
8. Dirichlet’s Theorem and Farey Fractions

We are concerned here with the approximation of real numbers by rational numbers,
generalizations of this concept and various applications to problems in number
theory.

A property of the integers which we frequently use is that if |h| < 1, then h = 0,
alternatively that if h ̸= 0, then |h| ≥ 1. The rationals are dense in R but two
rationals with small denominators cannot be too close together. Thus when a/q
and b/r are two different rational numbers we have

a

q
− b

r
=

ar − bq

qr

and since they are unequal the numerator is non-zero. Thus∣∣∣∣aq − b

r

∣∣∣∣ ≥ 1

qr
(1)

There is a very simple, and useful, theorem due to Dirichlet which tells us how
well a real number can be approximated by a rational number a/q in terms of the
denominator q.

Theorem 8.1 (Dirichlet). For any real number α and any integer Q ≥ 1 there
exist integers a and q with 1 ≤ q ≤ Q such that∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

q(Q+ 1)
.

As an immediate consequence of casting out all common factors of a and q in
a/q we have

Corollary 8.2. The conclusion holds with the additional condition (a, q) = 1.

Proof of Theorem 8.1. Let In denote the interval
[
n−1
Q+1 ,

n
Q+1

)
and consider the

Q numbers {α}, {2α}, . . . , {Qα}. (Here we use {∗} = ∗ − ⌊∗⌋ to denote the
“fractional” part). If one of these numbers, say {qα}, lies in I1, then we are done.
We take a = ⌊qα⌋ and then 0 ≤ α − a < 1

Q+1 . Similarly when one of the numbers

lies in IQ+1, then 1− 1
Q+1 ≤ qα− ⌊qα⌋ < 1, whence − 1

Q+1 ≤ qα− (⌊qα⌋+ 1) < 0

and we can take a = ⌊qα⌋ + 1. When neither of these situations occurs the Q
numbers must lie in the Q − 1 intervals I2, . . . , IQ, so there must be at least one
interval which contains at least two of the the numbers (the pigeon hole principle,
or box argument, or Schubfachprinzip). Thus there are q1, q2 with q1 < q2 such that
|(αq2 − ⌊αq2⌋)− (αq1 − ⌊αq1⌋)| < 1

Q+1 . We put q = (q2 − q1), a = (⌊αq2⌋ − ⌊αq1⌋).

This turns out to be a very powerful theorem and in many applications it is
all that one needs to know about the approximation of reals by rationals. It is
obviously best possible. Take b = 1, r = Q+ 1 in (1) above.
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Theorem 8.3. Suppose that α is irrational. Then there exist infinitely many ra-
tional numbers a/q with (a, q) = 1 such that |α − a/q| < q−2. In particular there
are arbitrarily large q for which this inequality holds.

Proof. Choose Q1 to be an integer > 1 and choose a1, q1 in accordance with
Corollary 1. Then |α−a1/q1| ≤ 1

q1(Q1+1) < q−2
1 . Now, given a1/q1, . . . , an/qn with

(am, qm) = 1 and |α − am/qm| < q−2
m we obtain an+1, qn+1 as follows. Since α is

irrational we have α ̸= am/qm (m = 1, . . . , n). Choose

Qn+1 > max
{
|α− a1/q1|−1, . . . , |α− an/qn|−1

}
and then choose an+1, qn+1 in accordance with Corrollary 1. Obviously

|α− an+1/qn+1| ≤
1

qn+1(Qn+1 + 1)
< q−2

n+1

and

|α− an+1/qn+1| < min {|α− a1/q1|, . . . , |α− an/qn|}

so we must have an+1/qn+1 distinct from any of a1/q1, . . . , an/qn. Moreover it is
clear that for any qm the am is uniquely defined by the inequality

|α− am/qm| ≤ 1

qm(Qm + 1)
.

Thus the qm are distinct and so there are arbitrarily large qm.

When α is rational, say α = a0/q0, then the inequality |α− a/q has only a finite
number of solutions in a, q with (a, q) = 1 since, by (1), we have |α − a/q| ≥ 1

q0q

when a/q ̸= a0/q0. Indeed the inequality |α − a/q| < 1
q0q

has the unique solution

a/q = a0/q0.

Theorem 8.4. The real number α is irrational if and only if for every ε > 0 there
are a ∈ Z, q ∈ N such that 0 < |qα− a| < ε

Proof. If α ∈ R\Q, then choose Q = ⌊1/ε⌋. Then by Theorem 1, there are a,
q such that |qα − a| ≤ 1

Q+1 < ε. Moreover, qα ̸= a. If α ∈ Q, then there are

b ∈ Z and r ∈ N such that (b, r) = 1 and α = b/r. Choose ε = 1
2r and suppose

that there are a ∈ Z, q ∈ N such that |qα − a| < ε. Then |α − a/q| < 1
2rq and

α−a/q = b/r−a/q = bq−ar
rq . Thus |bq−ar| < 1

2 . Hence bq = ar, whence qα−a = 0.

Example e =
∑∞

0
1
k! is irrational. To prove this let q = K!, a = K!

∑K
k=0

1
k! .

Then 0 <
∑∞

k=K+1
K!
k! = qe− a and

∞∑
k=K+1

K!

k!
=

1

K + 1

∞∑
k=K+1

1

(k −K − 1)!
(

k
K+1

) ≤ e

K + 1
< ε

if K is large enough.
There is a useful generalisation of this.
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Theorem 8.5 (Liouville). Suppose that α is an algebraic number of degree n (≥ 1).
Then there is a positive constant c = c(α) such that∣∣∣∣α− a

q

∣∣∣∣ > cq−n

whenever a ∈ Z, q ∈ N and a/q ̸= α (this latter condition can be omitted when
n ≥ 2).

Proof. By “algebraic of degree n” we mean that α is a root of a non-constant
polynomial with integer coefficients and the degree n corresponds to the minimal
degree amongst all such polynomials. It is not hard to see that we may suppose
that there is a unique polynomial

P (λ) = a0λ
n + a1λ

n−1 + · · ·+ an

such that
(i) aj ∈ Z for 0 ≤ j ≤ n,
(ii) a0 > 0,
(iii) (a0, a1, . . . , an) = 1,
(iv) P (α) = 0,
(v) n minimal.

Firstly a polynomial satisfying (i) and (iv) must exist by definition of α. Taking
one of minimal degree ensures (v). By multiplying through by ±1 we can ensure
(ii) and by taking out common factors we can ensure (iii). Moreover if there were
two distinct such polynomials P and P ∗, then by (ii) and (iii) the one cannot be a
multiple of the other so we could obtain, by considering a∗0P (λ) − a0P (λ), one of
lower degree satisfying (i) and (iv) and then repeat the above process to obtain (ii)
and (iii) and so contradict (v).

It suffices to show that there is a c(α) such that if |α−a/q| ≤ 1, then |α−a/q| >
c(α)q−n for then we can replace c(α) by min

(
1, c(α)

)
and so the conclusion follows

also when |α− a/q| ≥ 1.
Since the aj are integers we have

qnP

(
a

q

)
∈ Z.

Moreover P (a/q) ̸= 0, for otherwise we could factor out λ− a/q and obtain a poly-
nomial of lower degree Q(λ) = P (λ)/(λ− a/q) which satisfies Q(α) = 0. Although
in the first instance this could be guaranteed only to have rational coefficients by
multiplying through by a suitably integer we could recover a polynomial Q∗ of
degree n− 1 with integer coefficients and satisfying Q∗(α) = 0. Hence

qn
∣∣∣∣P (

a

q

)∣∣∣∣ ≥ 1.

On the other hand, by the mean value theorem of the differential calculus

−P (a/q) = P (α)− P (a/q) = (α− a/q)P ′(β)
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where β lies between α and a/q. Since we are supposing that |α−a/q| ≤ 1 it follows
that

|P ′(β)| ≤ max{|P ′(λ) : λ ∈ ⌊α− 1, α+ 1⌋} = c(α).

Hence
1 ≤ qn|P (a/q)| ≤ |α− a/q|c(α).

Example The number

θ =

∞∑
k=0

1

2k!

is transcendental, i.e. is not algebraic. To see this suppose on the contrary that it is

algebraic and let n be its degree. Let q = qK = 2K!, a = aK =
∑K

k=0 2
K!−k!. Then

0 < θ − a/q =
∑∞

k=K+1
1
2k!

≤ 1
2(K+1)!

∑∞
l=0

1
2l

= 2
qK+1 , and so if K is sufficiently

large we have

0 < |θ − aK/qK | < c(θ)

qnK

which contradicts Liouville’s theorem.
In the quadratic case we know the α which give rise to the largest c(α).

Theorem 8.6. Let α = 1+
√
5

2 and suppose that c < 1√
5
. Then the inequality

|α− a/q| < cq−2 has only finitely many solutions.

Proof. The irrational number α is a root of the polynomial P (x) = x2 − x − 1.

Moreover the other root of P (x) is 1−
√
5

2 . Thus P (a/q) is non-zero and q2P (a/q) ∈
Z. Hence |P (a/q)| ≥ q−2. The polynomial P (x) has an expansion

P (x) =
√
5(x− α) + (x− α)2

about the point α. If |α− a/q| < cq−2, then the right hand side has absolute value

<

√
5c

q2
+

c2

q4

when x = a/q. Hence

1−
√
5c < c2q−2

and this only holds for

q <
c√

1− c
√
5
.

The box principle has many useful generalizations and applications, mostly in
combinatorics, but there are several famous ones in number theory. Of course it
is an immediate consequence of the principle of induction that if n sets partition a
set of n+ 1 objects then one of them contains two objects. More generally when n
sets partition a set of kn + 1 objects one of them must contain k + 1 objects, and
consequently if a finite number of sets partition an infinite set, then one of them is
also infinite.

We can use Dirichlet’s theorem to treat Pell’s equation, x2 − dy2 = 1. When d
is a perfect square the solubility of the equation is boringly trivial. By factorising
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the left hand side and equating each factor to ±1 we see that the only solutions
are x = ±1, y = 0 in that case. Therefore we henceforward suppose that d is not a
perfect square. In particular

√
d is irrational.

Let α =
√
d in Dirichlet’s theorem. Since

√
d is irrational, by the method of proof

of Theorem 1.2 we can obtain an infinite sequence of triples of integers a1, q1, Q1;
a2, q2, Q2; a3, q3, Q3;... with∣∣∣∣√d− an

qn

∣∣∣∣ < 1

qn(Qn + 1)
, Qn+1 >

∣∣∣∣√d− an
qn

∣∣∣∣−1

.

Thus

|a2n − dq2n| =
∣∣∣an − qn

√
d
∣∣∣ ∣∣∣an + qn

√
d
∣∣∣

≤ 1

Qn + 1

∣∣∣an − qn
√
d+ 2qn

√
d
∣∣∣

≤ 1

Qn + 1

(
1

Qn + 1
+ 2Qn

√
d

)
< 2

√
d.

Thus we have found infinitely many solutions to the inequality

|x2 − dy2| < 2
√
d.

Hence, by the box principle, there exists an integer t with 0 < |t| < 2
√
d such that

there are infinitely many pairs x, y with

x2 − dy2 = t. (2)

Again by the box principle, there are infinitely many pairs x and y so that not only
(2) holds but x is in a fixed residue class modulo |t| and y is in a fixed residue class
modulo |t|.

Let x0, y0 be a given such pair and let x, y be another with x and y large
(obviously if one is, then so is the other). Then

x ∼ y
√
d.

Choose

u =
|xx0 − dyy0|

|t|
, v =

|yx0 − xy0|
|t|

.

Then v ∼ y|xo − y0
√
d||t|−1 → ∞ with y since

√
d is irrational. Moreover

u2 − dv2 = t−2
(
(xx0 − dyy0)

2 − d(yx0 − xy0)
2
)

= t−2(x2x2
0 − dy2x2

0 − dx2y20 + d2y2y20)

= t−2(x2 − dy2)(x2
0 − dy20)

= 1.

Thus we have produced infinitely many solutions to Pell’s equation. It is, at least
theoretically, possible to calculate solutions, for a given d, by this method, but this is
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very inefficient and there is a much faster way via the theory of continued fractions.
However, it is now possible to obtain the structure of the complete solution set to
Pell’s equation. Let x0, y0 be the solution with x0 > 0, y0 > 0, x0+ y0

√
d minimal.

Then, by the binomial theorem there are xk > 0, yk > 0 such that

xk ± yk
√
d = (x0 ± y0

√
d)k

and it is easily verified that

x2
k − dy2k = 1.

Suppose that there is another solution

X2 − dY 2 = 1

with X > 0, Y > 0 and not in this list. Then for some k ≥ 0

xk + yk
√
d < X + Y

√
d < xk+1 + yk+1

√
d.

Hence

1 < (X + Y
√
d)(x0 − y0

√
d)k < x0 + y0

√
d

and again by the binomial theorem for some non-zero integers X ′, Y ′ we have

1 < X ′ + Y ′
√
d = (X + Y

√
d)(x0 − y0

√
d)k

and X ′2 − dY ′2 = 1. Clearly X ′ and Y ′ cannot both be negative and if X ′ is
positive and Y ′ is negative, then we would have

X ′ + Y ′
√
d = 1/(X ′ − Y ′

√
d) < 1

and if X ′ is negative and Y ′ is positive, then the above formula shows that X ′ +
Y ′

√
d is negative. Hence both X ′ and Y ′ are positive which would contradict the

minimality of x0 + y0
√
d. Therefore the “complete” solution to Pell’s equation (2)

is given by x + y
√
d = (x0 + y0

√
d)m, m = 1, 2, . . . where x0, y0 is the “least”

solution. Of course this argument gives no easy way of finding the least solution.

The set

Fn =

{
a

q
: 0 ≤ a ≤ q ≤ n, (a, q) = 1

}
is the Farey series of order n. Thus F5 is

0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1
.

An analysis of Fn gives an alternative line of approach to questions of diophantine
approximation.
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Theorem 8.7.
(i) If a

q and b
r are successive terms of Fn, then qb− ar = 1.

(ii) If a
q ,

c
s and b

r are three successive terms of Fn, then

c

s
=

a+ b

q + r
.

Proof. (i) Since (a, q) = 1 we can solve the congruence ay ≡ −1 (mod q) with
n− q < y ≤ n. Let x = (ay + 1)/q, so that qx − ay = 1. Clearly (x, y) = 1. Thus
x/y ∈ Fn. Also x

y = a
q + 1

qy , so that x
y comes later in the series. If it is not b/r,

then
x

y
− b

r
=

xr − by

yr
≥ 1

yr

and
b

r
− a

q
=

bq − ar

rq
≥ 1

rq
.

Hence
1

yq
=

x

y
− a

q
≥ 1

yr
+

1

rq
=

y + q

yrq
>

n

yrq
≥ 1

yq

which is absurd.
(ii) By (i), qc− as = 1 and sb− cr = 1. Solving for c and s gives

c(qb− ar) = b+ a, s(bq − ar) = q + r.

and (ii) follows.

As defined, the elements of Fn lie in [0, 1], but we could just as well take

F∗
n =

{
a

q
: 1 ≤ q ≤ n, (a, q) = 1

}
and quite clearly the above theorem holds for F∗

n in place of Fn.
Suppose that a−

q−
, a

q ,
a+

q+
are three successive terms of F∗

n. Clearly

a−
q−

<
a− + a

q− + q
<

a

q
<

a+ a+
q + q+

<
a+
q+

.

Thus we can partition R into intervals I(a/q) of the form[
a− + a

q− + q
,
a+ a+
q + q+

)
.

Moreover
(a+ a±)q − a(q + q±) = a±q − aq± = ±1,

so that (a+ a±, q + q±) = 1 and

a+ a±
q + q±

− a

q
=

±1

(q + q±)q
.

Since the a+a±
q+q±

are not in Fn we must have q + q± ≥ n + 1. Hence each interval

I(a/q) is of the form [
a

q
− θ−

q(n+ 1)
,
a

q
+

θ+
q(n+ 1)

)
with 0 ≤ θ± ≤ 1. Since the I(a/q) partition R we have another proof of Dirichlet’s
theorem.


