-oscillating function L(1/δ), and the right hand side of (37) is mul-
tiplied by L(U). Our exposition employs a further simplification due to Wielandt (1952).
Other proofs of Littlewood’s theorem have been given by Delange (1952) and by Eggle-
ston (1951). Ingham (1965) observed that a peak function similar to Littlewood’s can be
constructed by using high order differencing instead of differentiation. Since many proofs
of the Weierstrass theorem involve constructing a peak function, the two methods are not
materially different. Sharp quantitative Tauberian theorems have been given by Postnikov
(1951), Korevaar (1951), (1953), (1954a–d), Freud (1952), (1953), (1954), Ingham (1965),
and Ganelius (1971).

For other accounts of the Hardy–Littlewood theorem, see Hardy (1949) or Widder
(1946), (1971). For a brief survey of applications of summability to classical analysis,
see Rubel (1989).

Wiener (1932), (1933) invented a general Tauberian theory that contains the Hardy–
Littlewood theorems for power series (Theorem 8 and its corollaries) as a special case.
Wiener’s theory is discussed by Hardy (1949), Pitt (1958), and Widder (1946). Among
the longer expositions of Tauberian theory, the recent accounts of Korevaar (2002), (2004)
are especially recommended.
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