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21.1. Uniform Distribution. Given an
α ∈ R we define

∥α∥ = min
n∈Z

|α− n|

to be the distance of α from a nearest in-
teger. Note that ∥α∥ is periodic with pe-
riod 1, and satisfies the triangle inequality
∥α + β∥ ≤ ∥α∥ + ∥β∥.
The central theme in the previous chapter

can be interpreted as the question of how
small we can make the quantity ∥αq∥, mea-
sured in terms of the size of q, or alterna-
tively, what is the size of minq≤Q ∥αq∥ for
large Q? One can look at various gener-
alizations of this, and several of the multi-
dimensional versions can be studied through
the use of the geometry of numbers. One
can also ask about the general distribution
of αq. In other words, given β, how small

1
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can we make ∥αq−β∥? By Dirichlet’s theo-
rem, or the continued fraction algorithm, we
know that for any given α there are integers
c and s with s > 0 such that |α−c/s| < s−2

and that if α is irrational, then there are ar-
bitrarily large such s. Now let

b = ⌊βs⌋
and choose q so that

cq ≡ b (mod s), 0 < q ≤ s.

Then (cq − b)/s ∈ Z and so

∥αq − β∥ = ∥αq − β − cq/s + b/s∥
= ∥(α− c/s)q − (βs− ⌊βs⌋)/s∥
≤ qs−2 + s−1

≤ 2/s.

Thus, at least when α is irrational, we can
find q so that ∥αq− β∥ is arbitrarily small,
i.e. the quantities αq− β are dense modulo
1.
It turns out that we can say something

more precise than this, as when α is irra-
tional we can show that the sequence ∥αq∥
is very regularly distributed. With this in
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mind we define the concept of uniform dis-
tribution modulo 1 as follows.

Definition The real sequence αn is uni-
formly distributed modulo 1 when for every
sub-interval I = [a, b) of [0, 1) with b ≥ a
the limit

lim
N→∞

1

N

N∑
n=1

αn−⌊αn⌋∈I

1

exists and equals the length of I , b− a.

In particular, when αn is uniformly dis-
tributed modulo 1, then for each real num-
ber β and each positive real number ε there
are infinitely many n such that ∥αn−β∥ <
ε.
The concept was first studied systemati-

cally in a seminal paper by Herman Weyl in
1916, and much of analytic number theory
has benefited from the underlying ideas in
this paper.
One useful observation that we can make

imediately is that by taking βn = αn−⌊αn⌋,
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it suffices to consider sequences whose mem-
bers lie in [0, 1)].
There are two general criteria for uniform

distribution modulo 1, both stemming from
Weyl.

Theorem 21.1 (First Criterion). Suppose
that 0 ≤ αn < 1. Then the sequence αn

is uniformly distributed modulo 1 if and
only if for each function f Riemann in-
tegrable on [0, 1] we have

1

N

N∑
n=1

f (αn) →
∫ 1

0

f (α)dα as N → ∞,

(21.1)

Proof. First suppose that (21.1) holds. Let
I be any interval [a, b) and let f be the char-
acteristic function of the interval. Then the
left hand side of (21.1) is

1

N

∑
n=1

αn−⌊αn⌋∈I

1

and the right hand side is b− a.
Second suppose that αn is uniformly dis-

tributed modulo 1. Let f be any Riemann



MATH 568 ANALYTIC NUMBER THEORY I. CHAPTER 21 5

integrable function on [0, 1], so that, in par-
ticular, f is bounded on [0, 1]. We can ap-
proximate arbitrarily closely to∫ 1

0

f (α)dα

by upper and lower sums. Thus for each
ε > 0 there is a dissection

0 = a0 < a1 < . . . < aM−1 < aM = 1

of [0, 1] and step functions defined by

f±(α) = c±m α ∈ [am−1, am),

f±(aM) = c±M ,

where

c±m = ± sup
[am−1,am]

(±f (α)),

such that

f−(α) ≤ f (α) ≤ f+(α)

and ∫ 1

0

∣∣f+(α)− f−(α)
∣∣ dα < ε.
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Since {αn} is uniformly distributed mod-
ulo 1,

lim
N→∞

1

N

N∑
n=1

αn∈[am−1,am)

f±(αn) = c±m(am−am−1).

Thus

lim
N→∞

1

N

N∑
n=1

f±(αn) =

M∑
m=1

c±m(am − am−1)

=

∫ 1

0

f±(α)dα.

Therefore

0 ≤ lim sup
N→∞

1

N

N∑
n=1

±
(
f±(αn)− f (αn)

)
≤ lim

N→∞

1

N

N∑
n=1

(
f+(αn)− f−(αn)

)
< ε.
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Hence we have the chain of inequalities∫ 1

0

f (α)dα− ε ≤
∫ 1

0

f−(α)dα

≤ lim inf
N→∞

1

N

N∑
n=1

f (αn)

≤ lim sup
N→∞

1

N

N∑
n=1

f (αn)

≤
∫ 1

0

f+(α)dα

≤
∫ 1

0

f (α)dα + ε.

This is true for every ε > 0, and so the
integral, the lim sup and the lim inf are all
equal. �

The above criterion is quite useful, but the
following, second criterion, is much more so
and has been the basis for a good deal of im-
portant work. Indeed the underlying idea is
central to much of analytic number theory.
There are also important repercussions in
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harmonic analysis, ergodic theory and dy-
namical systems.
Throughout we use the notation e(β) to

denote exp(2πiβ).

Theorem 21.2 (TheWeyl Criterion). Sup-
pose that αn is a real sequence. Then it
is uniformly distributed modulo 1 if and
only if for every h ∈ Z\{0} we have

lim
N→∞

1

N

N∑
n=1

e(hαn) = 0. (21.2)

Proof. The proof in one direction is imme-
diate from the first criterion since∫ 1

0

e(hα)dα = 0

when h ̸= 0. There are various ways of prov-
ing this in the opposite direction. One way
is to observe that if (21.1) holds for con-
tinuous functions f on [0, 1], then we can
deduce the uniform distribution modulo 1
for the sequence αn by taking for a given
interval I = [a, b) upper and lower contin-
uous approximations f± to the characteris-
tic function of I . For example we can take
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f−(α) to be 1 when a+ε ≤ α ≤ b−ε, to be
0 when α ̸∈ I and elsewhere take the obvi-
ous line segments which make f continuous
and then f− will minorise the characteristic
function. This with a similar definition for
a majorant shows that the upper and lower
limits of 1

N

∑N
n=1, αn−⌊αn⌋∈I 1 as N → ∞

differ from b − a by at most ε, and letting
ε → 0 gives the desired conclusion. One
then has to deduce (21.1) for continuous f
from (21.2), and to do this one needs to
know that the set of trigonometric polyno-
mials

∑H
h=−H che(hα) is dense in the space

of periodic continuous functions, and this in
turn requires some knowledge of the basic
elements of the theory of Fourier series.
A second line of approach is to use di-

rectly the Fourier series for the character-
istic function χI(α) of I = [a, b), where
0 ≤ a ≤ b < 1. Note that

χI(α) = s(α− a)− s(α− b) + b− a

where s(α) = α−⌊α⌋− 1
2 = {α}− 1

2 is the
function of Lemma 1 of Appendix D. This
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gives

χI(α) = b− a +

H∑
h=−H

e(−ha)− e(−hb)

2πih
e(hα)

+O
(
min{1, H−1∥α− a∥−1}

)
+O(

(
min{1, H−1∥α− b∥−1}

)
.

(21.3)

The error term here is a continuous function
of α and can itself be expanded as a Fourier
series (see Theorem 2 of the appendix), and
this is absolutely convergent. In fact

min{1, H−1∥α∥−1} =
2

H
log

eH

2
+

∞∑
h=−∞

che(hα)

with the ch satisfying for h ̸= 0,

ch =

∫ 1/2

1/H

e(hα)− e(−hα)

Hα22πih
dα

and so

ch ≪ min

{
1

|h|
,
H

h2

}
.
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Now one sees that for K ≥ H

1

N

N∑
n=1

χI(αn)− (b− a)

≪
∑

0<|h|≤K

|SN(h)|
|h|

+
log(2H)

H
+
∑
|h|>K

H

h2

≪
∑

0<|h|≤K

|SN(h)|
|h|

+
log(2K)√

K

where

SN(h) =
1

N

N∑
n=1

e(hαn).

The result follows from this - pick ε > 0.
Then pick, say, K = ε−3 and then take N
large enough that for each h with 0 < |h| ≤
K one has |S(h)| < ε. �
Something interesting one can see in this

proof is that the upper bound for

1

N

N∑
n=1

χI(αn)− (b− a)

above is independent of I . Also one can
extend the result by periodicity to R. For
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example if −1 < a < 0 ≤ b < 1 one can
think of I as being [0, b) ∪ [1 + a, a) and
apply the previous bound twice. Thus if we
define the discrepancy DN of {αn} by

DN(a, b) =
1

N

N∑
n=1

αn∈I (mod 1)

1− (b− a)

(21.4)
and

DN = sup
a≤b≤a+1

|DN(a, b)| (21.5)

we have just shown that

DN ≪
∑

0<|h|≤K

|SN(h)|
|h|

+
log(2K)√

K

21.2. The Erdős-Turán Inequality. This
not sharp, and there is a sharper version of
this known as the Erdős-Turán inequality.
This is obtained by refining the above argu-
ment, by using the Féjer kernel

FH(α) =
1

H

∣∣∣∣∣
H∑
h=1

e(hα)

∣∣∣∣∣
2
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directly rather than the general theory of
Fourier series or by using Selberg’s so called
“magic functions”.

Theorem 21.3 (Erdős-Turán, 1948).When-
ever αn is a real sequence and 0 ≤ b ≤ 1
we have

D̄N(b) ≪
1

H
+

H∑
h=1

(
1

H
+
| sin(πhb)|

h

)
|SN(h)| .

(21.6)
In particular

D̄N ≤ 120

(
1

H
+

H∑
h=1

1

h
|SN(h)|

)
.

(21.7)

In practice, one does not use the Weyl
criterion itself because in applications one
usually needs a quantitative bound. Thus
one requires something similar to the Erdős-
Turán inequality, anyway. It is essentially
best possible, but we now have very good
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values known in place of the implicit con-
stant, in fact we know that

|DN(a, b)| ≤

1

H + 1
+2

H∑
h=1

(
1

H + 1
+ min

(
b− a,

1

πh

))
|SN(h)| ,

and this has been obtained via Selberg’smagic
functions and their allies (see R. C. Baker,
Diophantine Approximation, Chapter 2, or
H. L. Montgomery, Ten Lectures on the In-
terface Between Analytic Number Theory
and Harmonic Analysis, CBMS Regional
Conference Series, Vol. 84, Chapter 1).
Before embarking on the proof of Theo-

rem 21.1 we investigate some of the simple
properties of the Féjer kernel.
1. FH(α) ≥ 0.
2. By writing the modulus squared sum

as the sum times its complex conjugate and
collecting togher those terms which contribute
to a general term e(jα) we see that we are
simply counting the number of h1, h2 with
1 ≤ hi ≤ H and h1 − h2 = j. By symme-
try we may suppose the j ≥ 0 and then the
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number of pairs h1, h2 is the number of h2

with 1 ≤ h2 ≤ H − j, i.e H − j. Thus it
follows that

FH(α) =
1

H

H∑
j=−H

(H−|j|)e(jα) =
H∑

j=−H

(
1− |j|

H

)
e(jα).

3.
∫ 1

0 FH(α)dα = 1.

4. The sum
∑H

h=1 e(hα) is the sum of
a geometric progression with common ratio
e(α). Thus, when α is not an integer its sum
is (e((H + 1)α)− e(α))/(e(α)− 1). Thus

FH(α) =
(sin(πHα))2

H(sin(πα))2
.

21. We have | sin(πα)| ≥ 2∥α∥. Thus

FH(α) ≤
1

4H∥α∥2
.

6. If H∥α∥ ≤ 1
2, then | sin(πHα)| ≥

2H∥α||, and | sin(πα)| ≤ π∥α∥. Thus

FH(α) ≥
4H

π2

(
∥α∥ ≤ 1

2H

)
.

Before proceeding with the proof of the
Erdős-Turán inequality we establish a spe-
cial case.
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Lemma 21.4. Suppose that a is any real
number and H is a positive integer. Then

N∑
n=1

αn∈[a,a+1/H) (mod 1)

1

N
≤ π2

4H
+
π2

2H

H∑
h=1

|SN(h)|.

Proof. By property 6 above, the expression

π2

4H
FH

(
αn − a− 1

2H

)
is greater than or equal to 1 whenever αn

is counted in the sum on the left. Thus, by
property 1 above the expression we wish to
estimate is bounded by

π2

4H

N∑
n=1

1

N
FH

(
αn − a− 1

2H

)
and by property 2 this is

π2

4H
+
π2

4H

H∑
h=−H
h̸=0

(
1− |h|

H

)
SN(h)e

(
−ha− h

2H

)
and the lemma follows from this. �
We now turn to the proof of the Erdős-

Turán inequality, Theorem 21.4.
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Proof.We begin by observing that we may
suppose that H > 16, for the bound is triv-
ial for H ≤ 16.
For general real a and b with a ∈ R and

0 ≤ b ≤ 1, we estimate the expression

J =

∫ 1

0

DN(a + α, a + b + α)FH(α)dα

in two different ways. First we insert the
definition of DN and appeal to property 4.
We integrate term by term. The expression
−b in DN when integrated against FH gives
−b by property 3. The remainder of DN

when integrated against the constant term
1 in FH contributes b. Thus it remains to
consider∫ 1

0

N∑
n=1

αn∈[a+α,a+b+α) (mod 1)

1

N

H∑
j=−H
j ̸=0

(
1− |j|

H

)
e(jα)dα.

Here the result of integrating term by term
contributes
N∑
n=1

1

N

H∑
j=−H
j ̸=0

(
1− |j|

H

)
e(j(αn − b− a))− e(j(αn − a))

2πij
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and so we may conclude that

|J | ≤
H∑
h=1

2| sin(πhb)|
πh

|SN(h)|. (21.8)

By property 3,∫ 1

0

DN(a, a + b)FH(α)dα = DN(a, a + b).

Let
K =∫ 1

0

(DN(a + α, a + b + α)−DN(a, a + b))FN(α)dα.

Then

DN(a, a + b) = J −K. (21.9)

By property 5, the contribution to K from
the α with 8

H ≤ ∥α∥ ≤ 1
2 is bounded by

4D̄N(b)

∫ 1/2

8/H

1

4Hβ2
dβ ≤ 1

2
D̄N(b).

(21.10)
It remains to consider the α with ∥α∥ ≤
8
H and by periodicity we may suppose that
|α| ≤ 8

H . There are several different cases,
but typicallyDN(a+α, a+b+α)−DN(a, a+
b) can be written as a difference such as
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DN(a+ b, a+ b+α)−DN(a, a+α) where
the two terms correspond to two intervals
of length |α|. Thus for c = a, or a + b, or
a− |α|, or a + b− |α|,
|DN(a + α, b + α)−DN(a, b)| ≤

N∑
n=1

αn∈[c,c+|α|) (mod 1)

1

N
+ |α|.

We can divide each of these intervals of length
|α| in the sum on the right into at most 8
subintervals of length at most 1/H and by
the lemma each one of these will contribute
at most

π2

4H

(
1 + 2

H∑
h=1

|SN(h)|

)
.

Thus

|DN(a + α, b + α)−DN(a, b)| ≤

4π2

H

(
1 + 2

H∑
h=1

|SN(h)|

)
+

8

H
.

Having bounded this part of the integrand
in K in this way we can then extend the
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interval of integration to a unit interval and
appeal to property 3 once more. Thus, by
(21.12),

|K| ≤ 1

2
D̄N(b)+

4π2

H

(
1 + 2

H∑
h=1

|SN(h)|

)
+
8

H
.

Hence, by (21.10) and (21.11),

|DN(a, a + b)| ≤ 1

2
D̄N(b) +

4π2 + 8

H

+

H∑
h=1

(
8π2

H
+
2| sin(πhb)|

πh
|SN(h)|

)
.

This holds uniformly for all a ∈ R and so we
can choose a so that |DN(a, b)| is arbitrarily
close to D̄N(b). Thus

1

2
D̄N(b) ≤

4π2 + 8

H
+

H∑
h=1

(
4π2

H
+
2| sin(πhb)|

πh
|SN(h)|

)
.

�

21.3. Polynomials. We have already seen
that when α is irrational the sequence nα−
⌊nα⌋ is everywhere dense. Now we are in
a position to give a simple proof that nα is
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uniformly distributed. It suffices to consider
the sum

SN(h) =
1

N

N∑
n=1

e(hnα)

when h ̸= 0. This is the sum of a geometric
progression, and since α is irrational, hα is
never an integer. Thus

SN(h) =
e(h(N + 1)α)− e(hα)

N(e(hα)− 1)

so that

|SN(h)| ≤
1

N | sin(πhα)|
and plainly for each fixed h ̸= 0 this tends to
0 asN → ∞. Thus we have just established

Theorem 21.5. Suppose that α is irra-
tional. Then the sequence nα is uniformly
distributed modulo 1.

One can ask the same question with re-
gard to the sequence p(n) where p(n) is a
polynomial of degree d ≥ 1. It is clear that
if the only irrational coefficient is the con-
stant term, then the polynomial cannot be
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uniformly distributed. On the other hand
if p(0) = 0 and the polynomial is uniformly
distributed, then so is p(n)+β for any given
β since the property is translation invari-
ant. Thus we can concentrate on polynomi-
als with p(0) = 0. When d = 1 the conclu-
sion is immediate from Theorem 21.2. How-
ever, when d ≥ 2 one immediately runs in
to the problem that there is no longer any
simple formula for the corresponding expo-
nential sums SN(h). Weyl solved this dif-
ficulty with a simple device. This is based
on the observation that for any fixed j the
polynomial p(n+ j)− p(n) is a polynomial
in n of degree d−1. More generally one can
establish the following theorem.
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Theorem 21.6 (van der Corput, 1931).
Suppose that αn is a real sequence such
that for each fixed non-zero integer j the
sequence αn+j−αn is uniformly distributed
modulo 1. Then the sequence αn is uni-
formly distributed modulo 1.

Proof. Proof Suppose that σ(n) is a sequence
of complex numbers with |σ(n)| ≤ 1, and
let H denote a positive integer. Then

H

N∑
n=1

σ(n) =

N∑
m=1

H∑
h=1

σ(n)

∫ 1

0

N+H∑
m=1

e(−mβ)

N∑
n=1

H∑
j=1

σ(n)e(nβ+jβ)dβ

as can be seen readily by the observation
that the integral picks out precisely those
terms in the multiple sum for which m =
n+ j and for any one pair n, j in the given
ranges there is exactly one m which meets
this requirement. We apply Schwarz’s in-
equality to this.
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Thus

∣∣∣∣∣H
N∑
n=1

σ(n)

∣∣∣∣∣
2

≤

∫ 1

0

∣∣∣∣∣
N+H∑
m=1

e(mβ)

∣∣∣∣∣
2

dβ

×∫ 1

0

∣∣∣∣∣∣
N∑
n=1

σ(n)e(nβ)

H∑
j=1

e(jβ)

∣∣∣∣∣∣
2

dβ


We have∣∣∣∣∣∣

H∑
j=1

e(jβ)

∣∣∣∣∣∣
2

=

H∑
k=−H

(H − |k|)e(βk).

Replacing k by −j gives∣∣∣∣∣H
N∑
n=1

σ(n)

∣∣∣∣∣
2

≤

(N +H)

H∑
j=−H

(H − |j|)
∫ 1

0

∣∣∣∣∣
N∑
n=1

σ(n)e(nβ)

∣∣∣∣∣
2

e(−jβ)dβ
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N∑
n=1

σ(n)

∣∣∣∣∣
2

≤

(N +H)

H∑
j=−H

(H − |j|)
∫ 1

0

∣∣∣∣∣
N∑
n=1

σ(n)e(nβ)

∣∣∣∣∣
2

e(−jβ)dβ

= (N +H)

H∑
j=−H

(H − |j|)
N∑

m=1

N∑
n=1

n=m−j

σ(m)σ(n).

The terms with j = 0 contribute at most

(N +H)H

N∑
n=1

|σ(n)|2 ≤ (N +H)HN.

Thus∣∣∣∣∣ 1N
N∑
n=1

σ(n)

∣∣∣∣∣
2

≤

1

H
+

1

N
+ 2

(
1

H
+

1

N

) H∑
j=1

∣∣∣∣∣∣ 1N
N−j∑
n=1

σ(n + j)σ̄(n)

∣∣∣∣∣∣ .
For the terms with j > 0 this is clear. For
the terms with j < 0 we replace j by−j and
interchange the letters m and j and observe
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that σ(n)σ(n + j) = σ(n + j)σ(n).∣∣∣∣∣ 1N
N∑
n=1

σ(n)

∣∣∣∣∣
2

≤

1

H
+

1

N
+ 2

(
1

H
+

1

N

) H∑
j=1

∣∣∣∣∣∣ 1N
N−j∑
n=1

σ(n + j)σ̄(n)

∣∣∣∣∣∣ .
We now take σ(n) = e(hαn). Since for each
fixed j, αn+j − α is uniformly distributed
modulo 1, for each fixed H the all the terms
except the first have limit 0 as N → ∞.
Thus the limit superior of the left hand side
as N → ∞ is at most H−1. But this holds
for every positive integer H . Thus

1

N

N∑
n=1

e(hαn) → 0 as N → ∞

and so by the Weyl criterion once more we
have the desired conclusion. �

The technique utilised in the proof of the
previous theorem is sometimes known asWeyl
differencing, but van der Corput was the



MATH 568 ANALYTIC NUMBER THEORY I. CHAPTER 21 27

first to find a way of limiting the size of the
difference parameter j.
The following theorem is an easy deduc-

tion from the previous two by induction on
the degree.

Theorem 21.7. Suppose that p(n) is a
polynomial of degree d ≥ 1 with leading
coefficient irrational. Then the sequence
p(n) n = 1, 2 . . . is uniformly distributed
modulo 1.

The conclusion also holds if any of the co-
efficients are irrational.

Theorem 21.8. Suppose that p(n) is a
polynomial of degree d ≥ 1 with any co-
efficient, except the constant term, irra-
tional. Then the sequence p(n) n = 1, 2 . . .
is uniformly distributed modulo 1.

Proof.Write the polynomial as p(n) = α0+
α1n+ · · ·αdn

d. Choose D maximal so that
the coefficient of nD is irrational and let
Q(n) =

∑d
k=D+1 akn

k andR(n) =
∑D

k=0 akn
k,

so that P (n) = R(n) +Q(n). Then the co-
efficients of Q are rational and the leading
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coefficient ofR is irrational. Choose the nat-
ural number q so that qQ(n) has rational co-
efficients and for any a with 0 ≤ a < 1 con-
sider P (qn+a). ThenQ(qn+a)−Q(a) is an
integer and P (qn+ a) ≡ R(qn+ a) +Q(a)
(mod 1). Moreover R(qn + a) has an ir-
rational leading coefficient so is uniformly
distributed modulo 1. Hence so is R(qn +
a) + Q(a), whence so is P (qn + a). Since
this holds for every a it holds for P (n). �

We can also use the Erdős-Turán Theorem
to give quantitative bounds. The earliest of
these is due to Vinogradov.

Theorem 21.9 (Vinogradov, 1927?). Sup-
pose that α is irrational and β is any real
number, and let ε be any positive number.
Then there are infinitely many integers n
such that

∥αn2 + β∥ < nε−1
2 .

Before proceeding with the proof of Vino-
gradov’s result we establish some useful lem-
mas. The first one is established by using
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ideas which we have already explored in ex-
ercises earlier in the term, but for complet-
ness I include the proof here. The condition
on α that it can be approximated in this
way is easily met in applications by an ap-
peal to Dirichlet’s theorem or the theory of
continued fractions.

Lemma 21.10. Suppose that a and q are
integers with q ≥ 1, gcd(a, q) = 1 and
|α− a/q| ≤ q−2, and suppose that X and
Y are real numbers with X ≥ 1, Y ≥ 1.
Then∑
x≤X

min
(
Y, ∥αx∥−1

)
≪
(
XY

q
+X + Y + q

)
log(2q).

Proof. Proof The sum in question can be
split up in to at most Xq−1+1 sub sums in
which the x, for some non-negative integer
k, lies in the interval kq < x ≤ (k + 1)q. It
suffices, therefore, to show that the contri-
bution from such an interval is

≪ Y + q log(2q).
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Let β = α − a/q. Then for such an x we
have x = kq + y with 1 ≤ y ≤ q, and so

αx = ak +
a

q
y + βkq + βy

= ak +
ay + ⌊βkq⌋

q
+
βkq − ⌊βkq⌋

q
+ βy.

The expression ay + ⌊βkq⌋ runs through a
complete set of residues modulo q as y does.
Thus apart from those five choices of y for
which this expression is 0, ±1 or±2 modulo
q we have

∥αx∥ ≥ 1

3
∥(ay + ⌊βkq⌋)/q∥.

Thus the contribution from the x in the in-
terval under consideration is at most

5Y +

q−1∑
j=1

3∥jq−1∥−1 ≪ Y + q log(2q)

as required. �
We now use the above lemma to get a good

quantitative bound for the average of the
exponential sum which is relevant to Vino-
gradov’s theorem.
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Lemma 21.11. Suppose that H an N
are integers and that a and q are integers
with q ≥ 1, gcd(a, q) = 1 and |α− a/q| ≤
q−2. Then for each positive number ε we
have
H∑
h=1

∣∣∣∣∣
N∑
n=1

e(αhn2)

∣∣∣∣∣≪ (
HNq−

1
2 +HN

1
2 + (Hq)

1
2

)
(HN)ε.

Proof. Proof We use Weyl differencing in its
classical form. We may certainly suppose
that q ≤ HN 2 for otherwise the conclusion
is trivial.
Let S denote the expression we wish to

estimate. Then, by Cauchy’s inequality we
have

|S|2 ≤ H

H∑
h=1

∣∣∣∣∣
N∑
n=1

e(αhn2)

∣∣∣∣∣
2

.

We square out the inner sum to obtain
N∑
n=1

N∑
m=1

e
(
αh(m2 − n2)

)
and put m = n + j. The sum over j has
range 1− n to N − n. Now we interchange
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the order of summation
N−1∑
j=1−n

∑
n

e
(
αh(2nj + j2)

)
where the inner summation is now over those
n with 1 ≤ n ≤ N and 1− j ≤ n ≤ N − j.
Now we have a geometric progression which
we can sum. For j = 0 the inner sum
is N , and when j ̸= 0 it is bounded by
min(N, ∥2αhj∥−1). Thus

|S|2 ≪ H2N+H

H∑
h=1

N∑
j=1

min
(
N, ∥2αhj∥−1

)
.

By standard estimates for the divisor func-
tion the double sum here is

≪ (HN)ε
2HN∑
k=1

min
(
N, ∥αk∥−1

)
.

Hence, by the previous lemma

|S|2 ≪ H2N+(HN)2εH
(
HN 2q−1 +HN + q

)
amd the lemma follows �
Proof of Theorem 21.9. Let ε > 0 and ap-
ply Dirichlet’s Theorem or the theory of con-
tinued fractions to obtain integers a and q
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with gcd(a, q) = 1, q > q0(ε) and |α −
a/q| ≤ q−2. Now take N = q, a = −β,

b = N ε−1
2 , let δ be a positive number, suf-

ficiently small in terms of ϵ and put H =

n
1
2−δ. By (21.7) and (21.8) we find that

|DN(a, b)| ≪ H−1 + b

H∑
h=1

∣∣∣∣∣1n
N∑
n=1

e(αhn2)

∣∣∣∣∣
and by the last lemma this is

≪ N δ−1
2 + bHN−1

2(HN)
1
4δ

≪ N δ−1
2 + bN−1

2δ

and this is small by comparison with b. �

There is a localised version of this due to
Heilbronn.

Theorem 21.12 (Heilbronn, 1948). Let α
be any real number and let ε be a positive
real number. Then for every large natural
number N we have

min
1≤n≤N

∥αn2∥ < N ϵ−1
2 .



34 MATH 568 ANALYTIC NUMBER THEORY I. CHAPTER 21

At first sight it would seem desirable ot ex-
tend this to the whole real line as in the pre-
vious theorem. However, by constructing
certain irrational numbers α whose contin-
ued fraction convergents converge very rapidly
one can ensure that the corresponding in-
equality really does occur very infrequently.
We require an extension of Lemma 21.3,

which again utilises an idea seen earlier in
an exercise.

Lemma 21.13. Suppose that α is a real
number, that ε is a positive real number
and that a and q are integers with q ≥ 1,
gcd(a, q) = 1 and |α− a/q| ≤ q−2. Let

∆ = (q +HN 2|αq − a|)1/2.
Then,

H∑
h=1

∣∣∣∣∣
N∑
n=1

e(αhn2)

∣∣∣∣∣≪(
HN

∆
+HN

1
2 +H

1
2∆

)
(HN)ε.

Proof. Choose a, q as stated. WhenHN 2|αq−
a| ≤ q, then the conclusion is immediate
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from Lemma 21.3. Thus we may suppose
that

HN 2|αq − a| > q. (21.11)

Let Q =
⌊
2|αq − a|−1

⌋
. By Dirichlet’s the-

orem there are b and r with 1 ≤ r ≤ Q and
|αr−b| ≤ (Q+1)−1. Now either b/r = a/q,
whence α = a/q = b/r which contradicts
(21.13), or 1/(qr) ≤ |α − a/q| + |α − b/r|
and the second term here does not exceed
(2r)−1|αq − a| ≤ 1/(2qr). Thus 1

2|αq −
a|−1 ≤ r ≤ Q Now we apply Lemma 21.3
with a, q replaced by b and r. Hence

H∑
h=1

∣∣∣∣∣
N∑
n=1

e(αhn2)

∣∣∣∣∣≪(
HNr−

1
2 +HN

1
2 + (Hr)

1
2

)
(HN)ε

and the lemma follows once more. �
Proof. Proof of Theorem 21.6 Let δ denote
a positive number which is small comapared

with ε and put H = N
1
2−δ. By Dirichlet’s

theorem we may choose a and q with q ≥ 1,
gcd(a, q) = 1, |α − a/q| ≤ 1

qHN and q ≤
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HN . Let b = N ε−1
2 . Then, by Lemma

21.4, the right hand side of (21.8) is

≪ 1

H
+bN

1
2δ

(
H

(q +HN 2|αq − a|)12
+HN−1

2

)
.

If q +HN 2|αq − q| > H2N 3δ, then we are
done. Suppose not. Then q ≤ H2N 3δ and
|αq − a| < HN−2+3δ. Thus

∥αq2∥ < H3N 2−6δ = N 3δ−1
2

and we are done anyway! �
Zaharescu (1995?) has improved the ex-

ponents in Theorems 21.5 and 21.6 to 2
3 and

4
7 respectively.


