
Chapter 11

Primes in Arithmetic Progressions — II

1. A zero-free region

For a given integer q, the primes not dividing q are dis-
tributed in the reduced residue classes modulo q . As there
are no other obvious restrictions on the primes modulo q, we
expect the primes to be uniformly distributed amongst the
reduced residue classes. Let π(x; q, a) denote the number of
primes p ≤ x such that p ≡ a (mod q) . We anticipate that
if (a, q) = 1 then

π(x; q, a) ∼ x

φ(q) log x
as x −→ ∞ .

This asymptotic estimate is the Prime Number Theorem for
Arithmetic Progressions; it can be readily established by
adapting the methods of Chapters 4 and 6. For many pur-
poses, however, it is important to have a quantitative form
of this, from which one can tell how large x should be, as
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340CHAPTER 11. PRIMES IN ARITHMETIC PROGRESSIONS — II

a function of q, to ensure that π(x; q, a) is near li(x)/φ(q) .
To obtain such an estimate we must first derive a zero-free
region for the Dirichlet L-functions L(s, χ) that is explicit in
its dependence on both q and t . For the most part our argu-
ments are natural generalizations of the analysis in Chapter
6, but we shall encounter a new difficulty in connection with
the possible existence of a real zero β near 1 of L(s, χ) when
χ is a quadratic character.

The approximate partial fraction expansion of ζ′

ζ (s) (cf

Lemma 6.4) depends on the upper bound for |ζ(s)| provided
by Corollary 1.17. By using Lemma 10.15 in a similar man-
ner, we now derive a corresponding approximate partial frac-

tion formula for L′

L (s, χ) . In order to formulate a unified
result for both the principal and nonprincipal characters, it
is convenient to employ the notation

(1) E0(χ) =

{
1 if χ = χ

0
,

0 otherwise.

Lemma 1. If χ is a character (mod q) and 5/6 ≤ σ ≤ 2
then

− L′

L
(s, χ) =

E0(χ)

s− 1
−
∑
ρ

1

s− ρ
+O(log qτ)

where the sum is over all zeros ρ of L(s, χ) for which |ρ −
( 32 + it)| ≤ 5/6 .

Proof. When χ is nonprincipal we apply Lemma 6.3 to the
function

f(z) = L(z + ( 32 + it), χ)
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with R = 5/6 and r = 2/3 . By Lemma 10.15 we may take
M = Cqτ for a suitable absolute constant C, and by the
Euler product for L(s, χ) we see that

|f(0)| = |L( 32+it, χ)| =
∏
p

∣∣1−χ(p)p− 3
2−it

∣∣−1 ≥
∏
p

(
1+p−3/2

)−1 ≫ 1 .

Now suppose that χ = χ
0
. The zeros of the function 1 −

p−s form an arithmetic progression on the imaginary axis.
Hence by (4.22), the zeros of L(s, χ

0
) are the zeros of ζ(s)

together with the union of several arithmetic progressions
on the imaginary axis. Since these latter zeros all lie at
a distance ≥ 3/2 from the point 3

2 + it, none of them is
included in the sum over ρ . Moreover, by taking logarithmic
derivatives of both sides of (4.22) we see that

L′

L
(s, χ

0
) =

ζ ′

ζ
(s) +

∑
p|q

log p

ps − 1
.

But (log p)/(ps − 1) ≪ 1 for σ ≥ 5/6, so the sum over p
is ≪ ω(q) ≪ log q by Theorem 2.10. Hence we obtain the
stated identity by appealing to Lemma 6.4.

The generalization of Lemma 6.5 is straightforward.

Lemma 2. If σ > 1 then

ℜ
(
− 3

L′

L
(σ, χ

0
)− 4

L′

L
(σ + it, χ)− L′

L
(σ + 2it, χ2)

)
≥ 0 .
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Proof. By the Dirichlet series expansion (4.25) for L′

L (s, χ)
we see that the left hand side above is

ℜ
∞∑

n=1
(n,q)=1

Λ(n)

nσ
(3 + 4χ(n)n−it + χ(n)2n−2it) .

The quantity χ(n)n−it is unimodular when (n, q) = 1, so for
such n there is a real number θn such that χ(n)n−it = eiθn .
Thus the above is

∞∑
n=1

(n,q)=1

Λ(n)

nσ
(3 + 4 cos θn + cos 2θn) .

This is nonnegative because 3 + 4 cos θ + cos 2θ = 2(1 +
cos θ)2 ≥ 0 for all θ .

The groundwork laid above enables us to establish a vari-
ant of Theorem 6.6 for Dirichlet L-functions.

Theorem 3. There is an absolute constant c > 0 such that
if χ is a Dirichlet character modulo q then the region

Rq = {s : σ > 1− c/ log qτ}

contains no zero of L(s, χ) unless χ is a quadratic character,
in which case L(s, χ) has at most one, necessarily real, zero
β < 1 in Rq .

A zero lying in Rq, as described above, is called excep-
tional . No exceptional zero is known, and indeed it may be



1. A ZERO-FREE REGION 343

conjectured that if χ is quadratic then L(σ, χ) > 0 for all
σ > 0 . We give further study to exceptional zeros in the
next section.

Proof. The case χ = χ
0
is immediate from (4.22) and The-

orem 6.6, so we may assume that χ is nonprincipal. Also,
the Euler product (4.21) for L(s, χ) is absolutely conver-
gent when σ > 1, and hence L(s, χ) ̸= 0 for such s . Thus
it suffices to consider a zero ρ0 = β0 + iγ0 of L(s, χ) with
12/13 ≤ β0 ≤ 1 . We consider several cases, the first of which
parallels the proof of Theorem 6.6 most closely.

Case 1. Complex χ . If σ > 1 and ρ is a zero of an
L-function then ℜ(s − ρ) > 0 and hence ℜ1/(s − ρ) > 0 .
Thus by Lemma 1, if 0 < δ ≤ 1 then
(2)

−ℜL
′

L
(1 + δ, χ

0
) ≤ 1

δ
+ c1 log q,

−ℜL
′

L
(1 + δ + iγ0, χ) ≤

−1

1 + δ − β0
+ c1 log q(|γ0|+ 4),

−ℜL
′

L
(1 + δ + 2iγ0, χ

2) ≤ c1 log q(2|γ0|+ 4)

for some absolute constant c1 . The hypothesis that χ is
complex is needed for this last inequality, to ensure that
χ2 ̸= χ

0
in the appeal to Lemma 1. We multiply both sides

of the first inequality by 3, the second by 4, and sum all three.
By Lemma 2, the resulting left hand side is nonnegative.
That is,

3

δ
− 4

1 + δ − β0
+ c2 log q(|γ0|+ 4) ≥ 0
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for some constant c2 . If β0 = 1, then letting δ → 0+ gives an
immediate contradiction, so it may be assumed that β0 < 1.
Then, on taking δ = 6(1− β0), it follows that

1− β0 ≥ 1

14c2 log q(|γ0|+ 4)
.

Hence ρ0 /∈ Rq if c is chosen sufficiently small.
This argument also applies with only small changes when

χ is quadratic, provided that |γ0| is large. We can even allow
|γ0| to be small, as long as it is large compared with 1− β0 .
We now consider such a case.

Case 2. Quadratic χ, |γ0| ≥ 6(1 − β0) . By Theorem
4.9, L(1, χ) ̸= 0, so γ0 ̸= 0. Hence we can proceed as above,
except that as χ2 = χ

0
the third inequality in (2) must be

replaced by the weaker inequality

−ℜL
′

L
(1 + δ + 2iγ0, χ

2) ≤ δ

δ2 + 4γ20
+ c1 log q(2|γ0|+ 4) .

Again if β0 = 1, then taking δ → 0+ gives a contradiction.
Thus it can be supposed that β0 < 1. Since |γ0| ≥ 6(1−β0),
this implies that

−ℜL
′

L
(1+δ+2iγ0, χ

2) ≤ δ

δ2 + 144(1− β0)2
+c1 log q(2|γ0|+4) .

We combine this inequality with the first two inequalities in
(2) and apply Lemma 2 with σ = 1 + δ = 1 + 6(1 − β0) to
see that

1

1− β0

(3
6
− 4

7
+

6

180

)
+ c2 log q(|γ0|+ 4) ≥ 0 .
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The factor in large parentheses above is −4/105 < −1/27,
so

1− β0 ≥ 1

27c2 log q(|γ0|+ 4)
.

Case 3. Quadratic χ, 0 < |γ0| ≤ 6(1−β0) . Since L(s, χ)
is real when s is real, it follows by the Schwarz reflection
principle that L(β0− iγ0, χ) = 0 . Hence by Lemma 1 we see
that if 1 < σ ≤ 2 then

−ℜL
′

L
(σ, χ) ≤ −ℜ 1

σ − ρ0
−ℜ 1

σ − ρ0
+ c1 log 4q

=
−2(σ − β0)

(σ − β0)2 + γ20
+ c1 log 4q

≤ −2(σ − β0)

(σ − β0)2 + 36(1− β0)2
+ c1 log 4q .(3)

Rather than apply Lemma 2 we simply observe that if σ > 1
then

(4) − L′

L
(σ, χ

0
)− L′

L
(σ, χ) =

∞∑
n=1

(n,q)=1

Λ(n)

nσ
(1+χ(n)) ≥ 0 .

We put σ = 1 + δ = 1 + a(1 − β0) and combine the first
inequality in (2) and (3) in the above to deduce that

1

1− β0

(1
a
− 2(a+ 1)

(a+ 1)2 + 36

)
+ c2 log 4q ≥ 0 .

The factor in large parentheses is ∼ −1/a as a→ ∞, so it is
certainly possible to choose a value of a so that this factor
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is negative. Indeed, when a = 13 this factor is −33/754 <
−1/27, and hence

1− β0 ≥ 1

27c2 log 4q
.

(We note that our supposition that β0 ≥ 12/13 implies that
σ = 1 + 13(1− β0) ≤ 2, so that Lemma 1 is applicable.)

Case 4. Quadratic χ, real zeros. If β0 is a real zero
of L(s, χ), then β0 < 1 by Theorem 4.9. Suppose that β0 ≤
β1 < 1 are two such zeros. Then by Lemma 1,

−ℜL
′

L
(σ, χ) ≤ − 1

σ − β0
− 1

σ − β1
+ c1 log 4q

≤ − 2

σ − β0
+ c1 log 4q .

On combining the first part of (2) and the above in (4) with
σ = 1 + δ = 1 + a(1− β0), we find that

1

1− β0

(1
a
− 2

a+ 1

)
+ c2 log 4q ≥ 0 .

On taking a = 2 we deduce that

1− β0 ≥ 1

6c2 log 4q
.

This completes the proof.

In the same way that Theorem 6.7 was derived from Theo-

rem 6.6, we now derive estimates for L′

L (s, χ) and logL(s, χ)
in a portion of the critical strip.



1. A ZERO-FREE REGION 347

Theorem 4. Let χ be a nonprincipal character modulo q,
let c be the constant in Theorem 3, and suppose that σ ≥
1− c/(2 log qτ) . If L(s, χ) has no exceptional zero, or if β1
is an exceptional zero of L(s, χ) but |s− β1| ≥ 1/ log q, then

L′

L
(s, χ) ≪ log qτ,(5)

| logL(s, χ)| ≤ log log qτ +O(1),(6)

and
1

L(s, χ)
≪ log qτ .(7)

Alternatively, if β1 is an exceptional zero of L(s, χ) and |s−
β1| ≤ 1/ log q, then

L′

L
(s, χ) =

1

s− β1
+O(log q) (s ̸= β1),(8)

| argL(s, χ)| ≤ log log q +O(1) (s ̸= β1),(9)

and

|s− β1| ≪ |L(s, χ)| ≪ |s− β1|(log q)2 .(10)

Proof. If σ > 1 then by Corollary 1.11 we see that∣∣∣L′

L
(s, χ)

∣∣∣ ≤
∞∑

n=1

Λ(n)n−σ = − ζ ′

ζ
(σ) ≪ 1

σ − 1
.

Hence (5) is obvious if σ ≥ 1 + 1/ log qτ . Let s1 = 1 +
1/ log qτ + it . Then

L′

L
(s1, χ) ≪ log qτ .
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From this and Lemma 1 it follows that

(11)
∑
ρ

1

s1 − ρ
≪ log qτ

where the sum is over those zeros of L(s, χ) for which |ρ −
(3/2 + it)| ≤ 5/6 . Hence

(12)
∑
ρ

1

s− ρ
=

∑
ρ

( 1

s− ρ
− 1

s1 − ρ

)
+O(log qτ) .

Suppose that 1 − c/(2 log qτ) ≤ σ ≤ 1 + 1/ log qτ and that
|s−β1| ≥ 1/ log q if L(s, χ) has an exceptional zero β1 . Since
|s− ρ| ≍ |s1 − ρ| for all zeros ρ, it follows that

1

s− ρ
− 1

s1 − ρ
=

1 + 1/ log qτ − σ

(s− ρ)(s1 − ρ)
≪ 1

|s1 − ρ|2 log qτ
≪ ℜ 1

s1 − ρ
.

On summing this over ρ and appealing to (11) we find that

(13)
∑
ρ

1

s− ρ
≪ log qτ,

and (5) follows by Lemma 1.
To derive (6) we first note that if σ > 1 then

| logL(s, χ)| ≤
∞∑

n=2

Λ(n)

log n
n−σ = log ζ(σ) .

Since ζ(σ) ≤ σ/(σ − 1) by Corollary 1.14, we see that (6)
holds when σ ≥ 1+1/ log qτ . In particular, (6) holds at the
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point s1 = 1 + 1/ log qτ + it . To treat the remaining s it
suffices to note that

logL(s, χ)−logL(s1, χ) =

∫ s

s1

L′

L
(w,χ) dw ≪ |s1−s| log qτ ≪ 1

by (5). The estimate (6) trivially implies (7) since log 1/|L(s, χ)| =
−ℜ logL(s, χ) .

Now suppose that L(s, χ) has an exceptional zero β1 such
that |s − β1| ≤ 1/ log q . Then 1 − c/(2 log 4q) ≤ σ ≤ 1 +
1/ log q, so by Lemma 1,

L′

L
(s, χ) =

1

s− β1
+
∑
ρ

′ 1

s− ρ
+O(log q)

where
∑′

ρ denotes a sum over all zeros ρ such that |ρ−(3/2+

it)| ≤ 5/6 except for the exceptional zero β1 . The proof of
(13) applies to

∑′
ρ, so we have (8). Proceeding as in the

proof of (6), we find that

logL(s, χ) = log
s− β1
s1 − β1

+ logL(s1, χ) +O(1),

which implies that∣∣∣ logL(s, χ)−log
s− β1
s1 − β1

∣∣∣ ≤ | logL(s1, χ)|+O(1) ≤ log log q+O(1) .

But arg(s − β1) ≪ 1, arg(s1 − β1) ≪ 1, and log |s1 − β1| =
− log log q +O(1), so we have (9) and (10).

Our methods yield not only a zero-free region, but also
enable us to bound the number of zeros ρ of L(s, χ) that
might lie near 1 + it .
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Theorem 5. Let n(r; t, χ) denote the number of zeros ρ of
L(s, χ) in the disk |ρ − (1 + it)| ≤ r . Then n(r; t, χ) ≪
r log qτ uniformly for 1/ log qτ ≤ r ≤ 3/4 .

Here the constraint r ≥ 1/ log qτ is needed because L(s, χ)
might have an exceptional zero. If L(s, χ) has no exceptional
zero then the bound holds uniformly for 0 ≤ r ≤ 3/4, in view
of the zero-free region of Theorem 3.

Proof. In view of Theorem 6.8, we may suppose that χ is
nonprincipal. Suppose first that 1/ log qτ ≤ r ≤ 1/3 . Take
s1 = 1 + r + it . Then ℜ(s1 − ρ)−1 ≥ 0 for all zeros ρ, and
ℜ(s1 − ρ)−1 ≫ 1/r if ρ is counted by n(r; t, χ) . Hence

1

r
n(r; t, χ) ≪ ℜ

∑
ρ

1

s1 − ρ

where the sum is over all zeros ρ such that |ρ− (3/2+ it)| ≤
5/6 . By Lemma 1 we see that the above is ≪ log qτ , since

∣∣∣L′

L
(s1)

∣∣∣ ≤ − ζ ′

ζ
(1 + r) ≍ 1

r
≪ log qτ .

If 1/3 ≤ r ≤ 3/4, then it suffices to apply Jensen’s inequality
to L(s, χ) on a disk with center 3/2 + it, with R = 4/3 and
r = 5/4, in view of the estimates provided by Lemma 10.15.

11.1. Exercises

1. Let S(x; q) denote the number of integers n, 0 < n ≤ x,
such that (n, q) = 1, and put R(x; q) = S(x; q)−(φ(q)/q)x .
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(a) Show that if σ > 0, x > 0, and s ̸= 1 then

L(s, χ
0
) =

∑
n≤x

χ
0
(n)n−s+

φ(q)

q
· x

1−s

s− 1
−R(x)

xs
+s

∫ ∞

x

R(u)u−s−1 du .

Show that this includes Theorem 1.12 as a special case.
(b) Let δ > 0 be fixed. Show that if σ ≥ δ then

L(s, χ
0
) =

φ(q)

q
· x

1−s

s− 1
+

∑
n≤x

χ
0
(n)n−s +O

(
d(q)τx−σ

)
.

2. Suppose that δ is fixed, 0 < δ < 1 . Show that

∑
p|q

log p

ps − 1
≪ (log q)1−δ

uniformly for σ ≥ δ . (This improves on the estimate used
in the latter part of the proof of Lemma 1.)

3. (a) Show that if σ > 0 then

ζ(s) =
1

s− 1
+

1

2
− s

∫ ∞

1

({x} − 1/2)x−s−1 dx .

(b) Show that if f(x) is a monotonically decreasing function
then ∫ 1

0

(x− 1/2)f(x) dx ≤ 0 .
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(c) Show that

ζ(σ) >
1

σ − 1
+

1

2

for σ > 0 .
(d) Show that

− ζ ′(s) =
1

(s− 1)2
+

∫ ∞

1

({x} − 1/2)(1− s log x)x−s−1 dx

for σ > 0 .
(e) Show that if σ > 0 then∣∣∣ζ ′(σ) + 1

(σ − 1)2

∣∣∣ < 1

2

∫ ∞

1

|1− σ log x|x−σ−1 dx =
1

eσ
.

(f) Justify the following chain of inequalities for σ > 1:

− ζ ′

ζ
(σ) <

1
(σ−1)2 + 1

eσ

1
σ−1 + 1

2

=
1

σ − 1
·
1 + (σ−1)2

eσ

1 + σ−1
2

<
1

σ − 1
.

(g) Show that if χ
0
is the principal character (mod q) then

− L′

L
(σ, χ

0
) <

1

σ − 1

for σ > 1 . (This improves on the first inequality in (2), in
the proof of Theorem 3.)

4. Let χ be a character (mod q), and suppose that the order
d of χ is odd.
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(a) Show that ℜχ(n) ≥ − cosπ/d for all integers n .
(b) Show that if σ > 1 then log |L(σ, χ)| ≥ −(cosπ/d) log ζ(σ) .

(c) Show that L(1, χ) ≍ L(1 + 1/ log q, χ) .
(d) Show that |L(1, χ)| ≫ (log q)− cosπ/d .
(e) Deduce in particular that if χ is a cubic character (mod
q) then |L(1, χ)| ≫ 1/

√
log q .

5. Grössencharaktere for Q
(√

−1
)
, continued from Exercise

10.1.28. For an ideal a = (a + ib) in the ring O{a + ib :
a, b ∈ Z} of Gaussian integers, put χm(a) = e4mi arg(a+ib).
The ideal a is the set of (Gaussian) multiples of the number
a + ib, but it can be equally well be expressed as the set of
multiples of (a+ ib)ik for k = 0, 1, 2, 3. Note that the stated
value of χm(a) is independent of the choice of k . (a) Show
that

L(s, χm) =
∏
p

(
1− χm(p)

N(p)s

)−1

for σ > 1, where the product is over all prime ideals p in the
ring .
(b) Let Λ(a) = log(a2 + b2) if a = (a+ ib)k for some positive
integer k and a + ib is a Gaussian prime, and Λ(a) = 0
otherwise. Show that

L′

L
(s, χm) = −

∑
a

Λ(a)χm(a)

N(a)s

for σ > 1.
(c) Show that there is an absolute constant c > 0 such that



354CHAPTER 11. PRIMES IN ARITHMETIC PROGRESSIONS — II

L(s, χm) ̸= 0 for σ > 1− c/ logmτ for every positive integer
m .

2. Exceptional zeros

Although there is no known quadratic character χ for which
L(s, χ) has an exceptional real zero, the possible existence
of such zeros is a recurring issue in the theory in its current
stage of development. The techniques of the preceding sec-
tion do not seem to offer a means of eliminating exceptional
zeros entirely, but nevertheless they may be used to show
that such zeros occur at most rarely. To this end we intro-
duce a variant of Lemma 5 that allows us to consider two
different quadratic characters.

Lemma 6. (Landau) Suppose that χ
1
and χ

2
are quadratic

characters. If σ > 1 then

− ζ ′

ζ
(σ)− L′

L
(σ, χ

1
)− L′

L
(σ, χ

2
)− L′

L
(σ, χ

1
χ
2
) ≥ 0 .

Proof. It suffices to express the left hand side as a Dirichlet
series and to note that

1 + χ
1
(n) + χ

2
(n) + χ

1
χ
2
(n) = (1 + χ

1
(n))(1 + χ

2
(n)) ≥ 0

for all n .
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Theorem 7. (Landau) There is a constant c > 0 such that
if χ

1
and χ

2
are quadratic characters modulo q1 and q2 re-

spectively, and if χ
1
χ
2
is nonprincipal, then L(s, χ

1
)L(s, χ

2
)

has at most one real zero β such that 1−c/ log q1q2 < β < 1 .

Proof. Since any given L-function can have at most one
such zero, if there are two zeros then one of them, say β1, is
a zero of L(s, χ

1
), and the other, β2, is a zero of L(s, χ

2
) .

We may assume that c is so small that 5/6 ≤ βi < 1 . Also,
we note that χ

1
χ
2
is a nonprincipal character (mod q1q2).

Hence by four applications of Lemma 1 we see that if 0 <
δ ≤ 1 then

− ζ ′

ζ
(1 + δ) ≤ 1

δ
+ c1 log 4,

− L′

L
(1 + δ, χ

i
) ≤ −1

1 + δ − βi
+ c1 log qi,

− L′

L
(1 + δ, χ

1
χ
2
) ≤ c1 log q1q2 .

We sum these inequalities and apply Lemma 4 to see that

1

δ
− 1

1 + δ − β1
− 1

1 + δ − β2
+ c2 log q1q2 ≥ 0 .

Without loss of generality we may suppose that β1 ≤ β2 .
Then

1

δ
− 2

1 + δ − β1
+ c2 log q1q2 ≥ 0,

and by taking δ = 2(1− β1) we deduce that

1− β1 ≥ 1

6c2 log q1q2
.

The following corollaries are immediate.
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Corollary 8. (Landau) There is a positive constant c > 0
such that

∏
χ L(s, χ) has at most one zero in the region σ >

1−c/ log qτ . Here the product is over all Dirichlet characters
χ (mod q). If such a zero exists then it is necessarily real
and the associated character χ is quadratic.

Corollary 9. (Landau) For each positive number A there
is a c(A) > 0 such that if {qi} is a strictly increasing se-
quence of natural numbers with the property that for each
qi there is a primitive quadratic character χ

i
(mod qi) for

which L(s, χ
i
) has a zero βi satisfying

βi > 1− c(A)

log qi

then
qi+1 > qAi .

Corollary 10. (Page) There is a constant c > 0 such that
for every Q ≥ 1 the region σ ≥ 1 − c/ logQτ contains at
most one zero of the function∏

q≤Q

∏∗

χ

L(s, χ)

where
∏∗

χ denotes a product over all primitive characters χ

(mod q). If such a zero exists, then it is necessarily real and
the associated character χ is quadratic.

We now turn to the problem of showing that even an
exceptional zero cannot be too close to 1. By taking s = 1
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in (10) we see that this is equivalent to showing that L(1, χ)
cannot be too small. Suppose that χ is a primitive quadratic
character modulo q, and let r(n) =

∑
d|n χ(d) . Then r(n) ≥

0 for all n and r(n) ≥ 1 when n is a perfect square. Since∑∞
n=1 r(n)n

−s = ζ(s)L(s, χ) for σ > 1, we find that
(14)∑

n≤x

r(n)n−s =
L(1, χ)x1−s

1− s
+ ζ(s)L(s, χ) + error terms.

Here the error terms are small if x is sufficiently large in
terms of q . Estimates of this kind can be derived from Corol-
lary 1.15 by the method of the hyperbola, or else by employ-
ing an inverse Mellin transform. Suppose that 0 ≤ s < 1 in
the above. We can give a lower bound for the left hand side,
which yields a lower bound for L(1, χ) if the second term
on the right hand side does not interfere. Since ζ(s) < 0
for 0 < s < 1 (cf Corollary 1.14), this term is harmless if
L(s, χ) ≥ 0 . If this can not be arranged, we may alter-
natively eliminate this term by taking two values of x and
differencing. Since the method of the hyperbola leads to te-
dious details, we use an inverse Mellin transform to derive a
more precise version of (14). To make the estimates easier
we introduce an Abelian weighting of the sum. By (5.23)
with x replaced by 1/x we see that

∞∑
n=1

r(n)en/x =
1

2πi

∫ 2+i∞

2−i∞
ζ(s)L(s, χ)Γ(s)xs ds .

We move the contour of integration to the line ℜs = −1/2,
which gives rise to residues at the poles at s = 1 and s = 0 .
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Thus the above is

= L(1, χ)x+ζ(0)L(0, χ)+
1

2πi

∫ −1/2+i∞

−1/2−i∞
ζ(s)L(s, χ)Γ(s)xs ds .

By Corollary 10.5 we know that ζ(−1/2+ it) ≪ τ , by Corol-
lary 10.10 we know that L(−1/2+it, χ) ≪ qτ , and by (C.19)
we know that Γ(−1/2 + it) ≪ τ−1e−πτ/2 . Hence the inte-
gral is ≪ qx−1/2 . By (10.11) we know that ζ(0) = −1/2,
and by Corollary 10.9 we know that L(0, χ) ≥ 0 . (More pre-
cisely, L(0, χ) = 0 if χ(−1) = 1, and L(0, χ) ≍ q1/2L(1, χ)
if χ(−1) = −1 .) Since the perfect squares on the left hand
side contribute an amount ≫ x1/2, we deduce that

x1/2 ≪ xL(1, χ) + qx−1/2 .

On taking x = Cq with C a large constant we deduce that
L(1, χ) ≫ q−1/2 . Now consider the possibility that χ is
an imprimitive quadratic character. Then there is a prim-
itive quadratic character χ⋆ modulo d, with d|q, that in-
duces χ . Thus L(1, χ) = L(1, χ⋆)

∏
p|q/d(1 − χ⋆(p)/p) ≥

L(1, χ⋆)φ(q/d)d/q ≫ d−1/2(log log q/d)−1 ≫ q−1/2, by The-
orem 2.9, so we have

Theorem 11. If χ is a quadratic character modulo q, then
L(1, χ) ≫ q−1/2 .

By (10) the following corollary is immediate.

Corollary 12. There is an absolute constant c > 0 such
that if χ is a quadratic character modulo q and L(s, χ) has
an exceptional zero β1, then

β1 ≤ 1− c

q1/2(log q)2
.
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By elaborating on the above argument we can obtain bet-
ter lower bounds for 1−β1 . To facilitate this we first estab-
lish a convenient inequality that depends only on the analyt-
icity and size of the relevant Dirichlet series in the immediate
vicinity of the real axis.

Lemma 13. (Estermann) Suppose that f(s) is analytic for
|s−2| ≤ 3/2, and that |f(s)| ≤M for s in this disk. Suppose
also that

F (s) = ζ(s)f(s) =
∞∑

n=1

r(n)n−s

for σ > 1, that r(1) = 1, and that r(n) ≥ 0 for all n . If
there is a σ ∈ [19/20, 1) such that f(σ) ≥ 0, then

f(1) ≥ 1

4
(1− σ)M−3(1−σ) .

To put this in perspective, we recall that our proof in
Chapter 4 th at L(1, χ) ̸= 0 depended on Landau’s Theo-
rem (Theorem 1.7). The above amounts to a quantitative
elaboration of Landau’s Theorem, for if f(1) were 0 then
F (s) would be analytic for s > 1/2, so by Landau’s Theo-
rem the Dirichlet series would converge when σ > 1/2 . This
would imply that F (σ) > 0 for σ > 1/2 . But ζ(σ) < 0
for 1/2 < σ < 1 (cf Corollary 1.14), so it would follow that
f(σ) < 0 in this interval. Thus the hypothesis above that
f(σ) ≥ 0 implies—by Landau’s Theorem—that f(1) > 0 .
In the above we obtain not just this qualitative information
but a quantitative lower bound for f(1) in terms of the size
of σ and the size of f(s) in a surrounding disk.
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Proof. As in the proof of Landau’s Theorem we begin by
expanding F (s) in powers of 2− s,

(15) F (s) =

∞∑
k=0

bk(2− s)k

for |s − 2| < 1 . By Cauchy’s coefficient formula we know
that

bk =
(−1)k

k!
F (k)(2) =

1

k!

∞∑
n=1

r(n)n−2(log n)k .

Thus bk ≥ 0 for all k, and b0 =
∑∞

n=1 r(n)n
−2 ≥ 1 . For

|s− 2| < 1 we may write

1

s− 1
=

1

1− (2− s)
=

∞∑
k=0

(2− s)k .

On multiplying this by f(1) and subtracting from (15) we
deduce that

(16) F (s)− f(1)

s− 1
=

∞∑
k=0

(bk − f(1))(2− s)k

for |s−2| < 1 . But the left hand side is analytic for |s−2| ≤
3/2, so the series converges in this larger disk. In order to
estimate the coefficients on the right hand side we bound the
left hand side when s lies on the circle |s−2| = 3/2 . To this
end, we note by (1.24) that

|ζ(s)| =
∣∣∣1 + 1

s− 1
+ s

∫ ∞

1

[u]− u

us+1
du

∣∣∣
≤ 1 +

1

|s− 1|
+

|s|
σ
.
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The relation |s − 2| = 3/2 implies that |s − 1| ≥ 1/2, that
|s| ≤ 7/2, and that σ ≥ 1/2 . Hence |ζ(s)| ≤ 10 for the s
under consideration. Since |f(1)/(s − 1)| ≤ 2M , it follows
that the left hand side of (16) has modulus ≤ 12M for |s−
2| ≤ 3/2 . By the Cauchy coefficient inequalities we deduce
that |bk − f(1)| ≤ 12M(2/3)k . We apply this bound for all
k > K where K is a parameter to be chosen later. Thus
from (16) we see that if 1/2 < σ ≤ 2 then

ζ(σ)f(σ)− f(1)

σ − 1
≥

K∑
k=0

(bk−f(1))(2−σ)k−12M
∑
k>K

(
2
3 (2−σ)

)k
.

We observe that if 19/20 ≤ σ < 1 then 2
3 (2−σ) ≤ 7/10 . We

also recall that b0 ≥ 1 and that bk ≥ 0 for all k . Hence the
above is

≥ 1− f(1)
1− (2− σ)K+1

1− (2− σ)
− 40M(7/10)K+1 .

On cancelling the common term f(1)/(1−σ) from both sides,
and rearranging, we find that

1 ≤ f(1)(2− σ)K+1

1− σ
+ ζ(σ)f(σ) + 40M(7/10)K+1,

a relation comparable to (14). To ensure that the last term
on the right does not overwhelm the left hand side, we take
K = [(log 80M)/ log 10/7] . Then the last term on the right
is ≤ 1/2 . Since ζ(σ) < 0 by Corollary 1.14, and f(σ) ≥ 0
by hypothesis, it follows that

(17) f(1) ≥ 1

2
(1− σ)(2− σ)−K−1 ≥ 10

21
(1− σ)(2− σ)−K .
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But

(2− σ)K ≤ (2− σ)(log 80M)/ log 10/7 = (80M)(log(2−σ))/ log 10/7

≤ 80(log 21/20)/ log 10/7M (log(2−σ))/ log 10/7 .

Here the first factor is < 13/7 . Since log(1 + δ) ≤ δ for any
δ ≥ 0, on taking δ = 1 − σ we see that log(2 − σ) ≤ 1 − σ .
Also, log 10/7 > 1/3 and it can certainly be supposed that
M ≥ 1, so the expression above is < (13/7)M3(1−σ) . This
with (17) gives the desired lower bound for f(1) .

We are now prepared to prove an important strengthening
of Theorem 11.

Theorem 14. (Siegel) For each positive number ε there is a
positive constant C(ε) such that if χ is a quadratic character
modulo q then

L(1, χ) > C(ε)q−ε .

Proof. We assume, as we may, that ε ≤ 1/5 . For the
present we restrict our attention to primitive characters. We
consider two cases, according to whether there exists a primi-
tive quadratic character χ

1
such that L(s, χ

1
) has a real zero

β1 in the interval [1−ε/4, 1), or not. Suppose first that there
is no such zero. We take f(s) = L(s, χ), σ = 1− ε/4 . Then
f(σ) > 0 and by Lemma 10.15 we may take M ≪ q1/2 .
Hence by Lemma 13, f(1) ≫ εq−3ε/8 . Thus there is a con-
stant C1(ε) > 0 such that L(1, χ) ≥ C1(ε)q

−ε .
Now consider the contrary case, in which there is a prim-

itive quadratic character χ
1
modulo q1 such that L(s, χ

1
)

has a real zero β1 ≥ 1 − ε/4 . Since L(1, χ
1
) > 0 there is
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a constant C2(ε) > 0 such that L(1, χ
1
) ≥ C2(ε)q

−ε
1 . Now

suppose that χ is a primitive quadratic character, χ ̸= χ
1
.

We apply Lemma 13 with f(s) = L(s, χ)L(s, χ
1
)L(s, χχ

1
) .

To see that the Dirichlet series coefficients of ζ(s)f(s) are
nonnegative, we note first that if g(s) is a Dirichlet series
with nonnegative coefficients, then exp g(s) is also a Dirich-
let series with nonnegative coefficients, since the power se-
ries coefficients of the exponential function are nonnegative.
Then it suffices to apply this observation with

g(s) = log ζ(s)f(s) =
∞∑

n=1

Λ(n)

log n
(1 + χ(n))(1 + χ

1
(n))n−s .

In view of Lemma 10.15 we may takeM = C3qq1 . On taking
σ = β1, we find that

f(1) ≥ 1

4
(C3qq1)

−3(1−β1) ≥ 1

4
(C3qq1)

−3ε/4 ≥ C4(ε)q
−ε .

Now

f(1) = L(1, χ)L(1, χ
1
)L(1, χχ

1
) ≪ L(1, χ)(log qq1)

2

by Lemma 10.15, and hence we deduce that

(18) L(1, χ) ≥ C5(ε)q
−2ε .

We may assume that C5 ≤ C1, so that (18) holds in either
case.
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We now extend to imprimitive characters. Suppose that
χ is induced by a primitive character χ∗ (mod d), so that
q = dr for some r . Then

L(1, χ) = L(1, χ∗)
∏
p|r

(
1−χ

∗(p)

p

)
≥ L(1, χ∗)

φ(r)

r
≥ C5(ε)d

−2εφ(r)

r
.

By Theorem 2.9 the above is

≥ C6(ε)(dr)
−2ε = C6(ε)q

−2ε,

and hence the proof is complete.

We are unable to compute the value of the constant C(ε)
in Siegel’s Theorem when ε < 1/2, because we have no way
of knowing which case arises in the proof. Such a constant
is called ‘noneffective.’ This is our first encounter with a
noneffective constant, so the distinction between effectively
computable constants and noneffective constants arises here
for the first time.

Corollary 15. For any ε > 0 there is a positive number
C(ε) such that if χ is a quadratic character modulo q and β
is a real zero of L(s, χ), then β < 1− C(ε)q−ε .

Proof. We may certainly suppose that β > 1− c/ log 4q >
1− 1

log q , where c is the number appearing in Theorem 3, so

that β is an exceptional zero by the criterion following that
theorem. By taking s = 1 in (10) we see that

L(1, χ) ≪ (1− β)(log q)2

and the corollary follows easily from the theorem.
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11.2. Exercises

1. Call a modulus q ‘exceptional’ if there is a primitive
quadratic character χ (mod q) such that L(s, χ) has a real
zero β such that β > 1−c/ log q . Show that if c is sufficiently
small then the number of exceptional q not exceeding Q is
≪ log logQ .

2. Use the last part of Theorem 4 to show that if L(s, χ)
has an exceptional zero β1 then L′(β1, χ) ≫ 1 .

3. (cf Mahler (1934), Davenport (1966), Haneke (1973), and
Goldfeld & Schinzel (1975)) Suppose that χ is a quadratic
character, and put r(n) =

∑
d|n χ(d) .

(a) Show that∑
n≤y

χ(n)

n
= L(1, χ) +O(q1/2y−1 log q) .

(b) Show that∑
n≤y

χ(n) log n

n
= −L′(1, χ) +O(q1/2y−1(log qy)2) .

(c) Verify that∑
n≤x

r(n)

n
=

∑
d≤y

χ(d)

d

∑
m≤x/d

1

m
+

∑
m≤x/y

1

m

∑
d≤x/m

χ(d)

d

−
(∑

d≤y

χ(d)

d

)( ∑
m≤x/y

1

m

)
= Σ1 +Σ2 − Σ3,



366CHAPTER 11. PRIMES IN ARITHMETIC PROGRESSIONS — II

say.
(d) Show that

Σ1 = (log x+C0)L(1, χ)+L
′(1, χ)+O(q1/2y−1(log qy)2)+O(yx−1) .

(e) Show that

Σ2 = (log x/y+C0)L(1, χ)+O(yx−1 log q)+O(q1/2y−1 log q) .

(f) Show that

Σ3 = (log x/y+C0)L(1, χ)+O(yx−1 log q)+O(q1/2y−1(log qx)2) .

(g) Show that∑
n≤x

r(n)

n
= (log x+C0)L(1, χ)+L

′(1, χ)+O(q1/4x−1/2(log qx)3/2) .

(h) Show that there is a constant q0 such that if q ≥ q0 and
L(1, χ) < 1/(2 log q), then

L′(1, χ) ≍
∑
n≤q

r(n)

n
.

(i) Show that L′′(σ, χ) ≪ (log q)2 for σ ≥ 1− 1/ log q.
(j) Show that there is an absolute constant c > 0 such that
if L(s, χ) has an exceptional zero β1 for which β1 ≥ 1 −
c/(log q)2, then

L(1, χ) ≍ (1− β1)
∑
n≤q

r(n)

n
.
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4. Use Estermann’s Lemma (Lemma 13) to give a sec-
ond proof that if L(s, χ) has an exceptional zero β1 then
L(1, χ) ≫ 1− β1 (cf (10) of Theorem 4).

5. Use Estermann’s Lemma (Lemma 13) to give a second
proof that if χ is a cubic character (mod q) then L(1, χ) ≫
(log q)−1/2 (cf Exercise 4(e) in the preceding section).

6. (Tatuzawa (1951)) Let χ
1
and χ

2
be distinct primitive

quadratic characters, modulo q1 and q2 respectively, and sup-
pose that L(1, χ

i
) < Cεq−ε

i for i = 1, 2 where 0 < ε ≤ 1 and
C > 0 .
(a) Show that minx>1

x
log x = e . By a change of variables,

deduce that if ε > 0 then minx>1 x
ε/ log x = eε . Use this to

show that minx>1 x
ε/(log x)2 = e2ε2/4 .

(b) Explain why there exists a constant c1 > 0 such that
L(1, χ) ≥ c1/ log q whenever L(s, χ) has no exceptional zero.
Let C1 = ec1 . Show that if C < C1 then L(s, χ

1
) and

L(s, χ
2
) have exceptional zeros, say β1 and β2 . (From now

on, suppose that C < C1).
(c) Explain why there is a positive constant c2 such that
L(1, χ) ≥ c2(1 − β) whenever β is an exceptional zero of
L(s, χ) . Let C2 = c2/6 . Show that if C < C2 then β > 1−
ε/6 . Let C3 = c2/20 . Show that if C < C3 then β > 19/20 .
(From now on, suppose that C < Ci for i = 1, 2, 3 .)
(d) Explain why there is a constant c3 > 0 such that at
most one of L(s, χ

1
), L(s, χ

2
) has a zero in the interval

[1− c3/ log q1q2, 1] .
(e) Show that L(s, χ

1
)L(s, χ

2
) has a zero β that satisfies

the three inequalities β ≥ 19/20, β ≥ 1 − ε/6, β ≤ 1 −
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c3/ log q1q2 .
(f) Let f(s) = L(s, χ

1
)L(s, χ

2
)L(s, χ

1
χ
2
) . Show that there

is an absolute constant c4 > 0 such that f(1) ≥ c4(log q1q2)
−1(q1q2)

−ε/2 .

(g) Explain why there is a constant c5 > 0 such that L(1, χ
1
χ
2
) ≤

c5 log q1q2 .

(h) Show that C ≥ c
1/2
4 c

−1/2
5 e/4 .

(i) Conclude that there is a positive effectively computable
absolute C such that if 0 < ε ≤ 1 then the inequality
L(1, χ) > Cεq−ε holds for all primitive quadratic charac-
ters, with at most one exception.

7. (Fekete & Pólya (1912), Pólya & Szegö (1925, p. 44),
Heilbronn (1936)) Let S1(x, χ) =

∑
1≤n≤x χ(n) .

(a) Show that if χ is a quadratic character such that S1(x, χ) ≥
0 for all x ≥ 1 then L(σ, χ) > 0 for all σ > 0 .
(b) Let χ

d
(n) =

(
d
n

)
. Show that the hypothesis above holds

for d = −3,−4,−7,−8, but not for d = 5, 8 .

(c) For k > 1 let Sk(N,χ) =
∑N

n=1 Sk−1(n, χ) . Show that

Sk(N,χ) =
N∑

n=1

(N − n+ k − 1

k − 1

)
χ(n) .

(d) Let ∆f(x) = f(x+1)−f(x) and ∆kf(x) = ∆(∆k−1f(x)) .

Show that ∆kf(x) =
∑k

r=0(−1)r
(
k
r

)
f(x + k − r), and that

if f (k)(x) is continuous then

∆kf(x) =

∫ x+1

x

∫ u1+1

u1

· · ·
∫ uk−1+1

uk−1

f (k)(uk) dukduk−1 · · · du1 .
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(e) Show that if σ > 0 then (−1)k∆k

(
x−σ

)
> 0 for all

x > 0 .
(f) Show that L(s, χ) = (−1)k

∑∞
n=1 Sk(n, χ)∆k

(
n−s

)
.

(g) Show that if χ is a quadratic character and k is an in-
teger such that Sk(N,χ) ≥ 0 for all integers N ≥ 1 then
L(σ, χ) > 0 for all σ > 0 .
(h) For χ

5
(n) =

(
5
n

)
and χ

8
(n) =

(
8
n

)
find the least k such

that the hypothesis above is satisfied.
(i) Show that P (z, χ)(1− z)−k =

∑∞
n=1 Sk(n, χ)z

n for |z| <
1 .
(j) Let P (z, χ) =

∑∞
n=1 χ(n)z

n for |z| < 1 . Show that if χ is
a quadratic character for which Sk(N,χ) ≥ 0 for all positive
integers N then P (z, χ) > 0 for 0 < z < 1 .

(k) Show that
∑12

n=1

(
n

163

)
(7/10)n = −0.0483, and that

∑∞
n=13(7/10)

n =
0.0323 . Deduce that P (0.7, χ−163

) < 0, and hence that for

any k there is an N for which Sk(N,χ−163
) < 0 .

8. S. Chowla (1972) conjectured that for any primitive qua-
dratic character χ∗ there is a character χ induced by χ∗

such that S1(x, χ) ≥ 0 for all x ≥ 1 (in the notation of the
preceding exercise). Show that Chowla’s conjecture implies
that L(σ, χ) > 0 when χ is a quadratic character and σ > 0 .
See also Rosser (1950).

9. (Bateman & Chowla (1953)) Suppose that k is a positive
integer such that

(19)
∑

1≤n≤x

λ(n)

n

(
1− n

x

)k
≥ 0
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for all x ≥ 1 . (It is not known whether there is such a k .)
(a) Show that if χ is a quadratic character then

∑
1≤n≤x

χ(n)

n

(
1− n

x

)k
≥

∑
1≤n≤x

λ(n)

n

(
1− n

x

)k

for all x ≥ 1 .
(b) Show that if there is a k such that (19) holds for all x ≥ 1
then L(σ, χ) > 0 when χ is a quadratic character and σ > 0 .

3. The prime number theorem
for arithmetic progressions

The various inequalities for zeros of Dirichlet L-functions
established above are motivated by a desire to imitate for
primes in arithmetic progressions the quantitative form of
the prime number theorem achieved in Theorem 6.9. For
(a, q) = 1 we set

π(x; q, a) =
∑
p≤x

p≡a (q)

1,

ϑ(x; q, a) =
∑
p≤x

p≡a (q)

log p,

ψ(x; q, a) =
∑
n≤x

n≡a (q)

Λ(n),
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and correspondingly for any Dirichlet character χ we put

π(x, χ) =
∑
p≤x

χ(p),

ϑ(x, χ) =
∑
p≤x

χ(p) log p,

ψ(x, χ) =
∑
n≤x

χ(n)Λ(n).

By multiplying both sides of (4.27) by Λ(n), and summing
over n ≤ x, we see that

(22) ψ(x; q, a) =
1

φ(q)

∑
χ

χ(a)ψ(x, χ),

and similarly for π(x; q, a) and ϑ(x; q, a) . We deal with
ψ(x, χ) in much the same way that we dealt with ψ(x) in
Chapter 6.

Theorem 16. There is a constant c1 > 0 such that if q ≤
exp

(
2c1

√
log x

)
, then

(23) ψ(x, χ) = E0(χ)x+O
(
x exp

(
− c1

√
log x

))
when L(s, χ) has no exceptional zero, but

(24) ψ(x, χ) = − xβ1

β1
+O

(
x exp

(
− c1

√
log x

))
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when L(s, χ) has an exceptional zero β1 . Here E0(χ) = 1 if
χ = χ

0
, and E0(χ) = 0 otherwise.

Proof. By Theorems 4.8 and 5.2 we see that

ψ(x, χ) =
−1

2πi

∫ σ0+iT

σ0−iT

L′

L
(s, χ)

xs

s
ds+R

where σ0 > 1 and

R≪
∑

x/2<n<2x

Λ(n)min
(
1,

x

T |x− n|

)
+

(4x)σ0

T

∞∑
n=1

Λ(n)

nσ0

by Corollary 5.3. As in the proof of Theorem 6.9 we suppose
that 2 ≤ T ≤ x and set σ0 = 1 + 1/ log x . Thus

R≪ x

T
(log x)2,

as before. As in the proof of Theorem 6.9, we let C denote
a closed contour that consists of line segments joining the
points σ0− iT , σ0+ iT , σ1+ iT , σ1− iT , but now the choice
of σ1 is a little more complicated, since we want to ensure
that C does not pass too closely to an exceptional zero.

Case 1. There is no exceptional zero. In this case we take
σ1 = 1− c/(5 log qT ) where c is the constant in Theorem 3.
If χ is nonprincipal then the integrand is analytic on and
inside C, but if χ = χ

0
then it has a pole at s = 1 with

residue x . Hence

(25)
−1

2πi

∫
C

L′

L
(s, χ)

xs

s
ds = E0(χ)x .
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We estimate the integrals from σ0 + iT to σ1 + iT , from
σ1 + iT to σ1 − iT , and from σ1 − iT to σ0 − iT as in the
proof of Theorem 6.9, using the estimate (5) of Theorem 4.
Thus we find that

(26) ψ(x, χ)− E0(χ)x≪ x(log x)2
( 1

T
+ exp

(−c log x
5 log qT

))
.

Case 2. There is an exceptional zero β1, and it sat-
isfies β1 ≥ 1 − c/(4 log qT ) . In this case we take σ1 =
1−c/(3 log qT ) . The integrand in (25) now has a pole inside
C at β1, so the left hand side of (25) has the value −xβ1/β1 .
Otherwise, the estimates proceed as before, and we find that
(27)

ψ(x, χ) = − xβ1

β1
+O

(
x(log x)2

( 1

T
+ exp

(−c log x
5 log qT

)))
.

Case 3. There is an exceptional zero β1, but it satisfies
β1 < 1− c/(4 log qT ) . We proceed exactly as in Case 1, and
so we obtain (26). To pass to (27) it suffices to note that

xβ1

β1
≪ x exp

(−c log x
5 log qT

)
in the current case.

We have established (26) if there is no exceptional zero,
and (27) if there is one. To complete our argument, it suffices

to note that if c1 =
√
c/20, if q ≤ exp

(
2c1

√
log x

)
, and if

T = exp
(
2c1

√
log x

)
, then (26) gives (23) and (27) gives

(24).

We are now in a position to prove
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Corollary 17. (Page(1935)) Let c1 be the same constant as
in Theorem 16. If (a, q) = 1, then

(28) ψ(x; q, a) =
x

φ(q)
+O

(
x exp

(
− c1

√
log x

))
when there is no exceptional character modulo q, and

(29) ψ(x; q, a) =
x

φ(q)
−
χ
1
(a)xβ1

φ(q)β1
+O

(
x exp

(
−c1

√
log x

))
when there is an exceptional character χ

1
modulo q and β1

is the concomitant zero.

Proof. If q ≤ exp
(
2c1

√
log x

)
then we have only to insert

the estimates of Theorem 16 into (22). If q is larger, then the
stated estimates are still valid, but are worse than trivial. To
see this, note first that ϑ(x; q, a) ≤ π(x; q, a) log x≪ x/φ(q)
by the Brun–Titchmarsh Theorem (Theorem 3.9). Since

(30) 0 ≤ ψ(x; q, a)− ϑ(x; q, a) ≤ ψ(x)− ϑ(x) ≪ x1/2,

and since φ(q) ≫ q1/2, it follows that

ψ(x; q, a) ≪ x

φ(q)
≪ x

q1/2
≪ x exp

(
− c1

√
log x

)
when q ≥ exp

(
2c1

√
log x

)
.

Presumably, exceptional zeros do not exist. However, if
such a zero does exist, then we have a second main term in
(29) that is bigger than the error term when x < exp

(
c21/(1−
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β1)
2
)
. If β1 is extremely close to 1 then one might have

β1 ≥ 1 − 1/ log x, and in such a situation the second main
term is of the same order of magnitude as the first main
term, since

x− xβ1

β1
= (β1−1)xβ1/β1+(log x)

∫ 1

β1

xσ dσ ≍ (1−β1)x log x .

Thus if 1−β1 is small compared with 1/ log x then the main
term is nearly doubled if χ

1
(a) = −1, and it is nearly an-

nihilated if χ
1
(a) = 1 . Unfortunately, the upper bound

provided by the Brun–Titchmarsh Theorem (Theorem 3.9)
is not quite strong enough to refute such a possibility.

The constants c and c1 in Theorems 3, 4, 16 and Corollary
17 are effectively computable. However, if we are willing
to accept noneffective constants then by Siegel’s Theorem
(Theorem 14), or more precisely by its corollary (Corollary
15), we can eliminate the second main term, provided that
q is more sharply limited.

Corollary 18. Let c1 be the same constant as in Theorem
16. For any positive A there is an x0(A) such that if q ≤
(log x)A then

(31) ψ(x, χ) = E0(χ)x+O
(
x exp

(
− c1

√
log x

))
for x ≥ x0(A) .

Proof. Suppose that χ is quadratic and that L(s, χ) has an
exceptional zero β1 . Then

xβ1 = x exp(−(1− β1) log x) ≤ x exp
(
− C(ε)q−ε log x

)
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by Siegel’s theorem (Corollary 15). Since q ≤ (log x)A, the
above is

≤ x exp
(
− C(ε)(log x)1−Aε

)
.

In order to reach (31) we need to take ε a little smaller than
1/(2A), say ε = 1/(3A) . Then the above is

≤ x exp
(
− c1

√
log x

)
provided that x ≥ x0 = exp

(
(c1/C(ε))

6
)
.

The constraint q ≤ (log x)A can be rewritten as x ≥
exp(q1/A) . This implies the constraint x ≥ x0(A) if q is
sufficiently large, say q ≥ q0(A) . We note also that the
implicit constant in (31) is absolute. If we were to allow
the implicit constant to depend on A, e.g. to be as large as
exp

(
(c1/C(ε))

3
)
, then we would obtain an estimate

ψ(x, χ) ≪
A
x exp

(
− c1

√
log x

)
that is valid for all q and all x ≥ exp

(
q1/A

)
, though of course

the implicit constant is so large that the bound is worse than
the trivial ψ(x, χ) ≪ x when x < x0 . By applying (22) and
(28), we obtain

Corollary 19. (The Siegel–Walfisz Theorem) Let c1 be the
constant in Theorem 16, and suppose that A is given, A > 0 .
If q ≤ (log x)A and (a, q) = 1, then

ψ(x; q, a) =
x

φ(q)
+OA

(
x exp

(
− c1

√
log x

))
.

Pertaining to ϑ(x; q, a) and π(x; q, a) we have estimates
similar to those of Corollary 17.
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Corollary 20. Let c1 be the constant in Theorem 16. If
(a, q) = 1, then

(32) ϑ(x; q, a) =
x

φ(q)
+O

(
x exp

(
− c1

√
log x

))
and

(33) π(x; q, a) =
li(x)

φ(q)
+O

(
x exp

(
− c1

√
log x

))
when there is no exceptional character modulo q, but

(34) ϑ(x; q, a) =
x

φ(q)
−
χ
1
(a)xβ1

φ(q)β1
+O

(
x exp

(
−c1

√
log x

))
and
(35)

π(x; q, a) =
li(x)

φ(q)
−
χ
1
(a) li

(
xβ1

)
φ(q)

+O
(
x exp

(
− c1

√
log x

))
when there is an exceptional character χ

1
modulo q and β1

is the concomitant zero.

Proof. By (30), the assertions concerning ϑ(x; q, a) follow
immediately from Corollary 17. As for π(x; q, a), we write

π(x; q, a) =

∫ x

2−

1

log u
dϑ(u; q, a) =

li(x)

φ(q)
+

∫ x

2−

1

log u
d(ϑ(u; q, a)−u/φ(q)) .

This last integral we integrate by parts (as in the proof of
Theorem 6.9), and find that it is

ϑ(u; q, a)− u/φ(q)

log u

∣∣∣x
2−

−
∫ x

2

ϑ(u; q, a)− u/φ(q)

u(log u)2
du .
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If there is no exceptional zero then the numerator in the
integrand is ≪ u exp

(
−c1

√
log u

)
≪ x exp

(
−c1

√
log x

)
, so

we obtain (33). If there is an exceptional character χ
1
then

the main term is reduced by χ
1
(a)/φ(q) times the amount∫ x

2

1

log u
d
uβ1

β1
=

∫ x

2

uβ1−1

log u
du =

∫ xβ1

2β1

1

log v
dv = li(xβ1)+O(1) .

The error term is still treated in the same way, so we obtain
(35).

By arguing in the same manner from Corollary 19, we
obtain

Corollary 21. Let c1 be the constant in Theorem 16, and
suppose that A is given, A > 0 . If q ≤ (log x)A and (a, q) =
1, then

(36) ϑ(x; q, a) =
x

φ(q)
+OA

(
x exp

(
− c1

√
log x

))
and

(37) π(x; q, a) =
li(x)

φ(q)
+OA

(
x exp

(
− c1

√
log x

))
.

11.3. Exercises

1. Suppose that χ is a character modulo q . Explain why

ψ(x, χ) =

q∑
a=1

(a,q)=1

χ(a)ψ(x; q, a) .
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2. Suppose that exp
(
2c1

√
log x

)
≤ q ≤ x . Show that there

is a positive constant c2 such that

ψ(x, χ) = E0(χ)x+O
(
x exp

(−c2 log x
log q

))
if L(s, χ) has no exceptional zero, and that

ψ(x, χ) = − xβ1

β1
+

(
x exp

(−c2 log x
log q

))
if L(s, χ) has the exceptional zero β1 .

3. Show that if q ≤ exp
(
2c1

√
log x

)
, then

ϑ(x, χ) = E0(χ)x+O
(
x exp

(
− c1

√
log x

))
when L(s, χ) has no exceptional zero, and that

ϑ(x, χ) = − xβ1

β1
+O

(
x exp

(
− c1

√
log x

))
when L(s, χ) has an exceptional zero β1 .

4. Suppose that q ≤ exp
(
c1
√

log x
)
, and put x0 = exp

((
log q
2c1

)2)
.

(a) Explain why π(x0;χ) ≪ x0 ≤ x1/4 .
(b) Treat π(x, χ) − π(x0, χ) as in the proof of Corollary 20
to show that

π(x, χ) ≪ x exp
(
− c1

√
log x

)
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if L(s, χ) has no exceptional zero, and that

π(x, χ) = − li(xβ1) +O
(
x exp

(
− c1

√
log x

))
if L(s, χ) has the exceptional zero β1 .

5. Suppose that A is given, A > 0 . Show that if q ≤ (log x)A

then

ϑ(x, χ) = E0(x)x+O
(
x exp

(
− c1

√
log x

))
,

and that

π(x, χ) = E0(χ) li(x) +O
(
x exp

(
− c1

√
log x

))
.

By analogy with (20) we set

Λ(x; q, a) =
∑
n≤x

n≡a (q)

λ(n), M(x; q, a) =
∑
n≤x

n≡a (q)

µ(n) .(38)

Here it is no longer natural to restrict to (a, q) = 1 . Corre-
spondingly, if χ is a character modulo q, we put

Λ(x, χ) =
∑
n≤x

χ(n)λ(n), M(x, χ) =
∑
n≤x

χ(n)µ(n) .(39)

6. Let c1 be the constant of Theorem 16, suppose that q ≤
exp

(
2c1

√
log x

)
and that χ is a character modulo q . Show

that
Λ(x, χ) ≪ x exp

(
− c1

√
log x

)
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when L(s, χ) has no exceptional zero, and that

Λ(x, χ) =
L(2β1, χ0

)xβ1

L′(β1, χ)β1
+O

(
x exp

(
− c1

√
log x

))
when L(s, χ) has an exceptional zero β1 . (Note that in this
latter case, the result of Exercise 11.1.2 is useful.)

7. Let c1 be the constant of Theorem 16, suppose that q ≤
exp

(
2c1

√
log x

)
and that χ is a character modulo q . Show

that
M(x, χ) ≪ x exp

(
− c1

√
log x

)
when L(s, χ) has no exceptional zero, and that

M(x, χ) =
xβ1

L′(β1, χ)β1
+O

(
x exp

(
− c1

√
log x

))
when L(s, χ) has an exceptional zero β1 .

8. Let c1 be the constant in Theorem 16, and suppose that
A is given, A > 0 . Show that if q ≤ (log x)A and χ is a
character modulo q, then

Λ(x, χ) ≪
A
exp

(
− c1

√
log x

)
,

and that

M(x, χ) ≪
A
x exp

(
− c1

√
log x

)
.

9. Show that if (a, q) = 1 then

Λ(x; q, a) =
1

φ(q)

∑
χ

χ(a)L(x, χ),
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and that

M(x; q, a) =
1

φ(q)

∑
χ

χ(a)M(x, χ) .

10. Let c1 be the constant in Theorem 16. Show that if
(a, q) = 1 then

Λ(x; q, a) ≪ x exp
(
− c1

√
log x

)
if there is no exceptional χ modulo q, and that

Λ(x; q, a) =
χ
1
(a)L(2β1, χ0

)xβ1

φ(q)L′(β1, χ1
)β1

+O
(
x exp

(
− c1

√
log x

))
if there is an exceptional character χ

1
modulo q with asso-

ciated zero β1 .

11. Suppose that (a, q) = d, and write a = db, q = dr .
(a) Show that Λ(x; q, a) = λ(d)Λ(x/d; r, b) .
(c) Show that

Λ(x; q, a) ≪ x

d
exp

(
− c1

√
log x/d

)
if no L-function modulo r has an exceptional zero, and that

Λ(x; q, a) =
λ(d)χ

1
(b)L(2β1, χ0

)(x/d)β1

φ(r)L′(β1, χ1
)β1

+O
(x
d
exp

(
−c1

√
log x/d

))
if there is an exceptional character χ

1
modulo r with associ-

ated zero β1 . Here χ
0
is the principal character modulo r .

(d) Show that if q ≤ (log x)A then

Λ(x; q, a) ≪
A
x exp

(
− c1

√
log x

)
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for all a .

12. Suppose that (a, q) = 1 . Show that

M(x; q, a) ≪ x exp
(
− c1

√
log x

)
if there is no exceptional character χ modulo q, and that

M(x; q, a) =
χ
1
(a)xβ1

φ(q)L′(β1, χ1
)β1

+O
(
x exp

(
− c1

√
log x

))
if there is an exceptional character χ

1
modulo q with asso-

ciated zero β1 .

13. Suppose that d = (a, q), and write q = dr, a = bd .
(a) Show that if d is not squarefree then M(x; q, a) = 0 .
(b) Explain why one does not expect that M(x; q, a) =
µ(d)M(x/d; r, b) is true in general.
(c) Show instead that

M(x; q, a) = µ(d)
∑
k|d

(k,r)=1

µ(k)M(x/(dk); r, bk)

where kk ≡ 1 (mod r) .
(d) Show that M(x; q, a) ≪ x/q in any case.
(e) Deduce that M(x; q, a) ≪ x exp

(
− c

√
log x

)
if there is

no exceptional character modulo r, and that

M(x; q, a) =
µ(d)χ

1
(b)(x/d)β1

φ(r)L′(β1, χ1
)β1

∏
p|d
p-r

(
1−

χ
1
(p)

p

β1)
+O

(
x exp

(
−c

√
log x

))
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if there is an exceptional character χ
1
with associated zero

β1 .
(f) Show that if q ≤ (log x)A then M(x; q, a) ≪

A
x exp

(
−

c
√

log x
)
for all a .

14. Grössencharaktere for Q
(√

−1
)
, continued from Exer-

cise 11.1.5. Put ψ(x, χm) =
∑

N(a)≤x Λ(a)χm(a) . Show

that if 1 ≤ m ≤ exp
(√

log x
)
then ψ(x, χm) ≪ x exp

(
−

c
√

log x
)
where c > 0 is a suitable absolute constant.

4. Applications

The fundamental estimates of the preceding section can be
applied to a wide variety of counting problems, of which the
following are representative examples.

Theorem 22. Walfisz (1936). Let A > 0 be fixed, and let
R(n) denote the number of ways of writing n as a sum of a
prime and a squarefree number. Then

R(n) = c(n) li(n) +O
(
n/(log n)A

)
where

c(n) =
∏
p-n

(
1− 1

p(p− 1)

)
=

(∏
p|n

(
1+

1

p2 − p− 1

))(∏
p

(
1− 1

p(p− 1)

))
.

Proof. Clearly

R(n) =
∑
p<n

µ(n− p)2

=
∑
p<n

∑
d2|(n−p)

µ(d)
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by (2.4). Here the divisibility relation is equivalent to as-
serting that p ≡ n (mod d2) . Hence on inverting the order
of summations we see that the above is

=
∑

d≤
√
n

µ(d)π(n− 1; d2, n) .

If (d, n) > 1 then the summand is O(1), and hence such
d ≤

√
n contribute an amount that is O(

√
n) . We now

restrict our attention to those d for which (d, n) = 1 . For
small d, say d ≤ y = (log x)A we can apply the Siegel–Walfisz
Theorem (Corollary 19). Thus we see that∑
d≤y

(d,n)=1

µ(d)π(n−1; d2, n) = li(x)
∑
d≤y

(d,n)=1

µ(d)

φ(d2)
+O

(
xy exp(−c

√
log x)

)
.

Since φ(d2) = dφ(d), we see that the sum in the main term
is

∞∑
d=1

(d,n)=1

µ(d)

dφ(d)
+O

(∑
d>y

1

dφ(d)

)
=

∏
p-n

(
1− 1

p(p− 1)

)
+O(1/y)

by (1.31). To treat d > y we could appeal to the Brun–
Titchmarsh Theorem (Theorem 3.9), but the moduli d2 are
increasing so rapidly that the trivial estimate π(x; q, a) ≪
1 + x/q is enough:∑

y<d<
√
n

π(n− 1; d2, n) ≪
∑

y<d<
√
n

n

d2
≪ n

y
.
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On combining our estimates we obtain the stated result.

In some situations, as below, we find it fruitful to use the
prime number theorem for arithmetic progressions in con-
junction with sieve estimates.

Theorem 23. Let N(x) denote the number of integers n ≤
x for which (n, φ(n)) = 1 . Then

N(x) ∼ e−C0x

log log log x

as x→ ∞ .

Proof. We note that (n, φ(n)) = 1 if and only if n has the
following two properties: (i) n is squarefree, and (ii) there do
not exist prime factors p, p′ of n such that p′ ≡ 1 (mod p) .
Let p(n) denote the least prime factor of n . We shall show
that if p(n) is small compared with log log x then n is unlikely
to have the property (ii). We also show that n is likely to
have both properties (i) and (ii) if p(n) is large compared
with log log x . Thus N(x) is approximately the number of
integers n ≤ x for which p(n) > log log x .

Let Ap(x) denote the number of n ≤ x that satisfy (i) and
(ii) and for which p(n) = p . Thus

N(x) =
∑
p≤x

Ap(x) .

We begin by estimating Ap(x) when p ≤ log log x . Let p be
given, and suppose that n is an integer such that p(n) = p
and for which (ii) holds. Write n = pm; then m is relatively
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prime to all prime numbers < p and also to all primes ≡ 1
(mod p) . Thus by the sieve estimate (3.20) we see that

Ap(x) ≪
x

p

( ∏
p′<p

(
1− 1

p′

))( ∏
p′≤x/p
p′≡1 (p)

(
1− 1

p′

))
.

Here the first product is ≍ 1/ log p by Mertens’ estimate
(Theorem 2.7(e)). By Theorem 4.12(d) we know that the
second product is ≍ (log x)−1/(p−1) for any fixed prime p .
To derive a bound that is uniform in p we appeal to the
Siegel–Walfisz Theorem (Corollary 19), by which we see that
π(u; p, 1) ≍ u/(p log u) uniformly for u ≥ ep . Hence by
integrating by parts we deduce that∑

ep≤p′≤x/p
p′≡1 (p)

1

p′
≍ 1

p
(log log x/p− log p) ≍ log log x

p

uniformly for p ≤ log log x . Hence there is a constant c > 0
such that in this range,

Ap(x) ≪
x

p log p
exp(−c(log log x)/p) .

Now it is not hard to show that the number of integers n ≤ x
such that p(n) = p is ≍ x/(p log p) uniformly for p ≤ x/2 .
Hence the exponential above reflects the relative improba-
bility that n satisfies condition (ii). On summing, we find
that ∑

1
2U<p≤U

Ap(x) ≪
x

(logU)2
exp(−c(log log x)/U) .
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We take U = 2−k log log x and sum over k to see that∑
p≤log log x

Ap(x) ≪
x

(log log log x)2
.

We now consider n for which p(n) is large, say p(n) ≥ y
where y, to be chosen later, is somewhat larger than log log x .
Let Φ(x, y) denote the number of integers n ≤ x composed
entirely of prime numbers > y . By the sieve of Eratosthenes
(Theorem 3.1) and Mertens’ estimate (Theorem 2.7(e)) we
see that∑
y<p≤x

Ap(x) ≤ Φ(x, y) =
e−C0x

log y
+O

( x

(log y)2

)
+O(ey/ log y) .

To derive a corresponding lower bound for the left hand side
we start with the numbers counted by Φ(x, y) and then delete
those that do not satisfy (i) or (ii). If n does not satisfy (i)
then there is a prime number p such that p2|n . The number
of such n ≤ x is not more than [x/p2] ≤ x/p2 . Hence the
total number of n counted in Φ(x, y) for which (i) fails is
not more than x

∑
p>y p

−2 ≪ x/(y log y) . Similarly, if n

does not satisfy (ii) then there exist primes p, p′ with pp′|n
such that p′ ≡ 1 (mod p) . If p and p′ are given then the
number of n ≤ x for which pp′|n is ≤ x/(pp′) . Hence the
total number of n counted in Φ(x, y) for which (ii) fails is
not more than

(40) x
∑

y≤p≤
√
x

1

p

∑
p′≤x/p
p′≡1 (p)

1

p′
.
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By the Brun–Titchmarsh inequality (Theorem 3.9) we see
that ∑

U<p′≤2U
p′≡1 (p)

1

p′
≪ 1

p log 2U/p

uniformly for U ≥ p . We take U = 2kp and sum over k to
see that the inner sum in (40) is ≪ (log log 4x/p2)/p . Hence
the expression (40) is

≪ x(log log x)
∑
p>y

1

p2
≪ x log log x

y log y
.

On combining our estimates we see that

∑
y≤p≤x

Ap(x) ≥
eC0x

log y
−O

( x

(log y)2

)
−O(ey/ log y)−O

( x

y log y

)
−O

(x log log x
y log y

)
.

In order that the last error term above is of a smaller
order of magnitude than the main term, it is necessary to
choose y so that y/ log log x→ ∞ . Thus there is necessarily
a remaining range log log x < p ≤ y to be treated. By using
the sieve (i.e., (3.20)) as in our treatment of small p we
see that the number of integers n ≤ x for which p(n) = p
is ≪ x/(p log p), uniformly for p ≤

√
x . Hence Ap(x) ≪

x/(p log p), and consequently

∑
U≤p≤2U

Ap(x) ≪
x

(logU)2
.
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We put U = 2k log log x and sum over 1 ≤ k ≤ K where
K ≪ log y

log log x to see that

∑
log log x≤p≤y

Ap(x) ≪
x

(log log log x)2
log

y

log log x
.

In order that this is a smaller order of magnitude than the
main term, it is necessary to take y ≤ (log log x)(1+ε) with
ε → 0 as x → ∞ . By taking y to be of this form with ε
tending to 0 slowly, we obtain the stated result.

11.4. Exercises

1. Let R(n) be defined as in Theorem 22. (a) Show that if
there is a primitive quadratic character χ

1
(mod q1), q1 ≤

exp(
√
log x), for which L(s, χ

1
) has a real zero β1 > 1 −

c(log x)−1/2 then

R(n) = c(n)li(n)− χ
1
(n)c1(n)li(n

β1) +O(n exp(−c
√

log n))

where

c1(n) =
∑
d=1

(d,n)=1

q1|d2

µ(d)

dφ(d)
.

(b) Show that c1(n) = 0 if 8|q1 .
(c) Show that if q1 is odd then

c1(n) =
µ(q1)c(q1n)

q1φ(q1)
.
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(d) Show that if 4∥q1 then

c1(n) =
4µ(q1/2)c(q1n)

q1φ(q1)

2. In the proof of Theorem 23, specify ε as an explicit func-
tion of x to show that

N(x) =
x

log log log x

(
e−C0 +O

( log log log log x
log log log x

))
.

3. Let a be a fixed nonzero integer. Show that the number
of primes p ≤ x such that p + a is squarefree is c(a) li(x) +
OA(x(log x)

−A) where c(a) is defined as in Theorem 22.

4. Show that the appeal to the Siegel–Walfisz Theorem in
the proof of Theorem 23 can be replaced by an appeal to
Page’s Theorem in conjunction with Corollary 12.

5. (Vaughan (1973)) Let A and B be positive numbers.
Show that∑

p≤x

(φ(p− 1)

p− 1

)B
= C li(x) +OA,B

(
x/(log x)A

)
where

C =
∏
p

(
1− 1− (1− 1/p)B

p− 1

)
.

6. (Erdős (1951)) (a) Let r(n) denote the number of so-
lutions of p + 2k = n with p prime and k ≥ 1, and let
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y = c
√
log x where c is a sufficiently small positive constant.

Define q′ =
∏

2<p≤y p. If there is a primitive character χ∗

modulo q∗ with q∗|q′ for which L(s, χ∗) has an exceptional
zero, then let p be any prime divisor of q∗ and define q = q′/p.
Otherwise let q = q′. Prove that∑

m≤x/q

r(qm) =
x

φ(q) log 2
+O

( x

φ(q) log x

)
.

(b) Show that r(n) = Ω(log log n).

11. Notes

§1. Theorem 3 is a combination of work by Gronwall
(1913) and Titchmarsh (1930,1933).

§2. Lemma 6, Theorem 7, and Corollaries 8, 9 originate
in Landau (1918a,b), while Corollary 10 is from Page (1935).
Theorem 11 can also be proved by appealing to the Dirichlet
class number formula, which asserts that if d is a quadratic
discriminant and χ

d
(n) =

(
d
n

)
K

is the associated quadratic
character, then

L(1, χ
d
) =

{ 2πh
w
√
−d

(d < 0),

h log ε√
d

(d > 0);

see Davenport (2000, §6). If d < 0, then χ
d
(−1) = −1,

Q
(√
d
)
is an imaginary quadratic field with class number

h, and w denotes the number of roots of unity in the field
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(which is to say that w = 6 if d = −3, w = 4 if d = −4,

and w = 2 otherwise). If d > 0, then χ
d
(−1) = 1, Q

(√
d
)
is

a real quadratic field with class number h and fundamental
unit ε. Since ε ≫

√
d, it follows that if χ is a quadratic

character with χ(−1) = 1, then L(1, χ) ≫ (log q)/q1/2.
Corollary 12 has been sharpened by Davenport (1966),

Haneke (1973), and by Goldfeld & Schinzel (1975).

§3. Let h(d) denote the number of equivalence classes of
primitive binary quadratic forms of discriminant d. Gauss
(1801, §303) conjectured that h(d) → ∞ as d → −∞. (The
behaviour for d > 0 is quite different—the heuristics of Co-
hen & Lenstra (1984a,b) predict that h(p) = 1 for a positive
proportion of primes p ≡ 1 (mod 4).) For Gauss, the generic
binary quadratic form was written ax2+2bxy+cy2, which is
to say that the middle coefficient is even. Put ∆ = b2−ac. In
Gauss’s notation, Landau (1903) found that if ∆ < 0, then
the class number is 1 precisely when ∆ = −1,−2,−3,−4,−7.
Binary quadratic forms ax2 + bxy + cy2 with d = b2 − 4ac
correspond, when d is a fundamental quadratic discriminant,
to ideals in the ring OK of integers in the quadratic num-
ber field K = Q

(√
d
)
. In this notation, h(d) = 1 if and

only if OK is a unique factorization domain. The problem
of determining all d < 0 for which h(d) = 1 is now solved,
but historically it was enormously more difficult than the
class number 1 problem settled by Landau. Landau (1918b)
recorded Hecke’s observation that if d < 0 is a quadratic
discriminant and L(s, χ

d
) > 0 for 1 − c/ log |d| < s < 1,

then h(d) ≫c |d|1/2/ log |d|. In view of Dirichlet’s class
number formula (4.36), we have obtained Hecke’s result—
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by a different method—in Theorem 4. Thus we have a
good lower bound for h(d) when d < 0, except for those
d for which L(s, χ

d
) has an exceptional real zero. Deuring

(1933) showed that if h(d) = 1 has infinitely many solutions
with d < 0, then the Riemann Hypothesis is true. Mordell
(1934) showed that the same conclusion can be derived from
the weaker hypothesis that h(d) does not tend to infinity
as d → −∞. Heilbronn (1934) found that instead of ar-
guing from a hypothetical zero ρ of the zeta function with
β > 1/2 one could just as well argue from an exceptional
zero of a quadratic L function, and thus proved Gauss’s con-
jecture that h(d) → ∞ as d → −∞. Landau (1935) put
Heilbronn’s theorem in a quantitative form: h(d) > |d|3/8−ε

as d → −∞. Through a different arrangement of the tech-
nical details, Siegel (1935) sharpened Landau’s argument to
show that h(d) > |d|1/2−ε, which by (4.36) is the case d < 0
of Theorem 14. To achieve his result, Siegel first generalized
to algebraic number fields the formula (found in Exercise
10.1.10) that Riemann used to prove the functional equa-
tion for ζ(s). Then Siegel applied this to the quartic num-
ber field K = Q

(√
d1,

√
d2
)
whose Dedekind zeta function is

ζK(s) = ζ(s)L(s, χ
d1
)L(s, χ

d2
)L(s, χ

d1d2
). It is now recog-

nized that Siegel’s formula arises through the choice of the
kernel in a Mellin transform, and that many other choices
work just as well; see Goldfeld (1974). Our exposition is
based on that of Estermann (1948).

It is easy to show that the complex quadratic field of dis-
criminant d < 0 has unique factorization in the nine cases
d = −3, −4, −7, −8, −11, −19,−43,−67,−163. Heilbronn
& Linfoot (1934) showed that there could exist at most one
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more such discriminant. The ‘problem of the tenth discrimi-
nant’ was solved first by Heegner (1952). However, Heegner’s
paper contained many assertions for which proofs were not
provided, and Heegner also used results from Weber’s Alge-
bra which were known not to be trustworthy. Consequently,
for many years Heegner’s paper was thought to be incorrect.
Baker (1966) proved a fundamental lower bound for linear
forms in logarithms of algebraic numbers, which by means of
a result of Gel’fond & Linnik (1948) reduced the class num-
ber one problem to a finite calculation. Meanwhile, Stark
(1967) showed that there is no tenth discriminant by trans-
lating Heegner’s argument into parallel language where it
could be checked. After a reexamination of Heegner’s work,
Deuring (1968), Birch (1969), and Stark (1969) all concluded
that Heegner’s paper was after all correct. Gel’fond & Lin-
nik reduced the class number one problem to a question con-
cerning linear forms in three logarithms, which Baker treated
successfully. However, with a small modification of their ar-
gument, Gel’fond & Linnik could have reduced the problem
to linear forms in two logarithms, which Gel’fond had al-
ready treated. Thus one could say that Gel’fond & Linnik
‘should’ have solved the problem in 1948.

Baker (1971) and Stark (1971b), (1972) reduced the com-
plete determination of complex quadratic fields with h(d) =
2 to a finite calculation which was provided by Ellison et
al (1971), Montgomery & Weinberger (1973), and by Stark
(1975).

The effective determination of all quadratic discriminants
d < 0 for which h(d) takes specific larger values became pos-
sible only with the addition of further ideas. Goldfeld (1976)
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showed that a zero at s = 1/2 of the L function of an elliptic
curve would be useful if it is of sufficiently high multiplicity.
In particular, if (i) the Birch–Swinnerton-Dyer conjectures
are true, and if (ii) there exist elliptic curves of arbitrarily
high rank, then h(d) ≫A (log |d|)A for arbitrarily large A,
with an effectively computable implicit constant. Although
these conjectures remain unproved, Gross & Zagier (1986)
were able to establish enough to give an effective lower bound
for h(d) tending to infinity. For accounts of this, see Zagier
(1984), Goldfeld (1985), Coates (1986), and finally Oesterlé
(1988), who developed the Goldfeld and Gross–Zagier work
to show that

h(d) ≥ 1

55
(log |d|)

∏
p|d

p<|d|

(
1−

[2
√
p]

p+ 1

)
.

By means of this inequality, Arno (1992), Wagner (1996),
and Arno, Robinson & Wheeler (1998) treated progressively
larger collections of class numbers. Most recently, Watkins
(2004) settled the complete determination of all discrimi-
nants d < 0 for which h(d) ≤ 100.

With regard to Corollary 17, Page (1935) states the final
conclusion in a less precise form in which the term corre-
sponding to the exceptional zero is replaced by O

(
xβ1/ϕ(q)

)
.

The deduction of Corollaries 18 and 19 from Siegel’s the-
orem was first recorded by Walfisz (1936).

§4. Theorem 22 in a weaker form occurs first in Ester-
mann (1931), and is given in a somewhat refined form but
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without the benefit of Siegel’s theorem in Page (1935). For
similar theorems see see Mirsky (1949).

Theorem 23 is due to Erdős (1948).
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P. Erdős (1948). Some asymptotic formulas in number the-
ory, J. Indian Math. Soc. (N. S.) 12, 75–78.

(1951).On some problems of Bellman and a theorem
of Romanoff, J. Chinese Math. Soc. (N. S.) 1, 409–421.

T. Estermann (1931). On the representations of a number
as the sum of a prime and a quadratfrei number, J. London
Math. Soc. 6, 219–221.

(1948). On Dirichlet’s L functions, J. London Math.
Soc. 23, 275–279.
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