MATH 568 ANALYTIC NUMBER THEORY 1.
CHAPTER 0

0.1. Introduction. Number theory in its most basic form
is the study of the set of integers

Z={0,£1,£2,...}
and its important subset
N=1{1,2,3,...}.

Analytic number theory is the use of analytic techniques to
understand the properties of these sets. For example War-
ing’s problem (1770) is that of trying to find the smallest
s, say g(k), such that every positive integer is the sum of
at most s k-the powers. One way of doing this might be to

look at )

n=0
This converges absolutely when |z| < 1. Expanding it and
rearranging the terms gives

Z Rg(n)z"

where Rg(n) is the number of solutions of

ny+ -4 nk

in non-negative integers ni,...,ns. Thus if we could show
that for some s = sy we have Ry(n) > 0 for every n, then
it would follow that

g(k) < so.

1
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One way of doing this would be to use Cauchy’s integral
formula

Rs(n) = %/Cf(z)sz_”_ldz

and to try and evaluate the integral, at least approximately.
This is the genesis of the Hardy-Littlewood-Ramanujan
method and has lead to a great deal of progress on additive
problems.

Another kind of question where analysis can play a role
is in distributional questions. For example, how are the
prime numbers distributed? In particular, if w(z) is the
number of primes not exceeding x, how does 7(x) behave
as  grows. This is connected with the Riemann Hypothesis
(RH) concerning the zeros of the Riemann zeta function

o0
1
¢(s) = e
n=1
Here s is a complex number and the above converges abso-
lutely when Js > 1. However a meaning can be assigned
to the function whenever s # 1. We know that it has zeros
at the negative even integers, and the RH says that all its
other zeros have real part % This is the most important
unsolved problem in mathematics and is the first Millen-
nium Problem. We plan to discuss some of the properties
of ((s) later in the course.

I presume that everyone is familiar with Euclid’s proof
that there are infinitely many primes. That is, argue by
contradiction and so suppose there are only a finite number
of them, say p1,po, ..., p, and consider m = pips---p, + 1.
This is a prime or a product of primes, so is divisible by
some prime p, say. But p also divides pips ... py, so p|m —
p1pP2 - .. pn = 1, which is impossible.

Well here is a proof of the infinitude of primes which is
essentially due to Euler and is analytic in nature. To begin
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first consider the important sum

S =3

where z is a large real number. Of course the sum behaves
a bit like the integral so is a bit like logx. In fact there
is something more precise which one can say, which was
discovered by Euler. Throughout for any real number y we
use |y| to denote the largest integer not exceeding y. We

have

1

n<xg
1 Tt —|t] r— |z]

= —dt+1— dt — ———

/1 t * /1 12 x
:log:c+00+/ t_JtJdt—w

1 t X
which gives
1
Zﬁzlogaﬂ—Cb—l—O(l/x). (0.1)
n<x

Here Cy = 0.577. .. is Euler’s constant, which he computed
to 19 decimal places (by hand of course). Actually that is
not so hard and we might say something about it later.

By the way, it would be good here to say something about
notation. Typically most latin letters will be integers or
natural numbers, but ¢, x, y may well be real numbers,
according to context, and z, and in Dirichlet series s, will
be complex numbers.

Given functions f and g defined on some domain X with
g(z) >0 for all x € X we write

f(x) = O(g(x)) (0.2)
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to mean that there is some constant C' such that
f(@)] < Cg(z)
for every x € X. We also use
fz) = olg(x)

to mean that if there is some limiting operation, such as
r — 00, then
f(@)

m — 0
and
f(z) ~ g(z)
to mean f(a)
M — 1.

The symbols O and o were invented by Bachmann, Lan-
dau’s doctoral supervisor about 120 years ago. The O-
symbol can be a bit clumsy for complicated expressions and
we will often instead use the Vinogradov symbols, which I.
M. Vinogradov introduced about 90 years ago. Thus we
will use

f<yg (0.3)
to mean (0.2). This has the advantage that we can write
strings of inequalities in the form

i< fhfikg.. ..
Also if f is also non-negative we may use

9>t
to mean (0.3).

Return to S(x). Less precise than Euler’s result is the
observation that

n+1 dt T dt
S(x)EZ/ 72 1 7:10gx.
n<g "
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Now consider
P(z)=]Ja-1/p"
p<x

where the product is over the primes not exceeding x. Then

P(z) = H<1+;+p+ ) Z > log .

p<x

Note that when one multiplies out the left hand side every
fraction % with n < x occurs. Since logx — 00 as r — oo,
there have to be infinitely many primes. Actually one can

get something a bit more precise. Take logs on both sides.
Thus

— Zlog(l —1/p) > loglog .

p<x
Moreover the expression on the left is

ZZ

p<z k=1
Here the terms with k& > 2 contribute at most
BB T
p=zT

Hence we have just proved that

1 1
Z— > loglogx — 5

p<x

This is quite close to the truth, and we will show in a while
that there is a constant C such that

1
Z— = loglogz + C1 4 o(1).

p<x

Since

Todt
/ = loglog x — loglog 2
5 tlogt



6 MATH 568 ANALYTIC NUMBER THEORY I. CHAPTER 0

it suggests that about 1/logn of the numbers near n are
prime, or in other words the “probability” that n is prime is
1/logn. Hence one might guess that 7 (z) is indeed about

Todt
) logt

and the following table indicates that this is indeed true for
x out to about 1022.

Show pi.jpg here. Euler’s result on primes is often quoted
as follows.

Theorem 0.1 (Euler). The sum
>,
> P

diverges.

Since we are not sure of the number theory background
of everyone in the class we will start by discussing some
useful topics from elementary number theory.

0.2. Arithmetical functions. The set A of arithmetical
functions is defined by

A={f:N—C}.

Of course the range of any particular function might well
be a subset of C. The function R4(n) defined earlier, when
restricted to the positive integers is such a function. There
are quite a number of important arithmetical functions.
Some examples are

The divisor function. The number of positive divisors

of n.
d(n) = Z L.

m|n
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Euler’s function. The number ¢(n) of integers m with
1 <m < nand (m,n) = 1. This is important because it
counts the number of units in Z/nZ.

Euler’s function satisfies an interesting relationship.

Theorem 0.2. We have

Z ¢(m) = n.

m|n

One way of seeing this is as follows. Consider the n frac-
tions
1 2 n
el RER b
Then factor out any common factors between denominators
and numerators. Then one will obtain each fraction of the
form
[
m
with m|n, 1 <1 <m and (I, m

fractions is
> o(m).

m|n

) = 1. The number of such

The Mobius function. This is a more peculiar func-
tion. It is defined by

(—1)* if n is a product of k distinct primes,
0 if there is a prime p such that p?|n.

It is also convenient to introduce three very boring func-
tions.

The unit.
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The one.
1(n) =1 for every n.

The identity.
N(n) =n.
Two other functions which have interesting structures but
which we will say less about at this stage are

The primitive character modulo 4. We define

xaln) = {O 2|n.

Sums of two squares. We define r(n) to be the number
of ways of writing n as the sum of two squares of integers.

For example, 1 = 0% + (£1)? = (£1)? + 12, so r(1) = 4,
r(3) = r(6) = r(7) =0, r(9) = 4, 65 = (£1)> + (£8)* =
(£4)% + (£7)? so r(65) = 16.

d, ¢, e, 1, N, x1 have an interesting property. That is
they are multiplicative.

Definition An arithmetical function f which is not iden-
tically 0 is multiplicative when it satisfies

f(mn) = f(m)f(n)

whenever (m,n) = 1. Let M denote the set of multiplica-
tive functions.

The function r(n) is not multiplicative, since (65) = 16
but 7(5) = r(13) = 8. Indeed the fact that (1) # 1 would
contradict the next theorem. However it is true that r(n)/4
is multiplicative, but this is a little trickier to prove.

Theorem 0.3. Suppose that f € M. Then f(1) = 1.
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Proof. Since f is not identically 0 there is an n such that

f(n) # 0. Hence f(n) = f(n x 1) = f(n)f(1), and the

conclusion follows. ]

It is pretty obvious that e, 1 and N are in M, and it is
actually quite easy to show

Theorem 0.4. We have € M.

Proof. Suppose that (m,n) = 1. If p?|mn, then p*lm or
p?|n, so p(mn) =0 = p(m)u(n). If

/

m=pi...pr, Nn=p...p
with the p;, p’; distinct, then

u(mn) = (=1 = (—1)*(=1)! = p(m)p(n).

The following is very useful.

Theorem 0.5. Suppose the f € M, g € M and h s de-
fined for each n by
Zf g(n/m).

Then h € M.

Proof. Suppose (n1,ns) = 1. Then a typical divisor m of
ningy is uniquely of the form mims with my|n; and ms|ns.
Hence

n1n2 Z Z f m1m2 n1n2/(m1m2))

m1|n1 m2|n2

= Z f(m1)g(n1/my) Z f(ma)g(ng/ms).

m1|n1 mz\ﬂz

]

This enables is to establish an interesting property of the
Mobius function.
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Theorem 0.6. We have

> um) =

m|n

Proof. By the previous theorem the sum here is

Z,u 1(n/m)

m|n

is in M. Moreover if £k > 1, then

> p(m) = p(1) +p(p) =1-1=0

This suggests a general way of defining new functions.

Definition. Given two arithmetical functions f and g we
define the Dirichlet convolution f * g to be the function

defined by
(f*g)(n) =) f(m)g(n/m)

m|n

Note that this operation is commutative - simply replace

m by n/m.
It is also quite easy to see that

(fxg)xh=fx(g=*h).
Write the left hand side as

ST wgtmyn) | b /m)

m|n Ilm

and interchange the order of summation and replace m by

kL.

Dirichlet convolution has some interesting properties
1. fxe=exf = fforany f € A, so e is really acting

as a unit.
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2. ux1 =1x%p = e, sop is the inverse of 1, and vice
versa.

3.d=1x%1,s0dée M. Hence

4. d(p") =k +1and dp™ ... pF) = (ki +1) ... (k +1).

Theorem 0.7 (Mobius inversion I). Suppose that f € A
and g = fx1. Then f = gx* pu.

Proof. We have
grp=(f*x)xp=[fxQ*xp)=fxrxe=f.
]

Theorem 0.8 (Mobius inversion II). Suppose that g € A
and f = g u, then g= f 1.

The proof is similar.

Theorem 0.9. We have ¢ = ux N and ¢ € M. Moreover

gb(n):n2$:nn<l—%)

m|n pln

Proof. We saw in Theorem 0.2 that ¢x1 = N. Hence by the
previous theorem we have ¢ = N % yu = pu * N. Therefore,
by Theorem 0.5, ¢ € M. Moreover ¢(p*) = p* — p*~! and
we are done. O

Theorem 0.10. Let D = {f € A: f(1) #0}. Then (D, x)
15 an abelian group.

Proof. Of course e is the unit, and closure is obvious. We al-
ready checked commutativity and associativity. It remains,
given f € D, to construct an inverse. Define g iteratively

by 9(1) = 1/£(1), gn) = — X2 i F(m)g(n/m)/f(1) and
it is clear that f x g = e. e O
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0.3. Averages of arithmetical functions. One of the
most powerful techniques we have is to take an average.
One of the more famous theorems of this kind is

Theorem 0.11 (Dirichlet). Suppose that X € R and X >
2. Then

Y d(n) = Xlog X + (2Cy — )X + O(X'/?).

n<X

Proof. We follow Dirichlet’s proof method, which has be-
come known as the method of the parabola. The divisor
function d(n) can be thought of as the number of ordered
pairs of positive integers m,l such that ml = n. Thus
when we sum over n < X we are just counting the number
of ordered pairs m, [ such that m{ < X. In other words
we are counting the number of lattice points m,[ under the
rectangular hyperbola

xy = X.

We could just crudely count, given m < X, the number of
choices for [, namely

X

]

> %+0(X)

m<X

and obtain

but this gives a much weaker error term.
Dirichlet’s idea is to divide the region under the hyper-
bola into two parts. That with

X
m<vX,l<—
m

and that with

lSﬁ,mS%.
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Clearly each region has the same number of lattice points.
However the points m,[l with m < v X and [ < v X are
counted in both regions. Thus we obtain

n<X <X
=2 ) §—X+0(X1/2)
m<v'X "
= 2X (log(VX) + Cy) — X + O(X"?).
where in the last line we used Euler’s estimate (0.1). O

One can also compute an average for Euler’s function

Theorem 0.12. Suppose that x € R and x > 2. Then

Y o(n) = lm ).

n<x

We remark that the infinite series here is “well known”
to be %

Proof. We leave the proof largely to the class as homework.
Hint: Use ¢ = pu * N to obtain

pi(m)
Do) =) n) === um) 3 1
n<x n<x  mln m<x I<z/m
and use a good approximation to the inner sum. [

Likewise the sum of two squares function

Theorem 0.13 (Gauss). Suppose that v € R and x > 2.
Then
Z r(n) = X + O(X?).

n<X

Again we leave the proof as an exercise. As a hint, one can
again consider it as a lattice point problem, this time then
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number of lattice points inside a closed circle centre the
origin and of radius v/z. Then, there is a general principal
which is easy to prove in this case that the number of lattice
points in a convex region is equal to the area of the region
with an error proportional to the length of the boundary.
One way of seeing this is to associate the square [u,u +
1) X [v,v+1) with the lattice point u, v and to observe that
all the relevant lattice points are inside the circle radius
V/Z++/2 and their union contains the circle radius /z —+/2.

0.4. Elementary Prime number theory. The strongest
results we know about the distribution of primes use com-
plex analytic methods. However there are some very use-
ful and basic results that can be established elementarily.
Many expositions of the results we are going to describe use
nothing more than properties of binomial coefficients, but
it is good to start to get the flavour of more sophisticated
methods even though here they could be interpreted as just
properties of binomial coefficients. We start by introducing

The von Mangold function. This is defined by

k

Aln) — 0 if pipo|n with p1 # po,
n - .
logp if n=p".

The interesting thing is that the support of A is on the
prime powers, the higher powers are quite rare, at most
Vx of them not exceeding x.

This function is definitely not multiplicative, since A(1) =
0. However it does satisfy some interesting relationships.

Lemma 0.14. Let n € N. Then ), A(m) = logn.

Proof. Write n = p]fl ... pkr with the p; distinct. Then for a
non-zero contribution to the sum we have m = p’s for some
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s with 1 < s <r and j5 with 1 < 5, < ks;. Thus the sum is

r ks
Z Z log ps = logn.

s=1 j,=1

]

We need to know something about the average of logn.

Lemma 0.15 (Stirling). Suppose that X € R and X > 2.
Then

Zlogn— (log X — 1)+ O(log X).

This can be thought of as the logarithm of Stirling’s for-
mula for | X |!.

Proof. We have

> = (lowx - /dt)

n<X n<X
= | X |log X —/ LI;—Ja’t
1

= X(log X — 1) +/Xt—tm dt + O(log X).

L

Now we can say something about averages of the von
Mangoldt function.

Theorem 0.16. Suppose that X € R and X > 2. Then
ZA { J X(log X — 1)+ O(log X).
m<X

Proof. We substitute from the first lemma into the second.
Thus

ZZA X(log X — 1)+ O(log X).

n<X min
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Now we interchange the order in the double sum and count
the number of multiples of m not exceeding X. [

At this stage it is necessary to introduce some of the

fundamental counting functions of prime number theory.
For X > 0 we define

The following theorem shows the close relationship between
these three functions.

Theorem 0.17. Suppose that X > 2. Then

-y
Z“ P(XH),
(X)) = ﬁ(X) +/X o

log X tlog”t

HX) =m(X)log X —/2 —

Note that each of these functions are 0 when X < 2, so
the sums are all finite.

Proof. By the definition of A we have

Z Z logp = 219 Xl/k

k p<X1/k
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Hence we have

Y uR) (X = ulk) Y o(XVI),
k k l

Collecting together the terms for which kI = m for a given
m this becomes

ST o) 3 (k) = 9(X),

k|lm

We also have

0= Yo (i + [ o)

p<X
X X
_H0) 0,
log X o tlog“t

The final identity is similar.
=Y x -3 [
= o) — —
& t
p<X p<Xx P
etcetera. [

Now we come to a series of theorems which are still used
frequently.

Theorem 0.18 (Chebyshev). There are positive constants
C1 and Cy such that for each X € R with X > 2 we have

C1X < h(X) < CoX.

Proof. For any 6 € R let

ro =16 -2|3]

Then f is periodic with period 2 and

_J0 (00 <1),
f(e){l (1<6<2).
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Hence
P(X) > MZXA(n)f(X/n)
a1 X X/
-3 am 5] -2 3 am [ 5F]

Here we used the fact that there is no contribution to the
second sum when X/2 < n < X. Now we apply Theorem
0.16 and obtain for x > 4

X(log X —1) — 2% (log% — 1)> + O(log X)
= Xlog2+ O(log X).

This establishes the first inequality of the theorem for all

X > C for some positive constant C'. Since (X)) > log2

for all X > 2 the conclusion follows if (' is small enough.
We also have, for X > 4,

P(X) = (X/2) <> A(n)f(X/n)

n<X

and we have already seen that this is
Xlog2+ O(log X).
Hence for some positive constant C' we have, for all X > 0,
P(X) —(X/2) < CX.
Hence, for any k£ > 0,
P(X27F) — (X271 < CcXx27F,
Summing over all k gives the desired upper bound. [

The following now follow easily from the last couple of
theorems.
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Corollary 0.19 (Chebyshev). There are positive constants
Cs, Cy, Cs, Cg such that for every X > 2 we have

C3X <19(X) < (OyX,
Cs X CeX
log X log X~

<m(X) <

It is also possible to establish a more precise version of
Euler’s result on the primes.

Theorem 0.20 (Mertens). There is a constant B such that
whenever X > 2 we have

Z # = log X + O(1),

n<X

1
3 25 1og X+ 0(1),
p<X

1 1
—=loglog X + B+ O .
Zp oglog X + B + (logX)

p<X
Proof. By Theorem 0.16 we have
X
Z A(m) {—J = X(log X — 1) + O(log X).
m<X m
The left hand side is
A(m
Xy % +O0(¥(X)).
m<X
Hence by Cheyshev’s theorem we have
A(m)
X — = Xlog X + O(X).
mg; - og X +O(X)

Dividing by X gives the first result.
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We also have

A(m lo
IETEDIDIE o

m<X E pk<X

The terms with £ > 2 contribute

] |
DDV B

p k>2

which is convergent, and this gives the second expression.
Finally we can see that

1 log p 1 Xodt
IEEDY e
P P log X p tlog™t

p<X p<X

1 Zlogp+/XZlogp dt
logXpSX P 9 p tlog’t

p=t

Let

1
E(t) = Z °6P logt

p<t p

so that by the second part of the theorem we have E(t) < 1.
Then the above is

log X + E(X) Xlogt + E(t)
= + [ ————2dt
log X 9 tlog™t

E(t)
tlog?t

=loglog X + 1 —loglog2+/
2

SR B,

log X Jy tlog’t

The first integral here converges and the last two terms are

<

log X
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There is an interesting application of the above which
lead to some important developments. As a companion to
the definition of a multiplicative function we have

Definition. An f € A is additive when it satisfies
f(mn) = f(m) + f(n) whenever (m,n) = 1.

Now we introduce two further functions.

Definition. We define w(n) to be the number of different
prime factors of n and Q(n) to be the total number of prime
factors of n.

Example. We have 360 = 23325 so that w(360) = 3
and Q(360) = 6. Generally, when the p; are distinct,

wPf iy =rand QI pi) =k + - K,

One might expect that most of the time €2 is appreciably
bigger than w, but in fact this is not so. By the way, there
is some connection with the divisor function. It is not hard
to show that

2¢(n) < d(n) < 29,

In fact this is a simple consequence of the chain of inequal-
ities
2<k+1<2"

Theorem 0.21. Suppose that X > 2. Then

X
Zw(n) = Xloglog X + BX + O <logX)

n<X
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where B 1s the constant of Theorem 0.20, and

Z Q(n) =

n<X
XlogXlogX + | B+ _ ! X+O< A )
~p(p—1) log X' )
Proof. We have
IEOEDIMEDD H
n<X n<X p|n p<X p
=X Z +O0(n
p<X

and the result follows by combining Corollary 0.19 and The-
orem (.20.
The case of € is similar. We have

dQm) =X Y ]% + 0 oo w(xVh
k

n<X ) k<(log X)/(log?2)
pr<X
When k > 2 the terms in the error are < X2 and so
the total contribution from the k > 2 is < X"?log X. In
the main term, when £ > 2 it remains to understand the
behaviour of

DD IEEDS X WZ e

k>2 p>X1/k >X1/2 k>3

The first sum is < X /2 and the second is

<X~ 1/22 1/2_1 < XV
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Hardy and Ramanujan made the remarkable discovery
that loglogn is not just the average of w(n), but is its
normal order. Later Turan found a simple proof of this.

Theorem 0.22 (Hardy & Ramanujan). Suppose that X >
2. Then

2
Z w(n) — Z ! < X Z 1,
n<X pSXp pSXp

Z (w(n) —loglog X)* < X loglog X

n<X
and
Z (w(n) —loglogn)® < X loglog X

2<n<X

Turan. It is easily seen that

Z Zl—loglogX) < X

n<X \p<X p

and (generally if Y > 1 we have logY < 2Y1/?)

log X \°
loglog X — log1 2 = |
> (loglog oglogn)® = (ogl )

2<n<X 2<n<X
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Thus it suffices to prove the second statement in the theo-
rem. We have

n<X o p1<X p27§éX P1p2 p<X p
D27P1

< X(loglog X)* + O(X loglog X).

Hence

Z(w(n) —loglog X)? < 2X (loglog X )?
n<X

— 2(loglog X) Z w(n) + O(X loglog X)

n<X

and this is < X loglog X. O

One way of interpreting this theorem is to think of it
probabilistically. It is saying that the events p|n are approx-
imately independent and occur with probability 2%. One
might guess that the distribution is normal, and this in-
deed is true and was established by Erdos and Kac about
1941. Let

! ~ogl
(I)(CL, b) — hm —Card{n S ra< CU(TL) og logn

T—00 T Vvl1oglogn

| L
(I)(Cl,,b):\/—2_ﬂ’/ €_t /th

The proof uses sieve theory, which we might explore later.

< b}.

Then

0.5. Orders of magnitude of arithmetical functions.
It is sometimes useful to know something about the way
that an arithmetical function grows. Multiplicative func-
tions tend to oscillate quite a bit in size. For example
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d(p) = 2 but if we take n to be the product of the first

k primes, say
n = H D
p<X
for some large X, then

logn = J(X)

so that
X <Llogn < X
by Chebyshev and so

log X ~ loglogn,

but
d(n) = 27X
so that
log d(n) = (log2)m(X)
0(X)
> (log 2
> (log )bg e
logn
~ (log 2
(log )loglogn

Theorem 0.23. For every € > 0 there are infinitely many
n such that

loglogn

d(n) > exp (

The function d(n) also arises in comparisons, for exam-
ple in deciding the convergence of certain important series.
Thus it is useful to have a simple universal upper bound.

(log2 — ¢) log n)

Theorem 0.24. Let e > 0. Then there is a positive number
C' which depends at most on € such that for every n € N
we have

d(n) < Cn°.
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Note, such a statement is often written as
d(n) = O(n%)

or
d(n) <. n.
Proof. Note that it suffices to prove the theorem when
e < L
~ log2’

Write n = p]fl ...pF where the p; are distinct. Recall that
dn)= (k1 +1)...(k-+1).
Thus

din) _yyki+
H €kj ’

j=1 Pj

Since we are only interested in an upper bound the terms

for which pS > 2 can be thrown away since 2" > k + 1.

However there are only < 2V/¢ primes p; for which
p; < 2.
Morever for any such prime we have

pjkj > 2% = exp(ek;log?2) > 1+¢ck;log?2 > (k;+1)elog 2.

Thus /
21 [
d(n) < 1 |
nt — \clog?2
]

The above proof can be refined so as to give a companion
to Theorem 0.23

Theorem 0.25. Let € > 0. Then for all sufficiently large
n we have

d(n) < exp <(log2+6) logn> |

loglogn
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Proof. We follow the proof of the previous theorem until
the final inequality and then make then replace the ¢ there

with
(1+¢/2)log2
loglogn
which for large n certainly meets the requirement of being
no larger than 1/log2. Now

21/8
1 o o loglogn o loglogn
= ex X
e log 2 PSP 1+¢/2 g(1+5/2)10g2

e e(logn)log 2
P log log n

for sufficiently large n. Hence

(1+e/2)log? (5(log n)log 2)

d < loglogn
(n) < P 2loglogn

= exp <(1 +¢)(logn)log 2)

log logn

(log2 + ¢)(logn)
< &P ( loglog n '




