
Chapter 10

Analytic properties of the zeta function and L-functions

1. Functional equations and analytic continuation

In §1.3 we saw that the zeta function can be analytically continued to the half-plane σ > 0.
We now derive an important formula for the Riemann zeta function, one that serves to
define the zeta function throughout the complex plane. From this formula we see that the
zeta function is analytic at all points except for s = 1, and we find that ζ(s) is related to
ζ(1 − s). In preparation for this we first use the Poisson summation formula to establish
a corresponding functional equation for theta functions.

Theorem 1. For arbitrary real α, and complex numbers z with <z > 0,

(1)
∞∑

n=−∞
e−π(n+α)2z = z−1/2

∞∑
k=−∞

e(kα)e−πk2/z,

and

(2)

∞∑
n=−∞

(n+ α)e−π(n+α)2z = −iz−3/2
∞∑

k=−∞

ke(kα)e−πk2/z

where the branch of z1/2 is determined by 11/2 = 1.

Proof. We can obtain (2) from (1) by differentiating with respect to α, since the differ-
entiated series are uniformly convergent for α in a compact set. As for (1), we note that

if g(u) = f(u + α) then ĝ(t) = f̂(t)e(tα). (Conventions governing the definition of the

Fourier transform f̂ are established in Appendix D.) We apply the Poisson summation

formula (Theorem D.3) to g(u), where f(u) = e−πu2z, and it remains only to demonstrate

that f̂(t) = z−1/2e−πt2/z. Writing

−πx2z − 2πitx = −π(x+ it/z)2z − πt2/z,

we see that

f̂(t) = e−πt2/z

∫ +∞

−∞
e−π(x+it/z)2z dx.
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We consider this integral to be a contour integral in the complex plane. We note that the
integrand tends to 0 very rapidly as |<x| tends to infinity with |=x| bounded. Hence
by Cauchy’s theorem we may translate the path of integration to the line x − it/z,

−∞ < x < +∞, and we find that the above integral is
∫ +∞
−∞ e−πx2z dx. We now turn

the path of integration through an angle − 1
2 arg z and again apply Cauchy’s theorem.

After reparameterizing, we see that our integral is z−1/2
∫ +∞
−∞ e−πx2

dx = z−1/2. This
completes the proof.

Theorem 2. For any complex number s, except s = 0, s = 1, and any non-zero complex
number z with <z ≥ 0,

(3)

ζ(s)Γ(s/2)π−s/2 = π−s/2
∞∑

n=1

n−sΓ
(
s/2, πn2z

)
+ π(s−1)/2

∞∑
n=1

ns−1Γ
(
(1− s)/2, πn2/z

)
+

z(s−1)/2

s− 1
− zs/2

s
.

Here Γ(s, a) is the incomplete gamma function,

(4) Γ(s, a) =

∫ ∞

a

e−wws−1 dw,

and we may take the path of integration to be the ray w = a+ u, 0 ≤ u < ∞, so that

Γ(s, a) =

∫ ∞

0

e−u−a(u+ a)s−1 du.

Now (u + a)s−1 � |a|σ−1 uniformly for <a ≥ 0, |a| ≥ ε > 0, and |σ| ≤ C, so that
n−sΓ(s/2, πn2z) � n−2 uniformly for <z ≥ 0, |z| ≥ ε, |s| ≤ C. Thus the two sums on
the right are uniformly convergent for s in any compact set, and hence by a theorem of
Weierstrass they represent entire functions. The last two terms have simple poles at 1 and
0, respectively. As for the left hand side, we note that Γ(s/2) has a pole at s = 0, and
never vanishes, so it follows that ζ(s) is analytic for all s 6= 1. If we simultaneously replace
s by 1− s and z by 1/z then the two sums on the right in (3) are exchanged, and the last
two terms are also exchanged, so that the value of the right hand side is invariant. These
observations may be summarized as follows:

Corollary 3. The function

(5) ξ(s) =
1

2
s(s− 1)ζ(s)Γ(s/2)π−s/2

is entire, and ξ(s) = ξ(1− s) for all s.

This is the functional equation of the zeta function, first proved by Riemann in 1860.
Since ζ(s) 6= 0 for σ ≥ 1, it follows that ξ(s) 6= 0 for σ ≥ 1, and by the functional equation
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that ξ(s) 6= 0 for σ ≤ 0. The zeros of ζ(s) in the critical strip 0 < σ < 1 coincide precisely
with those of ξ(s). As Γ(s/2) has simple poles at s = 0,−2,−4,−6, . . . , the zeta function
has simple zeros at s = −2,−4,−6, . . . . These are the trivial zeros of the zeta function.
The only other zeros of the zeta function are the nontrivial zeros in the critical strip.
The generic nontrivial zero is denoted ρ = β + iγ. By the Schwarz reflection principle,
ξ(s) = ξ(s); hence in particular ξ( 12 − it) = ξ( 12 + it). But the functional equation gives

ξ( 12 − it) = ξ( 12 + it), so it follows that ξ( 12 + it) is real for all real t. Similarly, if ρ is a
zero of ξ(s) then so also are ρ, 1− ρ, and 1− ρ. The as yet unproved Riemann Hypothesis
(RH) asserts that all nontrivial zeros of the zeta function have real part 1/2; that is, all
the zeros of ξ(s) lie on the critical line σ = 1/2. We shall find it instructive to explore a
number of consequence of this famous conjecture.

Proof of Theorem 2. By Euler’s integral formula (Theorem C.2) for Γ(s/2) we see that
if σ > 0 then

(6) Γ(s/2) =

∫ ∞

0

e−xxs/2−1 dx.

By the linear change of variables x = πn2u it follows that

n−sΓ(s/2)π−s/2 =

∫ ∞

0

e−πn2uus/2−1 du.

We assume that σ > 1 and sum over n to find that

ζ(s)Γ(s/2)π−s/2 =
∞∑

n=1

∫ ∞

0

e−πn2uus/2−1 du

=

∫ ∞

0

( ∞∑
n=1

e−πn2u

)
us/2−1 du.(7)

Here the exchange of integration and summation is permitted by absolute convergence.
Suppose, for the present, that <z > 0. We may consider the integral above to be a
contour integral in the complex plane, and by Cauchy’s theorem we may replace the path
of integration by the ray from 0 that passes through z. We now consider separately
the integral from 0 to z, and the integral from z to ∞. We call these integrals

∫
1
,
∫
2
,

respectively. By reversing the steps we made in passing from (6) to (7) we see immediately
that ∫

2
= π−s/2

∞∑
n=1

n−sΓ
(
s/2, πn2z

)
.

To treat
∫
1
we let

(8) ϑ(u) =
+∞∑
−∞

e−πn2u



312 CHAPTER 10. ANALYTIC PROPERTIES OF ζ(s) AND L(s, χ)

for <u > 0. Then the sum in the integrand in (7) is (ϑ(u)− 1)/2. Thus

∫
1
=

1

2

∫ z

0

ϑ(u)us/2−1 du− 1

2

∫ z

0

us/2−1 du.

Here the second integral is 2
sz

s/2. By Theorem 1 we know that ϑ(u) = u−1/2ϑ(1/u). Hence
the first term above is

1

2

∫ z

0

ϑ(1/u)us/2−3/2 du =

∫ z

0

( ∞∑
n=1

e−πn2/u
)
us/2−3/2 du+

1

2

∫ z

0

us/2−3/2 du.

Here the second integral is 2
s−1z

(s−1)/2. By the change of variable v = 1/u we see that the
first term above is ∫ ∞

1/z

( ∞∑
n=1

e−πn2v
)
v(1−s)/2−1 dv.

We exchange the order of summation and integration, and make the linear change of
variables x = πn2v, to see that this is

π(s−1)/2
∞∑

n=1

ns−1Γ
(
(1− s)/2, πn2/z

)
.

Hence ∫
1
=

z(s−1)/2

s− 1
− zs/2

s
+ π(s−1)/2

∞∑
n=1

ns−1Γ
(
(1− s)/2, πn2/z

)
,

so we have the desired identity for σ > 1. But, as already noted, the two sums represent
entire functions, so the right hand side of (3) is analytic for all s except for simple poles at
s = 1 and s = 0. Hence by the uniqueness of analytic continuation the identity (3) holds
for all s except at the poles.

The functional equation of Corollary 3 can also be expressed asymmetrically:

Corollary 4. For all s 6= 1,

(9) ζ(s) = ζ(1− s)2sπs−1Γ(1− s) sin
πs

2
.

Proof. By the reflection principle (C.6) and the duplication formula (C.9), we see that

Γ
(
1−s
2

)
Γ
(
s
2

) =
1

π
Γ
(1− s

2

)
Γ
(
1− s

2

)
sin

πs

2
= π−1/22sΓ(1− s) sin

πs

2
.

Thus the stated identity follows from Corollary 3.

By Stirling’s formula, we can describe |ζ(s)| in terms of |ζ(1− s)|.
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Corollary 5. Suppose that A > 0 is fixed. Then

|ζ(s)| � τ1/2−σ|ζ(1− s)|

uniformly for |σ| ≤ A and |t| ≥ 1. Here τ = |t|+ 4, as usual.

Proof. Since the above is invariant when s is replaced by 1 − s, we may suppose that
−A ≤ σ ≤ 1/2. We may also suppose that t ≥ 1, since |ζ(σ−it)| = |ζ(σ+it)|. We consider
the factors on the right hand side of (9). By Stirling’s formula as formulated in (C.18), we
see that

|Γ(1− s)| �
∣∣(1− s)1/2−s

∣∣ = |1− s|1/2−σ exp(t arg(1− s)).

But arg(1 − s) = − arctan t/(1 − σ) = −π/2 + O(1/t) and |1 − s| ∼ t, so |Γ(1 − s)| �
t1/2−σ exp(−πt/2). On the other hand, sin z = (eiz−e−iz)/(2i), so | sinπs/2| � exp(πt/2),
and we obtain the stated result.

Let σ be fixed, and let µ(σ) denote the infimum of those exponents µ such that ζ(σ +
it) � τµ. This is the Lindelöf µ-function. By Corollary 1.17 we know that µ(σ) = 0
for σ ≥ 1 and that µ(σ) ≤ 1 − σ for 0 < σ ≤ 1. By Corollary 5 we see that µ(σ) =
µ(1 − σ) + 1/2 − σ. Hence in particular, µ(σ) = 1/2 − σ for σ ≤ 0. For 0 < σ < 1
the value of µ(σ) is at present unknown, but the Lindelöf Hypothesis (LH) asserts that
ζ(1/2 + it) �ε τ

ε, which is to say that µ(1/2) = 0. From this it follows that

(10) µ(σ) =

{
0 for σ ≥ 1/2,

1/2− σ for σ ≤ 1/2.

Three different proofs that LH implies the above are found in Exercises 18–20. Also,
from Exercises 20 and 21 we see that LH is equivalent to a certain assertion concerning
the distribution of the zeros of ζ(s). Since this assertion is visibly weaker than RH, it is
evident that RH implies LH. In Chapter 12 we shall show that RH implies a quantitative
form of LH.

Concerning special values of the zeta function, we observe first that since ζ(s) ∼ 1/(s−1)
for s near 1, it follows from Corollary 4 that

(11) ζ(0) = −1/2.

In addition, we note that Corollary B.3 asserts that

(12) ζ(2k) =
(−1)k−122k−1B2k

(2k)!
π2k

for each positive integer k. Hence by taking s = 1− 2k in Corollary 4 we deduce that

(13) ζ(1− 2k) =
−B2k

2k

for positive integers k. An alternative proof of this is found in Appendix B. We may also
determine the value of ζ ′(0), as follows. Let f(s) = (s−1)ζ(s). By Corollary 1.16 we know
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that f(s) = 1 + C0(s − 1) + · · · for s near 1. On multiplying both sides of (9) by s − 1
we see that f(s) = −ζ(1 − s)2sπs−1Γ(2 − s) sinπs/2. On differentiating both sides and
setting s = 1 we discover that C0 = 2ζ ′(0) − 2ζ(0) log 2π + 2ζ(0)Γ′(1). But ζ(0) = −1/2
and Γ′(1) = −C0, so we find that

(14) ζ ′(0) = −1

2
log 2π.

Our treatment of the zeta function extends readily to L-functions.

Theorem 6. For z with <z > 0 let

ϑ0(z, χ) =

∞∑
n=−∞

χ(n)e−πn2z/q,

ϑ1(z, χ) =
∞∑

n=−∞
nχ(n)e−πn2z/q.

If χ is a primitive character modulo q then

ϑ0(z, χ) =
τ(χ)

q1/2
z−1/2ϑ0(1/z, χ),

ϑ1(z, χ) =
τ(χ)

iq1/2
z−3/2ϑ1(1/z, χ)

where the branch of z1/2 is determined by 11/2 = 1.

Though both these functions are defined for all χ, we note that if χ(−1) = −1 then
ϑ0(z, χ) = 0 for all z, while if χ(−1) = 1 then ϑ1(z, χ) = 0 identically. Thus ϑ0(z, χ) is of
interest when χ(−1) = 1, and ϑ1(z, χ) is useful when χ(−1) = −1.

Proof. Since χ is periodic with period q, it follows that

ϑ0(z, χ) =

q∑
a=1

χ(a)
∞∑

m=−∞
e−π(mq+a)2z/q.

By (1) with α = a/q and z replaced by qz we see that the above is

= (qz)−1/2

q∑
a=1

χ(a)
∞∑

k=−∞

e−πk2/(qz)e(ak/q) = (qz)−1/2
∞∑

k=−∞

e−πk2/(qz)

q∑
a=1

χ(a)e(ak/q).

Since χ is primitive, we know by Theorem 9.7 that the inner sum on the right is τ(χ)χ(k)
for all k. This gives the identity for ϑ0. The identity for ϑ1 is proved similarly, using (2).

In order to unify our formulæ we find it convenient to put

(15) κ = κ(χ) =

{
0 if χ(−1) = 1,

1 if χ(−1) = −1.
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In this notation, the formulæ of Theorem 6 read

(16) ϑκ(z, χ) =
ε(χ)

z1/2+κ
ϑκ(1/z, χ)

where

(17) ε(χ) =
τ(χ)

iκ
√
q
.

Suppose that χ is primitive. Some of our results concerning Gauss sums can be reformu-
lated in terms of ε(χ). Firstly, from Theorem 9.7 we see that |ε(χ)| = 1. Secondly, by
Theorems 9.5 and 9.7 we see that ε(χ)ε(χ) = 1. Finally, if χ is not only primitive but also
quadratic, then ε(χ) = 1, by Theorem 9.17.

In the same way that Theorem 2 was derived from (8), the following is an immediate
consequence of (16).

Theorem 7. Let χ be a primitive character modulo q with q > 1. Then for any complex
numbers s and z with <z ≥ 0,

(18)

L(s, χ)Γ((s+ κ)/2)(q/π)(s+κ)/2

= (q/π)(s+κ)/2
∞∑

n=1

χ(n)n−sΓ
(
(s+ κ)/2, πn2z/q

)
+ ε(χ)(q/π)(1−s+κ)/2

∞∑
n=1

χ(n)ns−1Γ
(
(1− s+ κ)/2, πn2/(qz)

)
.

As was the case with the zeta function, the above is first proved for σ > 1. Since each
term of the series is entire, and since the series are locally uniformly convergent, the right
hand side is an entire funcyion of s, and this provides an analytic continuation of L(s, χ)
to the entire complex plane. If in the above we replace χ by χ, s by 1− s, and z by 1/z,
and then multiply both sides by ε(χ) then the right hand side above is unchanged, and
thus we obtain a functional equation for L(s, χ), as follows.

Corollary 8. Let χ be a primitive character modulo q with q > 1. The function

(19) ξ(s, χ) = L(s, χ)Γ((s+ κ)/2)(q/π)(s+κ)/2

is entire, and ξ(s, χ) = ε(χ)ξ(1− s, χ) for all s.

Let χ be a primitive character modulo q, q > 1. We already know that L(s, χ) 6= 0
for σ > 1. Since the gamma function has no zeros, it follows that ξ(s, χ) 6= 0 in this
halfplane. By the functional equation, ξ(s, χ) 6= 0 also for σ < 0, and hence L(s, χ) 6= 0
for σ < 0 except that L(s, χ) must have simple zeros where the gamma factor has simple
poles, which is to say at −κ,−κ − 2,−κ − 4, . . . . These are the trivial zeros of L(s, χ).
Zeros ρ = β + iγ of L(s, χ) in the critical strip 0 ≤ β ≤ 1 are called nontrivial . The
conjecture that these latter zeros all lie on the critical line σ = 1/2 is the Generalized
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Riemann Hypothesis (GRH). If ρ is a nontrivial zero of L(s, χ), then by the functional
equation 1− ρ is a zero of L(s, χ). Consequently 1− ρ is a zero of L(s, χ), since in general

L(s, χ) = L(s, χ). The pair of zeros ρ, 1− ρ are symmetrically placed with respect to the
critical line. Of course, if β = 1/2 then ρ = 1 − ρ. For complex characters there is no
symmetry about the real axis, but if χ is quadratic then χ = χ, and so if ρ is a zero then
so also are ρ, 1− ρ, and 1− ρ.

The functional equation of an L-function can also be expressed asymmetrically.

Corollary 9. Suppose that χ is a primitive character (mod q) with q > 1. Then for all s,

L(s, χ) = ε(χ)L(1− s, χ)2sπs−1q1/2−sΓ(1− s) sin
π

2
(s+ κ).

Proof. When κ = 0 we proceed as in the proof of Corollary 4. When κ = 1 we use the
reflection formula (C.6) and the duplication formula (C.9) to see that

Γ(1− s/2)

Γ((s+ 1)/2)
=

1

π
Γ(1− s/2)Γ(1/2− s/2) sinπ(s+ 1)/2 = 2sπ−1/2Γ(1− s) sin

π

2
(s+ 1).

This, with the identity ξ(s, χ) = ε(χ)ξ(1− s, χ) gives the stated result.

By the same method used to prove Corollary 5 we obtain

Corollary 10. Let χ be a primitive character (mod q) with q > 1, and suppose that A > 0
is fixed. Then

|L(s, χ)| � (qτ)1/2−σ|L(1− s, χ)|

uniformly for |σ| ≤ A and |t| ≥ 1. If −A ≤ σ ≤ 1/2 and |t| ≤ 1 then

L(s, χ) � q1/2−σ|L(1− s, χ)|.

Let χ be a character modulo q. If χ is imprimitive then χ is induced by a primitive
character χ⋆ modulo d, for some d|q, and

(20) L(s, χ) = L(s, χ⋆)
∏
p|q

(
1− χ⋆(p)

ps

)
.

If p|d then χ⋆(p) = 0, and thus in the above product we may confine our attention to
those primes p|q such that p - d. For such a prime, the factor 1 − χ⋆(p)/ps is an entire
function whose zeros form an arithmetic progression on the imaginary axis. Thus L(s, χ)
has all the zeros of L(s, χ⋆), and if there are primes p|q such that p - d then L(s, χ) has
additional zeros on the imaginary axis. Such zeros constitute a finite union of arithmetic
progressions. In the special case χ = χ

0
, we have

L(s, χ
0
) = ζ(s)

∏
p|q

(
1− 1

ps

)
.

Thus L(s, χ
0
) has a pole at s = 1 with residue φ(q)/q, it has all the zeros of ζ(s), and it

also has zeros of the form 2πik/ log p where k takes integral values and p|q.
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10.1. Exercises

1. Let ϑ(u) be defined as in (8). Show that ϑ′(1) = −ϑ(1)/4.

2. Let f be an even function in L1(R), let β > 1, suppose that f(x) = O(x−β) as x → ∞,

and that f̂(u) = O(u−β) as u → ∞. Show that

2ζ(s)

∫ ∞

0

f(x)xs−1 dx = 2
∞∑

n=1

n−s

∫ ∞

n

f(x)xs−1 dx+ 2
∞∑

n=1

ns−1

∫ ∞

n

f̂(u)u−s du

− f(0)/s+ f̂(0)/(s− 1)

for 1− β < σ < β.

3. (Heilbronn (1938); cf Weil (1967)) (a) Show that for c > 1, x > 0,

1

2πi

∫ c+i∞

c−i∞
ζ(s)Γ(s/2)(πx)−s/2 ds = 2

∞∑
n=1

e−πn2x.

(b) With ϑ(x) defined as in (8), use the functional equation of the zeta function to show
that ϑ(x) = x−1/2ϑ(1/x) for x > 0.

4. (Lavrik (1965)) (a) Suppose that <z > 0, that σ0 > max(0,−σ), and that s 6= 0,
s 6= −1, s 6= −2, . . . . By pulling the contour to the left and summing the residues, show
that

1

2πi

∫ σ0+i∞

σ0−i∞
Γ(w + s)z−w dw

w
= Γ(s)−

∞∑
k=0

(−1)kzs+k

k!(s+ k)
.

(b) Show that if σ > 0 then the right hand side above is Γ(s, z).
(c) Argue that both sides are entire functions of s, and hence that the identity

Γ(s, z) =
1

2πi

∫ σ0+i∞

σ0−i∞
Γ(w + s)z−w dw

w

holds for all complex s.
(d) Show that if σ0 > max(0, (1− σ)/2) then

π−s/2
∞∑

n=1

n−sΓ
(
s/2, πn2z

)
=

1

2πi

∫ σ0+i∞

σ0−i∞
ζ(s+ 2w)Γ(w + s/2)π−w−s/2z−w dw

w
.

(e) Suppose now that s 6= 0 and s 6= 1. Explain why the integrand has poles at w = 0,
w = (1− s)/2, w = −s/2, and nowhere else.
(f) Show that when the contour is pulled to the left, the pole at w = 0 contributes
ζ(s)Γ(s/2)π−s/2, the pole at w = (1 − s)/2 contributes z(s−1)/2/(s − 1), and the pole at
−s/2 contributes −zs/2/s.
(g) Suppose the contour is pulled to the left to an abscissa σ1 < min(0,−σ/2). By
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means of the identity ζ(s)Γ(s/2)π−s/2 = ζ(1 − s)Γ((1 − s)/2)π(s−1)/2 and the change
of variable w 7→ −w, show that the expression is π(s−1)/2

∑∞
n=1 n

s−1Γ
(
(1 − s)/2, πn2/z

)
.

Thus demonstrate that Theorem 2 can be derived from Corollary 3.

5. Suppose that α is real, that <z > 0 and that χ is a primitive character (mod q).
(a) Show that

∞∑
n=−∞

χ(n)e−π(n+α)2z/q =
τ(χ)

q1/2
z−1/2

∞∑
k=−∞

χ(k)e(kα/q)e−πk2/(qz).

(b) By differentiating with respect to α, or otherwise, show that

∞∑
n=−∞

χ(n)(n+ α)e−π(n+α)2z/q =
τ(χ)

iq1/2
z−3/2

∞∑
k=−∞

χ(k)ke(kα/q)e−πk2/(qz).

6. Let α and β be real numbers, and suppose that <z > 0, and put

ϑ0(z;α, β) =
∞∑

n=−∞
e(nβ)e−π(n+α)2z.

(a) Show that if f(x) = e(βx)e−π(x+α)2z then f̂(t) = e(−αβ)z−1/2

(b) Show that ϑ0(z;α, β) = e(−αβ)z−1/2ϑ(1/z,−β, α).
(c) Without using the result of (b), show that ϑ0(z;α, β) = ϑ0(z;−α,−β).

7. Show that

∞∑
n=−∞

(
1− 2πn2x

)
e−πn2x >

∞∑
n=−∞

(
2π(n+ 1/2)2x− 1

)
e−π(n+1/2)2x > 0

for all x > 0.

8. Use the functional equation of the zeta function in any convenient form to show that

ζ(1− s) = ζ(s)21−sπ−sΓ(s) cos
πs

2
.

9. Show that if k is a positive integer then

ζ ′(−2k) =
(−1)k(2k)!ζ(2k + 1)

22k+1π2k
.

10. Let ϑ(x) be defined as in (8). Show that

ζ(s)Γ(s/2)π−s/2 =
1

s(s− 1)
+

1

2

∫ ∞

1

(
xs/2 + x(1−s)/2

)
(ϑ(x)− 1)

dx

x
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for all s except s = 1 or s = 0.

11. (Walfisz (1931, p. 454)) Show that

∞∑
a=1

∞∑
b=1

(a,b)=1

1

a2b2
=

5

2
.

12. (Mallik (1977)) Let χ be a primitive quadratic character.
(a) Show that ξ′(1/2, χ) = 0.
(b) Show that if L(1/2, χ) 6= 0, then sgnL′(1/2, χ) = − sgnL(1/2, χ).

13. Let χ be a primitive character modulo q, and let θ be a real number such that
e2iθ = ε(χ). Thus eiθ is one of the square-roots of ε(χ). Show that ξ(1/2 + it, χ)e−iθ is
real for all real t.

14. Let χ be a primitive character modulo q with q > 1, and suppose that χ(−1) = 1.
(a) For each positive integer k, show that

L(2k, χ) =
(−1)k−122k−1π2kτ(χ)

(2k)! q

q∑
a=1

χ(a)B2k(a/q).

(b) For positive integers k, deduce that

L(1− 2k, χ) =
−q2k−1

2k

q∑
a=1

χ(a)B2k(a/q).

15. Let χ be a primitive character modulo q with q > 1, and suppose that χ(−1) = −1.
(a) For each nonnegative integer k, show that

L(2k + 1, χ) =
i(−1)k22kπ2k+1τ(χ)

(2k + 1)! q

q∑
a=1

χ(a)B2k+1(a/q).

(b) Show that when k = 0, the above is consistent with the formula of Theorem 9.9.
(c) For nonnegative integers k, deduce that

L(−2k, χ) =
−q2k

2k + 1

q∑
a=1

χ(a)B2k+1(a/q).

16. (a) Let p1 and p2 be distinct primes. Show that (log p1)/(log p2) is irrational.
(b) Let χ be a character modulo q. Show that all zeros of L(s, χ) on the imaginary axis
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are simple, except possibly for zeros at the point s = 0.
(c) Let a positive integer m and a primitive character χ⋆ be given. Show that there is a
character χ induced by χ⋆ such that L(s, χ) has a zero at s = 0 of exact multiplicity m.

17. (Landau (1907)) (a) Let χ denote the character modulo 5 such that χ(2) = i. Show
that L(1, χ) = (−1− 3i)πτ(χ)/25.

(b) With χ as above, show that L(2, χ2) = 4
√
5π2/125.

(c) Let χ be as above. By using Exercise 9.2.9, or otherwise, show that τ(χ)2 = (−1−2i)
√
5.

(d) With χ as above, show that

L(1, χ)2

L(2, χ2)
= 1 + i/2.

(e) Let χ denote a nonprincipal character modulo q. Show that

∞∑
n=1

2ω(n)χ(n)n−s =
L(s, χ)2

L(2s, χ2)

for σ > 1/2.
(f) Let εn = 1 if n ≡ 1 (mod 5), εn = −1 if n ≡ −1 (mod 5), and εn = 0 otherwise. Show
that

∞∑
n=1

εn2
ω(n)

n
= 1.

18. Suppose throughout that 0 < δ ≤ 1/2. (a) Let α(s) =
∑∞

n=1 ann
−s be a Dirichlet

series with abscissa of convergence σc. Show that if σ0 > max(δ, σc) then∑
n≤x

an
(
(x/n)δ − (n/x)δ

)
=

δ

πi

∫ σ0+i∞

σ0−i∞
α(w)

xw

(w − δ)(w + δ)
dw

(b) By taking α(w) = ζ(1/2 + it + w), and considering the residues arising from poles at
w = 1/2− it and at w = δ, show that

ζ(1/2 + δ + it) = x−δ
∑
n≤x

n−1/2−it
(
(x/n)δ − (n/x)δ

)
+

δx−δ

π

∫ ∞

−∞
ζ(1/2 + it+ iu)

xiu

u2 + δ2
du

− 2δx1/2−δ−it

(1/2− it− δ)(1/2− it+ δ)

= T1 + T2 + T3,

say.
(c) Show that

T1 �
(
1 + x1/2−δ

)
min

( 1

|δ − 1/2|
, log x

)
.
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(d) Let M(T ) = max0≤t≤T |ζ(1/2 + it)|. Show that

T2 � x−δM(2τ)

uniformly for 0 < δ ≤ 1/2.
(e) Show that T3 � x1/2−δ/τ2.
(f) By taking x = M(2τ)2, show that

ζ(σ + it) � M(2τ)2−2σ min
( 1

|σ − 1|
, logM(2τ)

)
uniformly for 1/2 ≤ σ ≤ 1.
(g) Show that if M(T ) �ε T

ε then µ(σ) = 0 for σ ≥ 1/2.
(h) By Corollary 5, deduce that if M(T ) �ε T

ε then µ(σ) = 1/2− σ when σ ≤ 1/2.

19. Let M(σ, T ) = max1≤t≤T |ζ(σ + it)|. Suppose that σ, σ1, σ2 are fixed, 0 ≤ σ1 < σ <
σ2 ≤ 1. Let C denote the rectangular contour with vertices σ2 − σ − iτ/2, σ2 − σ + iτ/2,
σ1 − σ + iτ/2, σ1 − σ − iτ/2.
(a) Show that

ζ(σ + it) =
1

2πi

∫
C

ζ(s+ w)
xw

w(w + 1)
dw.

(b) Deduce that
ζ(σ + it) � M(σ1, 2τ)x

σ1−σ +M(σ2, 2τ)x
σ2−σ .

(c) By choosing x suitably, show that

M(σ, T ) � M(σ1, 2T )
(σ2−σ)/(σ2−σ1)M(σ2, 2T )

(σ−σ1)/(σ2−σ1).

(d) Deduce that

µ(σ) ≤ σ2 − σ

σ2 − σ1
µ(σ1) +

σ − σ1

σ2 − σ1
µ(σ2).

(e) Conclude that µ(σ) ≤ 1
2 (1− σ) for 0 ≤ σ ≤ 1.

(f) Show that if µ(1/2) = 0 then (10) holds for all σ.

20. (Backlund (1918)) Assume the Lindelöf Hypothesis (LH) throughout, and suppose
that δ is a small fixed positive number and t is not the ordinate γ of a zero ρ of ζ(s).
(a) Show that the number of zeros ρ = β + iγ of ζ(s) in the rectangle 1/2 + δ ≤ β ≤ 1,
T − 1 ≤ γ ≤ T + 1 is o(log T ).
(b) Show that

ζ ′

ζ
(s) =

∑
ρ

1

s− ρ
+ o(log τ)

uniformly for 1/2+2δ ≤ σ ≤ 2 where the sum is over those zeros ρ for which 1/2+δ ≤ β ≤ 1,
t− 1 ≤ γ ≤ t+ 1.
(c) Show that if σ1 < σ2 and t 6= γ, then∫ σ2

σ1

σ − β

(σ − β)2 + (t− γ)2
dσ =

1

2
log

(σ2 − β)2 + (t− γ)2

(σ1 − β)2 + (t− γ)2
.
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(d) Show that if 1/2 ≤ σ1 ≤ 1 and t 6= γ, then∫ 2

σ1

σ − β

(σ − β)2 + (t− γ)2
dσ ≥ 0.

(e) Show that if t is not the ordinate of a zero, then∫ 2

σ1

<ζ ′

ζ
(σ + it) dσ ≥ −ε log τ

uniformly for 1/2 + 2δ ≤ σ ≤ 2.
(f) Show that µ(σ) = 0 for 1/2 < σ ≤ 2.
(g) Deduce that µ(σ) = 1/2− σ for −1 ≤ σ < 1/2.
(h) Show that∫ σ2

σ1

t− γ

(σ − β)2 + (t− γ)2
dσ = arctan

t− γ

σ2 − β
− arctan

t− γ

σ1 − β
.

(i) Deduce that ∣∣∣∣ ∫ σ2

σ1

t− γ

(σ − β)2 + (t− γ)2
dσ

∣∣∣∣ ≤ π.

(j) Conclude that arg ζ(1/2 + 2δ + it) = o(log τ).

21. (Backlund (1918); cf Littlewood (1924)) Suppose now that the number of zeros ρ of
ζ(s) in a rectangle 1/2 + δ ≤ β ≤ 1, t− 1 ≤ γ ≤ t+ 1 is o(log τ) as t → ∞, and put

f(s) =
ζ ′

ζ
(s)−

∑
ρ

1

s− ρ

where the sum is over the o(log τ) zeros in such a rectangle.
(a) Explain why f(s) � log τ in the disk |s− 2− it0| ≤ 3/2− 2δ.
(b) Explain why f(s) = o(log τ) in the disk |s− 2− it0| ≤ 1/2.
(c) Use Hadamard’s three circles theorem to show that f(s) = o(log τ) for |s− 2− it0| ≤
3/2− 3δ.
(d) Deduce that ζ(1/2 + 3δ + it) � τε.
(e) Suppose that our hypothesis concerning the number of zeros in a rectangle holds for
every fixed positive δ. Deduce that µ(σ) = 0 for σ > 1/2.
(f) By Exercise 19(d), conclude that µ(1/2) = 0, i.e., that LH follows.

22. For 0 < α ≤ 1 and σ > 1 let ζ(s, α) =
∑∞

n=0(n+ α)−s be the Hurwitz zeta function.
(a) Show that

ζ(s, α)Γ(s) =

∫ ∞

0

xs−1e−αx

1− e−x
dx
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for σ > 1.
(b) Let

I(s, α) =

∫
C(r)

zs−1e−αz

1− e−z
dz

where C(r) is a contour that runs by a straight line from ir + ∞ to ir, by a semicircle
from ir through −r to −ir, and then by a straight line from −ir to −ir +∞. Note that
the value of I(s, α) is independent of r for 0 < r < 2π. By letting r → 0 show that
I(s, α) =

(
e2πis − 1

)
ζ(s, α)Γ(s) for σ > 1.

(c) By means of (C.6), show that

ζ(s, α) =
Γ(1− s)e−πis

2πi
I(s, α)

for σ > 1.
(d) Show that I(s, α) is an entire function of s. Deduce by the above that ζ(s, α) is
meromorphic.
(e) Show that I(k, α) = 0 for k = 2, 3, . . . .
(f) Show that I(1, α) = 2πi.
(g) Deduce that ζ(s, α) is analytic everywhere except for a simple pole at s = 1 with
residue 1.
(h) Show that if k is an integer then

I(k, α) =

∮
|z|=1

zk−2
(ze(1−α)z

ez − 1

)
dz.

(i) By Exercise B.3, deduce that if k is a nonnegative integer then

I(−k, α) = 2πiBk+1(1− α)/(k + 1)! .

(j) By Theorem B.1, deduce that if k is a positive integer then

ζ(1− k, α) =
−Bk(α)

k
.

In particular, ζ(0, α) = 1/2− α.

23. (Lerch (1894); cf Berndt (1985)) Let α be fixed, 0 < α ≤ 1. (a) Show that

ζ(s, α)− ζ(s) = α−s +
∞∑

n=1

(
(n+ α)−s − n−s

)
for σ > 0.
(b) Show that

(n+ α)−s − n−s + αsn−s−1 = (s+ 1)

∫ n+α

n

(u− n− α)u−s−2 du .
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(c) Deduce that

ζ(s, α)− ζ(s) + αsζ(s+ 1) = α−s +
∞∑

n=1

(
(n+ α)−s − n−s + αsn−s−1

)
for σ > −1, and that the series is locally uniformly convergent in this halfplane.
(d) Show that

ζ ′(s, α) − ζ ′(s) + αζ(s+ 1) + αsζ ′(s+ 1)

= −α−s logα +
∞∑

n=1

(− log(n+ α)

(n+ α)s
+

log n

ns
+

α

ns+1
− αs log n

ns+1

)
for σ > −1 . (Here ζ ′(s, α) is meant to denote ∂

∂sζ(s, α) .)
(e) By Corollary 1.16, or otherwise, show that lims→0 ζ(s+ 1) + sζ ′(s+ 1) = C0 .
(f) Deduce that

ζ ′(0, α)− ζ ′(0) + αC0 = − log a+
∞∑

n=1

(
− log(n+ α) + log n+ α/n

)
.

By (14) and the definition (C.1) of the gamma function, conclude that

ζ ′(0, α) = log
Γ(α)√
2π

.

24. (a) Let χ be a character modulo q. Show that

L(s, χ) = q−s

q∑
a=1

χ(a)ζ(s, a/q) .

(b) Show that if χ is a nonprincipal character modulo q then

L(0, χ) =
−1

q

q∑
a=1

χ(a)a .

(c) Show that if χ is a nonprincipal character modulo q then

L′(0, χ) = L(0, χ) log q +

q∑
a=1

χ(a) log Γ(a/q) .

25. Let Q(x, y) = ax2 + bxy + cy2 where a, b, c are real numbers, and put d = b2 − 4ac.
Suppose that Q is positive-definite, which is to say that a > 0 and d < 0. For z with
<z > 0, put

ϑQ(z) =
∑

m,n∈Z

e−2πQ(m,n)z/
√
−d.
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(a) Show that

ϑQ(z) =
∑
n

e−πzn2
√
−d/(2a)

∑
m

e−2πa(m+bn/(2a))2z/
√
−d.

(b) Apply Theorem 1 to the inner sum, take the sum over n inside, and apply Theorem 1
a second time to show that ϑQ(z) = ϑQ(1/z)/z.
(c) For σ > 1 put

ζQ(s) =
∑

(m,n)̸=(0,0)

Q(m,n)−s.

Show that if <z ≥ 0 then

ζQ(s)Γ(s)(−d)s/2(2π)−s

= (−d)s/2(2π)−s
∑

(m,n)̸=(0,0)

Q(m,n)−sΓ
(
s, 2πQ(m,n)z/

√
−d

)
+ (−d)(1−s)/2(2π)s−1

∑
(m,n)̸=(0,0)

Q(m,n)s−1Γ
(
1− s, 2πQ(m,n)/(z

√
−d)

)
+

zs−1

2(s− 1)
− z−s

2s
.

(d) Deduce that ζQ(s) is a meromorphic function whose only singularity is a simple pole

at s = 1 with residue π/
√
−d.

(e) Put ξQ(s) = ζQ(s)Γ(s)(−d)s/2(2π)−s. Show that ξQ(s) = ξQ(1 − s) for all s except
s = 0, s = 1.
(f) Show that ζQ(0) = −1/2.
(g) Show that ζQ(−k) = 0 for all positive integers k.

26. Let K be an algebraic number field. The Dedekind zeta function of K is defined to
be ζK(s) =

∑
a N(a)−s for σ > 1, where the sum is over all integral ideals in the ring OK

of algebraic integers in K. This is a natural generalization of the Riemann zeta function,
and indeed ζQ(s) = ζ(s). Since ideals in OK factor uniquely into prime ideals, and since
N(ab) = N(a)N(b) for any pair a, b of ideals, it follows that

ζK(s) =
∏
p

(
1−N(p)−s

)−1

for σ > 1. Let d denote the discriminant of K. In the case that K is a quadratic field,
by analyzing how rational primes split in K it emerges that ζK(s) = ζ(s)L(s, χd) where
χd(n) =

(
d
n

)
K

is the Kronecker symbol. Thus the functional equations of ζ(s) and of
L(s, χd) give a functional equation for ζK(s) in this case. From now on, suppose that K is

a complex quadratic field, which is to say that K = Q
(√

d
)
where d < 0 is a fundamental

quadratic discriminant. Let w denote the number of units in OK , which is to say that
w = 6 if d = −3, w = 4 if d = −4, and w = 2 if d < −4. Let h be the class number of K.
Then there are precisely h reduced positive definite binary quadratic forms of discriminant
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d, say Q1, Q2, . . . , Qh. As m and n run over integral values, (m,n) 6= (0, 0), the values
Qi(m,n) run over the the values N(a) for ideals a in the ith ideal class Ci, each value being
taken exactly w times. Thus

ζQi
(s) = w

∑
a∈Ci

N(a)−s

in the notation of the preceding exercise, and

ζK(s) =
1

w

h∑
i=1

ζQi(s).

(a) For <z > 0, let

ϑK(z) =

h∑
i=1

ϑQi(z) = h+ w

∞∑
n=1

r(n)e−2πnz/
√
−d

where r(n) = rK(n) =
∑

k|n χd(k) is the number of ideals in OK with norm n. Show that

ϑK(z) = ϑK(1/z)/z.
(b) Show that if <z ≥ 0 then

ζK(s)Γ(s)(−d)s/2(2π)−s = (−d)s/2(2π)−s
∞∑

n=1

r(n)n−sΓ
(
s, 2πnz/

√
−d

)
+ (−d)(1−s)/2(2π)s−1

∞∑
n=1

r(n)ns−1Γ
(
1− s, 2πn/(z

√
−d)

)
+

hzs−1

2w(s− 1)
− hzs

2ws

(c) Deduce that ζK(s) is a meromorphic function whose only singularity is a simple pole
at s = 1 with residue hπ/(w

√
−d).

(d) Put ξK(s) = ζK(s)Γ(s)(−d)s/2(2π)−s. Show that ξK(s) = ξK(1 − s) for all s except
s = 1 and s = 0.
(e) Show that ζK(0) = −h/(2w).
(f) Show that ζK(−k) = 0 for all positive integers k.
(g) Show that r(n2) ≥ 1 for all positive integers n.
(h) Show that if L(1/2, χ) ≥ 0 then h � (−d)1/4 log(−d).

27. Let α be an arbitrary complex number and z a complex number with <z > 0. Let

f(u) = e−π(u+α)2z. Show that f̂(t) = z−1/2e2πitαe−πt2/z. Deduce that the identities of
Theorem 1 hold for arbitrary complex α.

28. Grössencharaktere for Q(
√
−1), continued from Exercises 4.2.7 and 4.3.8. (a) By two

applications of the preceding exercise, show that if z and w are complex numbers with
<z > 0 then ∑

a,b∈Z

e−π(a2+b2)e2πi(a+ib)w =
1

z

∑
c,d∈Z

e−π(c2+d2)/ze2πi(c+id)w/z.
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(b) Differentiate both sides of the above m times with respect to w, and then set w = 0,
to show that ∑

a,b

e−π(a2+b2)z(a+ ib)m =
1

zm+1

∑
c,d

e−π(c2+d2)/z(c+ id)m.

(c) Explain why the above reduces to 0 = 0 if 4 - m.
(d) Let χm and L(s, χm) be defined as before. Show that if m is a positive integer and
<z ≥ 0, then

L(s, χm)Γ(s+ 2m)π−s =
π−s

4

∑
(a,b)̸=(0,0)

χm(a+ ib)

(a2 + b2)s
Γ
(
s+ 2m,π(a2 + b2)z

)
+

πs−1

4

∑
(a,b)̸=(0,0)

χm(a+ ib)

(a2 + b2)1−s
Γ
(
1− s+ 2m,π(a2 + b2)/z

)
.

(e) Deduce that L(s, χm) is an entire function when m is a nonzero integer.
(f) For each positive integer m, put ξ(s, χm) = L(s, χm)Γ(s + 2m)π−s. Show that
ξ(s, χm) = ξ(1− s, χm) for all s.
(g) Show that if m is a positive integer then L(s, χm) has simple zeros at −2m,−2m −
1,−2m− 2, . . . , but no other zeros in the half-plane σ < 0.
(h) Show that ξ(σ, χm) is real for all real σ, and that ξ(1/2 + it, χm) is real for all real t.

2. Products and sums over zeros

If P (z) is a polynomial then we may express P (z) as a product over its zeros zi,

P (z) = c(z − z1)(z − z2) · · · (z − zn).

The question arises whether a more general entire function may be similarly represented
as a product over its zeros, say

(21) f(z) = c
∏
n

(
1− z

zn

)
.

This is an issue that was addressed by Weierstrass and Hadamard. Rather than derive
their extensive theory, we establish only a simple part of it that suffices for our purposes.
We do not quite achieve a formula of the type (21) for the zeta function, but we obtain a
serviceable substitute.

Lemma 11. Suppose that f(z) is an entire function with a zero of order K at 0, and that
f(z) vanishes at the nonzero numbers z1, z2, z3, . . . . Suppose also that there is a constant
θ, 1 < θ < 2, such that

max
|z|≤R

|f(z)| ≤ exp(Rθ)
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for all sufficiently large R. Then there exist numbers A = A(f) and B = B(f), such that

f(z) = zKeA+Bz
∞∏
k=1

(
1− z

zk

)
ez/zk

for all z. Here the product is uniformly convergent for z in compact sets.

Proof. We may suppose that K = 0, since if K > 0 then the function f(z)/zK does not
vanish at the origin. Let Nf (R) denote the number of zeros of f(z) in the disk |z| ≤ R.
By Jensen’s inequality (Lemma 6.1) we find that Nf (R) ≤ 8Rθ for all sufficiently large
R. Thus

∑
R<|zk|≤2R |zk|−2 ≤ 8Rθ−2, so by summing over dyadic blocks we see that∑∞

k=1 |zk|−2 < ∞. (Alternatively, if more precision were desired, we could write this sum

as
∫∞
0

r−2 dNf (r), and integrate by parts.) But (1 − z)ez = 1 + O(|z|2) uniformly for
|z| ≤ 1, so the product

g(z) =

∞∏
k=1

(
1− z

zk

)
ez/zk

is uniformly convergent in compact regions, and hence represents an entire function. Thus
h(z) = f(z)/(f(0)g(z)) is a non-vanishing entire function with h(0) = 1.

Next we derive an upper bound for Mh(R). To this end we write the product above in
three parts,

g(z) =
∏

k∈K1

∏
k∈K2

∏
k∈K3

= P1(z)P2(z)P3(z),

where |zk| ≤ R/2 for k ∈ K1, R/2 < |zk| ≤ 3R for k ∈ K2, and |zk| > 3R for k ∈ K3.
Suppose that R ≤ |z| ≤ 2R. If |zk| ≤ R/2 then |1− z/zk| ≥ |z/zk| − 1 ≥ 1, and hence

|P1(z)| ≥
∏

k∈K1

e−2R/|zk|.

Now ∑
k∈K1

1

|zk|
� Rθ−1.

Thus
|P1(z)| ≥ e−cRθ

for all large R. Since cardK2 ≤ 72Rθ, it follows that there is an r, R ≤ r ≤ 2R, for which
|r − |zk|| ≥ 1/R2 for all k. If r is chosen in this way and |z| = r then

|1− z/zk| ≥
|r − |zk||

|zk|
≥ 1

27R3

for all k ∈ K2. Hence

|P2(z)| ≥ e−cRθ logR

when |z| = r. Finally,

|P3(z)| ≥
∏

k∈K3

e−cR2/|zk|2 ≥ e−cRθ
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for |z| ≤ 2R. Hence we see that for each large R there is an r, R ≤ r ≤ 2R, for which

|g(z)| ≥ e−cRθ logR when |z| = r. Thus |h(z)| ≤ ecR
θ logR for such z, and hence by the

maximum modulus principle

Mh(R) ≤ ecR
θ logR.

Now put j(z) = log h(z) with j(0) = 0. Then <j(z) ≤ cRθ logR for all large R, so that by
the Borel–Carathéodory Lemma (Lemma 6.2),

j(z) � Rθ logR

for all large R. But θ < 2, so j(z) must be a polynomial of degree at most 1, say
j(z) = A+Bz, and the proof is complete.

In order to apply our lemma to ξ(s) we need an upper bound for |ξ(s)|. From Corollary
1.17 we see that ζ(s) � |s|1/2 when σ ≥ 1/2 and |s| ≥ 2. Thus by Stirling’s formula
(Theorem C.1) it follows that

(22) ξ(s) � exp(|s| log |s|)

when σ ≥ 1/2 and |s| ≥ 2. In view of the functional equation found in Corollary 3, this
same upper bound therefore holds for all s with |s| ≥ 2. Since

(23) ξ(s) = (s− 1)ζ(s)Γ(1 + s/2)π−s/2,

it follows from (11) that ξ(0) = 1/2. Thus by Lemma 11 we obtain

Theorem 12. Let ξ(s) be defined as in Corollary 3. There is a constant B such that

(24) ξ(s) =
1

2
eBs

∏
ρ

(
1− s

ρ

)
es/ρ

for all s. Here the product is extended over all zeros ρ of ξ(s).

All known zeros of the zeta function are simple, and it is plausible to conjecture that
they all are. In the (unlikely) event that a multiple zero is encountered, the associated
factor in the above product is to be repeated as many times as the multiplicity.

Thus far we have remarked upon the zeros of ξ(s) without having proved that they
exist. However, from (24) we see that if ξ(s) had at most finitely many zeros then there
would be a constant C > 0 such that ξ(s) � exp(C|s|) for all large s. On the contrary, by
Stirling’s formula we find that ξ(σ) = exp

(
1
2σ log σ+O(σ)

)
as σ → ∞, so it is evident that

ξ(s) has infinitely many zeros. Concerning the density of the zeros, the following estimate
is useful.

Theorem 13. For T ≥ 0, let N(T ) denote the number of zeros ρ = β + iγ of ξ(s) in the
rectangle 0 < β < 1, 0 < γ ≤ T . Any zeros with γ = T should be counted with weight 1/2.
Then

N(T + 1)−N(T ) � log(T + 2).
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Proof. We apply Jensen’s inequality (Lemma 6.1) to ξ(s), on a disk with centre 2 +
i(T + 1/2) and radius R = 11/6. By taking r = 7/4, it follows from the estimates of
Corollary 1.17 that the number of zeros ρ in the rectangle 1/2 ≤ β ≤ 1, T ≤ γ ≤ T + 1
is � log(T + 2). (Alternatively, we could appeal to Theorem 6.8.) But ρ is a zero if and
only if 1 − ρ is a zero, so the rectangle 0 ≤ β ≤ 1/2, T ≤ γ ≤ T + 1 contains the same
number of zeros as the former one. Thus we have the result.

By summing the above over integral values of T , we deduce that N(T ) � T log T .
Alternatively, this same upper bound follows from (22) by means of Jensen’s inequality.
Hence

∑
ρ |ρ|−A < ∞ for all A > 1. With a little more work we could show that

∑
1/|ρ| =

∞ (see Exercise 1), and indeed that N(T ) � T log T for all large T (see Exercise 4). A
much more precise asymptotic formula for N(T ) will be derived in Chapter 12.

We recall that the logarithmic derivative of a function f(z) is defined to be f ′(z)/f(z).
Since f ′(z)/f(z) = d

dz log f(z), it follows that the logarithmic derivative of a product is the
sum of the logarithmic derivatives of the factors. Although log f(z) is multiple-valued, the
ambiguity involves only an additive constant, so f ′(z)/f(z) is a well-defined single-valued
analytic function wherever f(z) is analytic and nonzero. If f has a zero at a of multiplicity
m then f ′/f has a simple pole at a with residue m. If f has a pole at a of multiplicity m
then f ′/f has a simple pole at a with residue −m. Hence if f is meromorphic then f ′/f is
meromorphic with only simple poles, which occur at the zeros and poles of f .

By taking logarithmic derivatives in the definition (5) of ξ(s) we find that

(25)
ξ′

ξ
(s) =

1

s
+

1

s− 1
+

ζ ′

ζ
(s) +

1

2

Γ′

Γ
(s/2)− 1

2
log π.

By taking logarithmic derivatives in the functional equation of Corollary 3 we see that

(26)
ξ′

ξ
(s) = − ξ′

ξ
(1− s).

By logarithmically differentiating the asymmetric form (9) of the functional equation, we
discover that

(27)
ζ ′

ζ
(s) = − ζ ′

ζ
(1− s) + log 2π − Γ′

Γ
(1− s) +

π

2
cot

πs

2
.

By taking logarithmic derivatives of both sides of the identity (24) we obtain

Corollary 14. Let B be defined as in Theorem 12. Then

(28)
ξ′

ξ
(s) = B +

∑
ρ

( 1

s− ρ
+

1

ρ

)
and

(29)
ζ ′

ζ
(s) = B +

1

2
log π − 1

s− 1
− 1

2

Γ′

Γ
(s/2 + 1) +

∑
ρ

( 1

s− ρ
+

1

ρ

)
.
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Moreover,

(30) B = − 1

2

∑
ρ

( 1

1− ρ
+

1

ρ

)
= −

∑
ρ

<1

ρ
=

−1

2
C0 − 1 +

1

2
log 4π = −0.0230957 . . . .

In the above, it is to be understood that if ξ(s) has a multiple zero ρ, then the summand
arising from ρ is to be repeated as many times as the multiplicity.

Proof. The second identity follows from the first by means of (25). As for (30), we observe

first by taking s = 0 in (28) that B = ξ′

ξ (0). Also, by taking s = 1 in (28) we find that
ξ′

ξ (1) = B +
∑

ρ(1/(1 − ρ) + 1/ρ). By (26), this is −B, so we obtain the first identity in

(30). Since B is real, we may write

B = − 1

2

∑
ρ

(
< 1

1− ρ
+ <1

ρ

)
.

However,
∑

ρ <1/(1−ρ) and
∑

ρ <1/ρ are absolutely convergent, so these two sums may be
written separately, above. Since 1−ρ runs over zeros of the zeta function as ρ does, the two
sums are equal, and we obtain the second identity in (30). By logarithmically differentiating

the fundamental identity sΓ(s) = Γ(s+1) we see that 1/s+ Γ′

Γ (s) = Γ′

Γ (s+1). Hence (25)
may be rewritten as

ξ′

ξ
(s) =

1

s− 1
+

ζ ′

ζ
(s) +

1

2

Γ′

Γ
(s/2 + 1)− 1

2
log π.

We obtain the third identity in (30) by taking s = 0 in the above, in view of (11), (14),
and (C.12).

In order to extend our theory to include L-functions, we need an upper bound for
|L(s, χ)| that corresponds to the bound for the zeta function provided by Corollary 1.17.

Lemma 15. Let χ be a nonprincipal character modulo q, and suppose that δ > 0 is fixed.
Then

L(s, χ) �
(
1 + (qτ)1−σ

)
min

( 1

|σ − 1|
, log qτ

)
uniformly for δ ≤ σ ≤ 2.

Landau noted that an estimate relating to the zeta function often has a ‘q-analogue’ in
which n−it is replaced by χ(n) and τ is replaced by q. In the above we have a ‘hybrid’ of
the two, with χ(n)n−it and qτ throughout.

Proof. Let S(u, χ) =
∑

0<n≤u χ(n). Then for σ > 0,

L(s, χ) =
∑
n≤x

χ(n)n−s +

∫ ∞

x

u−s dS(u, χ)

=
∑
n≤x

χ(n)n−s + S(u, χ)u−s
∣∣∣∞
x

−
∫ ∞

x

S(u, χ) du−s

=
∑
n≤x

χ(n)n−s − S(x, χ)x−s + s

∫ ∞

x

S(u, χ)u−s−1 du.
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This is analogous to Theorem 1.12. To estimate the sum we use (1.29). For the remaining
terms we use the trivial estimate S(u, χ) � q. The stated estimate then follows by taking
x = qτ . bv

Now suppose that χ is a primitive character modulo q, q > 1. By Stirling’s formula
we see that ξ(s, χ) � q1/2+σ exp(|s| log |s|) when σ ≥ 1/2 and |s| ≥ 2. By the functional
equation of Corollary 8, it follows that

(31) ξ(s, χ) � exp(|s| log q|s|)

for all s with |s| ≥ 2. Hence by Lemma 11 we obtain

Theorem 16. Let χ be a primitive character modulo q, q > 1, and let ξ(s, χ) be defined
as in Corollary 8. There is a constant B(χ) such that

(32) ξ(s, χ) = ξ(0, χ)eB(χ)s
∏
ρ

(
1− s

ρ

)
es/ρ

for all s. Here the product is extended over all zeros ρ of ξ(s, χ).

We expect that the zeros of ξ(s, χ) are all simple, but if a multiple zero is encountered,
then the factor that it contributes to the above product is to be repeated as many times
as its multiplicity. In analogy to Theorem 13, we have

Theorem 17. Let χ be a character modulo q. The number of zeros ρ = β + iγ of L(s, χ)
in the rectangle 0 ≤ β ≤ 1, T ≤ γ ≤ T + 1 is � log q(|T |+ 2) .

Proof. First suppose that χ is primitive. We apply Jensen’s inequality (Lemma 6.1) to
L(s, χ), on a disk with centre 2 + i(T + 1/2) and radius R = 11/6. By taking r = 7/4,
it follows from the estimates of Lemma 15 that the number of zeros ρ in the rectangle
1/2 ≤ β ≤ 1, T ≤ γ ≤ T+1 is � log q(T+2). But L(ρ, χ) = 0 if and only if L(1−ρ, χ) = 0
(except possibly for a trivial zero at s = 0 if χ(−1) = 1), so the rectangle 0 ≤ β ≤ 1/2,
T ≤ γ ≤ T + 1 contains the same number of zeros as (or at most one more than) the
former one. Thus we have the result when χ is primitive.

Suppose now that χ is induced by a primitive character χ⋆ modulo r, with r|q. Then

L(s, χ) = L(s, χ⋆)
∏
p|q
p-r

(
1− χ⋆(p)

ps

)
.

Here each factor in the product has zeros forming an arithmetic progression on the imagi-
nary axis with common difference 2πi/ log p. Thus L(s, χ) has the � log r(|T | + 2) zeros
of L(s, χ⋆), and additionally has �

∑
p|q log p � log q zeros on the imaginary axis with

imaginary part between T and T + 1. This completes the argument.

Suppose that χ is a primitive character modulo q. By taking logarithmic derivatives in
the definition (18) of ξ(s, χ), we see that

(33)
ξ′

ξ
(s, χ) =

L′

L
(s, χ) +

1

2

Γ′

Γ
((s+ κ)/2) +

1

2
log q/π.
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By taking logarithmic derivatives in the functional equation of Corollary 8 we see that

(34)
ξ′

ξ
(s, χ) = − ξ′

ξ
(1− s, χ).

By logarithmically differentiating the asymmetric form of the functional equation found in
Corollary 9, we discover that

(35)
L′

L
(s, χ) = − L′

L
(1− s, χ) − log

q

2π
− Γ′

Γ
(1− s) +

π

2
cot

π

2
(s+ κ)

By taking logarithmic derivatives of both sides of the identity (31) we obtain

Corollary 18. Let χ be a primitive character modulo q, q > 1, and let B(χ) be defined
as in Theorem 16. Then

(36)
ξ′

ξ
(s, χ) = B(χ) +

∑
ρ

( 1

s− ρ
+

1

ρ

)
and

(37)
L′

L
(s, χ) = B(χ)− 1

2

Γ′

Γ
((s+ κ)/2) − 1

2
log q/π +

∑
ρ

( 1

s− ρ
+

1

ρ

)
.

Moreover,

(38) <B(χ) = − 1

2

∑
ρ

( 1

1− ρ
+

1

ρ

)
= −

∑
ρ

<1

ρ

and

(39) B(χ) =
−1

2
log

q

π
− L′

L
(1, χ) +

1

2
C0 + (1− κ) log 2 .

As always, multiple zeros are counted multiply.

Proof. The second identity follows from the first by means of (33). To obtain the first
identity in (38), we take s = 1 in (36), and apply (34) to see that

B(χ) +
∑
ρ

( 1

1− ρ
+

1

ρ

)
=

ξ′

ξ
(1, χ) = − ξ′

ξ
(0, χ) = −B(χ) = −B(χ).

From Theorem 17 we know that the number of zeros ρ of ξ(s, χ) with |ρ| ≤ R is � R log qR
for R ≥ 2. Hence the sums

∑
ρ <1/(1−ρ) and

∑
ρ <1/ρ are absolutely convergent. As the

map ρ 7→ 1− ρ merely permutes zeros of ξ(s, χ), the first of these two sums is unchanged
if we replace ρ by 1 − ρ. Hence the two sums are equal, and we obtain the second part
of (38).

To derive (39) we first take s = 0 in (36) to see that B(χ) = ξ′

ξ (0, χ). By (34) it follows

that B(χ) = − ξ′

ξ (1, χ). The stated identity now follows by taking s = 1 in (33), in view

of (C.11) and (C.14).
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10.2. Exercises

1. Let f satisfy the hypotheses of Lemma 11, and suppose that

∞∑
k=1

1

|zk|
< ∞.

(a) Show that there are numbers A and B and a non-negative integer K such that f(z) =
zKeA+Bzg(z) where g(z) =

∏∞
k=1(1− z/zk).

(b) Observe that for any complex number w, |1−w| ≤ e|w| and show that there is a number
C such that |g(z)| ≤ eC|z|.
(c) Deduce that

∑
ρ 1/|ρ| = ∞ where the sum is over all nontrivial zeros of the zeta

function.

2. (a) Let B be the constant given in (30). Show that if ρ = 1/2 + iγ is a zero of the zeta
function on the critical line, then

|γ| ≥ (−1/B − 1/4)1/2 = 6.5611 . . . .

(b) Let γ be given, and put f(β) = β/(β2 + γ2). Show that if 0 ≤ β ≤ 1 then f(β) ≥
β/(1 + γ2). Deduce that if 0 ≤ β ≤ 1 then f(β) + f(1− β) ≥ f(0) + f(1).
(c) Show that if ρ = β + iγ is a nontrivial zero of the zeta function with β 6= 1/2 then

|γ| ≥ (−2/B − 1)1/2 = 9.2518 . . . .

3. (Landau (1903)) Show that

lim sup
m→∞

( 1

m!

∣∣∣ ∞∑
n=1

µ(n)(log n)m

n

∣∣∣)1/m =
1

3
.

4. (a) Show that ∑
ρ

< 1

σ − ρ
=

1

2
log σ +O(1)

for σ ≥ 2, where the sum is over all nontrivial zeros of the zeta function.
(b) Deduce that ∑

ρ

(
< 1

σ − ρ
− 3

4
< 1

2σ − ρ

)
=

1

8
log σ +O(1)

for σ ≥ 2.
(c) Show that each summand above is ≤ 1/(σ − 1).
(d) Show that if |γ| ≥ 3σ and σ is large, then the summand arising from ρ in the sum
above is ≤ 0.
(e) Conclude that N(T ) � T log T when T is large.



10.2. EXERCISES 335

5. Put f(s) = <
(

1
s+1 − 3/4

s+2

)
.

(a) Show that if t ≥ 2 then ∑
ρ

f(1 + it− ρ) =
1

8
log t+O(1)

where the sum is over all nontrivial zeros ρ of ζ(s).
(b) Show that f(s) ≤ 1 when σ ≥ 0.
(c) Show that if 0 ≤ σ < 2 then f(s) ≤ 0 when

t2 ≥ (σ + 1)(σ + 2)(σ + 5)

2− σ
.

(d) Deduce that f(s) ≤ 0 if 0 < σ < 1 and |t| ≥ 6.
(e) Show that N(T + 6)−N(T − 6) � log T for all T > T0.

6. (a) Show that for s near 1 the Laurent expansion of ζ′

ζ (s) begins

ζ ′

ζ
(s) =

−1

s− 1
− C0 + · · · .

(b) Deduce that
ζ ′

ζ
(1− s) =

1

s
− C0 +O(|s|)

for s near 0.
(c) Show that Γ′

Γ (1) = −C0.
(d) Show that

π

2
cot

πs

2
=

1

s
+O(|s|)

for s near 0.
(e) Deduce by (27) that ζ′

ζ (0) = log 2π .

(f) Use this to give a second proof that ζ ′(0) = − 1
2 log 2π .

7. (Taylor (1945)) (a) Show that if σ > 1/2, then |ξ(s+ 1/2)| > |ξ(s− 1/2)|.
(b) Put f(s) = ξ(s+ 1/2) + ξ(s− 1/2). Show that all zeros of f(s) have real part 1/2.
(c) Assume RH. Show that if c is fixed, c > 0, then all zeros of ξ(s+ c)+ ξ(s− c) have real
part 1/2.

8. (Vorhauer (2005)) Let B(χ) denote the constant in Theorem 16. (a) Show that

1− β

(1− β)2 + γ2
+

β

β2 + γ2
≥ 1

1 + γ2

uniformly for 0 ≤ β ≤ 1 .
(b) Deduce that

<B(χ) ≤ − 1

2

∑
γ

1

1 + γ2
.
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(c) Show that
ξ′

ξ
(2, χ) =

1

2
log q +O(1) .

(d) Show that

<ξ′

ξ
(2, χ) =

∑
ρ

< 1

2− ρ
.

(e) Show that

<ξ′

ξ
(2, χ) =

1

2

∑
ρ

<
( 1

2− ρ
+

1

1 + ρ

)
.

(f) Show that
2− β

(2− β)2 + γ2
+

1 + β

(1 + β)2 + γ2
≤ 3

1 + γ2

uniformly for 0 ≤ β ≤ 1 .
(g) Conclude that

<B(χ) ≤ −1

6
log q +O(1) .

9. Let K > 0 be given, and put E(z) = (1− z) exp
(∑K

k=1 z
k/k

)
.

(a) Show that

E′(z) = −zK exp
( K∑

k=1

zk

k

)
.

(b) Deduce that the power series coefficients of E′(z) are all ≤ 0.
(c) Write E(z) =

∑∞
m=0 Amzm. Show that A0 = 1, Am = 0 for 1 ≤ m ≤ K, Am < 0 for

m > K, and that
∑

m>K Am = −1.

(d) Show that if |z| ≤ r ≤ 1 then |1− E(z)| ≤ 1− E(r) ≤ rK+1.

10. Notes

§1. The case α = 0 of (1) was given by Poisson (1823). de la Vallée Poussin observed
that the left hand side of (1) has period 1 with respect to α, and then computed the
Fourier coefficients of this function to obtain (1). This is rather similar to using the
Poisson summation formula, as we have done. Theorem 1 is the basis for a very large
class of functional equations and was first exploited systematically by Hecke. For the most
general version see Tate’s thesis, reproduced in Tate (1967). Riemann gave two proofs of
Corollary 3. Riemann’s second method involved using Theorem 1 to establish the formula
of Exercise 10. This is the case z = 1 of Theorem 2, with the order of summation and
integration reversed. Theorem 2 is due to Lavrik (1965), who derived it from Corollary 3
in the manner outlined in Exercise 4. For further proofs of the functional equation, see
Titchmarsh (1986, Chapter 2).

The proof of Theorem 1 can be arranged so that one does not depend on the fact that∫
e−πx2

dx = 1. To see this, let c denote the value of this integral. Then the proof given
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establishes (1) with the factor c on the right hand side. But if z = 1 and α = 0 the two
sides of (1) are visibly equal and positive, so it follows that c = 1

The functional equation for ζ(s) was established by Riemann (1860), and that for L(s, χ)
by de la Vallée Poussin (1896) although it was known in some special cases earlier. See
the commentary of Landau (1909, p. 899).

§2 The product formula of Theorem 12 was established by Hadamard (1893). The
constant B(χ) in Theorem 16 was long considered to be mysterious; the simple formula
(39) for it is due to Vorhauer (2005).
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