
10 HECKE OPERATORS

10.1. Introduction The motivation here is to find operators T which act on modular
forms f of given weight 2k in such a way that the Fourier coefficients of f and Tf satisfy
“useful” relationships. A crucial rôle is played by eigenforms f which satisfy

Tf = λT f.

One can set up the theory in rather greater generality. However we will follow Hecke who
made the following definition.

Definition 10.1. For k ∈ Z and any n = 1, 2, . . . the operator Tn is defined on the set of
weakly modular functions of weight 2k by

(Tnf)(z) = n2k−1
∑

d|n
d−2k

d−1∑

b=0

f

(
nz + bd

d2

)
.

10.2. The Fourier Expansion. For brevity we will use the notation e(α) for e2πiα and
q = e(z).

Theorem 10.1. Let f be a modular function of weight 2k, with Fourier expansion at ∞

f(z) =
∑

m∈Z
c(m)e(mz). (1)

Then Tnf has the Fourier expansion

(Tnf)(z) =
∑

m∈Z
γn(m)e(mz)

where

γn(m) =
∑

d|(m,n)

d2k−1c(mnd−2).

1



2 10. HECKE OPERATORS

Proof. By definition the series (1) converges for q in a punctured disc centred at q = 0. In
the interior of this annulus it converges absolutely. Thus

(Tnf)(z) =
∑

m∈Z

∑

d|n

(n

d

)2k−1

c(m)e
(mnz

d2

) 1
d

d−1∑

b=0

e(mb/d)

=
∑

m∈Z

∑

d|(m,n)

(n

d

)2k−1

c(m)e
(mnz

d2

)

=
∑

d|n

∑

l∈Z

(n

d

)2k−1

c(ld)e(lnz/d)

=
∑

r|n
r2k−1c(ln/r)e(lrz)

=
∑

m∈Z

∑

r|(m,n)

r2k−1c(mnr−2)e(mz).

In Definition 10.1, the general term can be rewritten as

f

(
(n/d)z + b

d

)
.

Thus we are particularly interested in the behaviour of f under the action of A =
(

n/d b
0 d

)
.

Now det A = n. Thus we consider general A =
(

a b
c d

)
with det A = n, a transformation

of order n, and for our purposes we can associate Az with z 7→ az+b
cz+d . Let Γ(n) denote the

set of all such transformations. Thus the modular group is Γ(1). We say that A, B ∈ Γ(n)
are equivalent when there is a C ∈ Γ such that A = CB. This is obviously an equivalence
relation, and partitions Γ(n) into equivalence classes. We could write Γ(n)/Γ for the set of
equivalence classes.

10.3. The structure of Γ(n).

Theorem 10.2. Every equivalence class in Γ(n)/Γ contains a representative A =
(

a b
0 d

)

with d > 0

Proof. Let A =
(

a b
c d

)
be a given member of the class. If c = 0, then we are done since

A =
(

a b
0 d

)
and

(−a −b
0 −d

)
represent the same transformation. If c 6= 0, then we choose

r, s with (r, s) = 1 so that s/r = −a/c, and choose p, q so that ps− qr = 1. Hence
(

p q
r s

)(
a b
c d

)
=

(
pa + qc pb + qd
ra + sc rb + sd

)
,
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ra + sc = 0, det
(

p q
r s

)
= ps− qr = 1.

Theorem 10.3. A complete set of non-equivalent elements of Γ(n) is given by the σ(n) =
∑

d|n d transformations A =
(

a b
0 d

)
formed by taking ad = n, d > 0 and b ranging over a

complete set of residues modulo d.

Proof. By Theorem 10.2, given B ∈ Γ(n) there is an A =
(

a b
0 d

)
equivalent to B, and

ad = n, d > 0. We show that

A1 =
(

a1 b1

0 d1

)
is equivalent to A =

(
a b
0 d

)
(2)

if and only if
a1 = a, d1 = d, b1 ≡ b (mod d). (3)

Suppose (2). Then A1 =
(

u v
w x

)
A =

(
ua ub + vd
wa wb + xd

)
with ux − vw = 1. Since ad =

n 6= 0, w = 0. Then ux = 1, u = x = ±1. As xd > 0, u = x = 1, a1 = a, b1 = b + vd.

Suppose (s). Let C =
(

1 b1−b
d

0 1

)
. Then, by (2), CA = A1.

Definition 10.2. Let An denote the set of transformations A ∈ Γ(n), Az = az+b
d with

ad = n, d > 0, 0 ≤ b < d.

The set An is a set of representatives for Γ(n)/Γ. Moreover if

A′ =
(

a b + λd
0 d

)
, C =

(
1 λ
0 1

)
, A =

(
a b
0 d

)
,

then A′ = CA and for any weakly modular function f(A′z) = f(CAz) = f(Az). Thus we
could take any complete set of residues modulo d for the b in our application.

By Definition 10.1,

(Tnf)(z) =
1
n

∑

A∈An

a2kf(Az). (4)

Theorem 10.4. Suppose that A1 =
(

a1 b1

c1 d1

)
∈ Γ(n) and V1 ∈ Γ. Then there are A2 =

(
a2 b2

0 d2

)
∈ An and V2 ∈ Γ such that A1V1 = V2A2. Moreover, if c1 = 0, Vj =

(
αj βj

γj δj

)
,

then a1(γ2A2z + δ2) = a2(γ1z + δ1).

Proof. Obviously A1V1 ∈ Γ(n). Choose A2 ∈ An equivalent to A1V1 in accordance with
Theorem 10.2. Then there is a V2 ∈ Γ such that V2A2 = A1V1 as required. Suppose c1 = 0.
Then

A1V1 =
(

a1α1 + b1γ1 a1β1 + b1δ1

d1γ1 d1δ1

)
,
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V2A2 =
(

α2a2 α2b2 + β2d2

γ2a2 γ2b2 + δ2d2

)
.

Hence

d1γ1 = γ2a2, d1δ1 = γ2b2 + δ2d2

n

a1
γ1 = γ2

n

d 2
, δ2 =

d1

d2
δ1 − b2

d2
γ2

γ2 =
d2

a1
γ1, δ2 =

a2

a1
δ1 − b2

a1
γ1

Thus a1(γ2A2z + δ2) = a1γ2
a2z+b2

d2
+ (a2δ1 − b2γ1) = γ1(a2z + b2)− b2γ1 + a2δ1.

10.4. Properties of Tn. We are now in a position to prove the first desirable property of
Tn, namely that if f is weakly modular of weight of 2k, then so is Tnf .

Theorem 10.5. Suppose that f is weakly modular of weight 2k and V =
(

α β
γ δ

)
∈ Γ.

Then
(Tnf)(V z) = (γz + δ)2k(Tnf)(z).

Proof. By (4),

(Tnf)(V z) =
1
n

∑

A∈An

a2kf(AV z).

Given A and V , by Theorem 10.4 there are A1, V1 such that A1 ∈ An, AV = V1A1, V1 ∈ Γ
and a(γ1A1z + δ1) = a1(γz + δ). Thus

a2kf(AV z) = a2kf(V1A1z) = (a(γ1A1z + δ1))2kf(A1z) = a2k
1 (γz + δ)2kf(A1z).

Moreover, if A′V = V ′
1A′1, then A is equivalent to A′ if and only if A1 is equivalent to A′1.

Thus A1 runs over An as A does.

Theorem 10.6. If f is a weakly modular function, then so is Tnf . If f ∈ Mk, then so is
Tnf . If f ∈ M0

k , then so is Tnf .

Proof. The first part is immediate from the previous theorem. The second part then follows
from Theorem 10.1 since if c(m) has its support on the non-negative integers, so does γn(m).
Finally, in Theorem 10.1, if the support of the c(m) is N, then so is that of γn(m).

We can now begin to explore the structure of the Tn. These operators turn out to be
“multiplicative” in the usual sense.
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Theorem 10.7. Suppose that m, n ∈ N and (m,n) = 1. Then TmTn = Tmn and Tm and
Tn commute.

Proof. By (4),

(Tm(Tnf)) (z) =
1

mn

∑

A′∈Am

a′2k
∑

A∈An

a2kf(A′Az).

We have

A′′ = A′A =
(

a′ b′

0 d′

)(
a b
0 d

)
=

(
a′a a′b + b′d
0 d′d

)
.

The number d′d runs over a set of (positive) divisors of mn as d′ and d do of m and n
respectively. Since a′|m and d|n we have (a′, d) = 1. Every residue class modulo d′d can
be written in the form u + vd with 0 ≤ u < d, o ≤ v < d′. Choose b so that a′b ≡ u
(mod d). Then choose b′ so that b′ ≡ v + (u − a′b)/d (mod d)′. Then a′b + b′d ≡ u + vd
(mod d′d). Since there are only d′d choices for b and b′ it follows that a′b + b′d ranges over
a complete set of resides modulo d′d as b′ and b do modulo d′ and d respectively. Finally
a′a = mn/(d′d). Thus

(Tm(Tnf)) (z) =
1

mn

∑

A′′∈Amn

(a′′)2kf(A′′z) = (Tmnf)(z).

That Tm and Tn commute is immediate.

To avoid suffices becoming too cumbersome we use the notation

T (n) = Tn.

The structure of the Hecke operators is quite surprising as the following theorem shows.

Theorem 10.8. Let p be a prime and let r ∈ N and suppose that f is weakly modular of
weight 2k. Then

T (p) (T (pr)f) = T (pr+1)f + p2k−1T (pr−1)f.

Proof. By Definition 10.1,

(T (pr)f)z =
r∑

s=0

p2k(r−s)−r

ps−1∑

b=0

f

(
pr−sz + b

ps

)
.

Moreover

(T (p)g)z = p2k−1g(pz) + p−1

p−1∑

b=0

g

(
z + b

p

)
.



6 10. HECKE OPERATORS

Thus

(
T (p)(T (pr)f)

)
z =

p2k−1
r∑

s=0

p2k(r−s)−r

ps−1∑

b=0

f

(
pr−s+1z + bp

ps

)
+

1
p

p−1∑

b=0

r∑
s=0

p2k(r−s)−r

ps−1∑
c=0

f




pr−sz+c
ps + b

p




=
r∑

s=0

p2k(r+1−s)−r−1

ps−1∑

b=0

f

(
pr+1−sz + bp

ps

)
+

r∑
s=0

p2k(r−s)−r−1

ps+1−1∑
u=0

f

(
pr−sz + u

ps+1

)

=
r∑

s=1

p2k(r+1−s)−r−1

ps−1∑

b=0

f

(
pr+1−sz + bp

ps

)
+ p2k(r+1−0)−r−1f(pr+1−0z + 0)

+
r+1∑
t=1

p2k(r+1−t)−r−1

pt−1∑
u=0

f

(
pr+1−tz + u

pt

)

=
r−1∑
t=0

p2k(r−t)−r−1

pt+1−1∑

b=0

f

(
pr−tz + bp

pt+1

)
+ T (pr+1)

=
r−1∑
t=0

p2k(r−t)−r−1p

pt−1∑

b=0

f

(
pr−1−tz + b

pt

)
+ T (pr+1)

= p2k−1T (pr−1) + T (pr+1).

We recall Theorem 10.1. When f is a modular function, so that

f(z) =
∑

m∈Z
c(m)e(mz)

in a punctured disc (for q) centred at 0 we have

(Tnf)(z) =
∑

m∈Z
γn(m)e(mz)

with
γn(m) =

∑

d|(m,n)

d2k−1c(mnd−2).

We can carry out several evalations. Thus

γn(0) = c(0)σ2k−1(n), (5)

γn(1) = c(n), (6)
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γp(m) =
{

c(mp) when p - m,

c(mp) + p2k−1c(m/p) when p|m.
(7)

10.5. Eigenfunctions. Let f be a modular form of weight 2k with k > 0 and not
identically 0. We investigate the possibility that

T (n)f = λ(n)f for all n ∈ N where λ(n) ∈ C. (8)

Definition 10.3. A modular form f of weight 2k with k > 0 and not identically 0 which
satisfies (8) is called an eigenfunction or eigenform of T (n). The complex numbers λ(n) are
the eigenvalues of f .

Let f be such a modular form and c(n) be its Fourier coefficient. By (6), c(n) = λ(n)c(1)
for n ∈ N. If c(1) = 0, then f would be identically c(0) which is impossible for k > 0. Hence
to be an eigenfunction c(1) 6= 0. In view of this we can normalise f by dividing through by
the constant c(1). Then c(1) = 1. In that case λ(n) = c(n) for every n ∈ N.

Theorem 10.9. Suppose that f is a normalised eigenform of weight 2k. Then the coeffi-
cients c(n) of its Fourier series are multiplicative for n ≥ 1 and

c(p)c(pr) = c(pr+1) + p2k−1c(pr−1) (r ∈ N).

Proof. Suppose that m, n ∈ N and (m,n) = 1. By Theorem 10.7,

c(mn)f(z) = (T (mn)f)(z) = (T (m)(T (n)f))(z)

= (Tm(c(n)f))(z) = c(n)(Tmf)(z) = c(n)c(m)f(z).

Moreover, by Theorem 10.8,

c(p)c(pr)f(z) = c(pr)(T (p)f)(z) = (T (p)(c(pr)f))(z) = (T (p)(T (pr)f))(z)

= (T (pr+1) + p2k−1T (pr−1))f)(z) = (c(pr+1) + p2k−1c(pr−1))f(z).

We would like to consider the Dirichlet series whose coefficients are the coefficients of the
Fourier expansion of an eigenform. First of all we need to establish sufficient information to
ensure that the Dirichlet series converges.

Theorem 10.10. Suppose that f is a cusp form of weight 2k. Then its Fourier coefficients
an satisfy

an ¿ nk

where the implicit constant may depend on f .
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Proof. An immediate consequence of f being analytic on H̃ is that the series

∞∑
n=1

anqn

has radius of convergence at least 1. Thus f(z)/q ¿ 1 uniformly for |q| ≤ 1
2 , i.e. f(z) ¿

e−2πy for y ≥ log 2
2π . Let φ(z) = |f(z)|yk. Then for A ∈ Γ we have φ(z) = |cz +

d|−2k|F (Az)|(=z)k = |cz + d|−2k|f(Az)||cz + d|2k(=Az)k = f(Az)(=Az)k. Thus φ is in-
variant under Γ. Moreover log 2

2π < 1
2 . Hence φ(z) ¿ yke−2πy ¿ 1 uniformly on D and hence

uniformly on H. Thus f(z) ¿ y−k uniformly on H.
By Cauchy’s integral formula,

an =
1

2πi

∫

Cy

f̃(q)q−n−1dq

where Cy is the circle parameterised by q = e2πix−2πy 0 ≤ x ≤ 1. Then

an =
∫ 1

0

f(x + iy)e(−nx− iny)dx ¿ y−ke2πny.

The choice y = 1/n establishes the desired conclusion.

Theorem 10.11. Suppose that f is a non–cusp modular form f of weight 2k > 0 and not
identically 0. Then its Fourier coefficient an satisfies

an ³ n2k−1 (n > n0(k, f)).

Again the implicit constants may depend on f .

The symbol ³ is used to mean that the ratio of the two sides of the expression lies between
two constants.

Proof. When k = 1 there are no modular forms of weight 2k.. When k ≥ 2 and dim Mk = 1
every modular form can be written as λGk(z) where λ ∈ C \ {0}, and the non–constant
terms in the Fourier expansion of Gk are of the form Ckσ2k−1(n). Moreover for k ≥ 2,
n2k−1 ≤ σ2k−1(n) ≤ n2k−1ζ(2k− 1) and the conclusion follows at once. When dimMk > 1,
k ≥ 6 and every non-cusp modular form f can be written as f(z) = λGk(z) + µg(z) where
λ 6= 0 and g is a cusp form. The conclusion then follows from the observations above
regarding the coefficients of Gk and Theorem 10.10.

Before proceeding further we display some eigenforms. First consider the modular form

Ek(z) = 1− 4k

B2k

∞∑
n=1

σ2k−1(n)e2πinz.
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It is convenient to normalise this to give

E∗
k = c(0) +

∞∑
n=1

σ2k−1(n)e2πinz

where

c(0) = −B2k

4k
.

It can be verified that

min(r,s)∑

j=0

pj(2k−1)σ2k−1(pr+s−2j) = σ2k−1(pr)σ2k−1(ps)

and hence that when m > 0,

∑

d|(m,n)

d2k−1σ2k−1(mnd−2) = σ2k−1(m)σ2k−1(n).

Thus, by (5),
(TnE∗

k)(z) = σ2k−1(n)E∗
k .

Hence E∗
k is a normalised eigenform, and so λGk is an eigenform for any non-zero complex

number λ. By (5) any normalised non-cusp form of weight 2k has to satisfy λ(n) = σ2k−1(n)
and then c(n) = σ2k−1(n). Thus there are no other non–cusp eigenforms.

By Theorem 10.6, if f is a cusp form of weight 2k, then so is Tnf . Suppose that dim M0
k =

1. Then Tnf = λ(n)f for some complex number λ(n). Thus when dim M0
k = 1 every cusp

form of weight 2k is an eigenform. By the remark after Definition 10.3 if f is normalised,
then λ(n) = c(n), the Fourier coefficent of f . Moreover, by Theorem 10.9 the coefficients are
multiplicative and satisfy the recurrence relation of that theorem. The normalised cusp form
∆(z)/(2π)12 belongs to M0

6 and dimM0
6 = 1 and so is an eigenform. Hence Ramanujan’s

function τ(n) is multiplicative and satisfies

τ(p)τ(pr) = τ(pr+1) + p2k−1τ(pr−1).

By Theorem 10.10 it also satisfies
τ(n) ¿ n6.

Theorem 10.12. Suppose that f is a normalised eigenform of weight 2k, and

f(z) = c(0) +
∞∑

n=1

c(n)qn
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is its Fourier expansion at ∞. Then the Dirichlet series

Φf (s) =
∞∑

n=1

c(n)n−s

converges absolutely and locally uniformly for σ > σk, where σk = k + 1 if f is a cusp form
and σk = 2k otherwise. Moreover, when σ > σk,

Φf (s) =
∏
p

(
1− c(p)p−s + p2k−1−2s

)−1
.

Proof. The convergence is immediate from the previous two theorems. By Theorem 10.9
the coefficients are multiplicative. Hence Φf has an Euler product valid for σ > σk,

Φf (s) =
∏ (

1 +
∞∑

m=1

c(pm)p−ms

)
.

Moreover

(
1− c(p)p−s + p2k−1−2s

)
(

1 +
∞∑

m=1

c(pm)p−ms

)

= 1− c(p)p−s + p2k−1−2s +
∞∑

m=1

(
c(pm)p−ms − c(p)c(pm)p−ms−s + c(pm)p2k−1−ms−2s

)

= 1− c(p)p−s + p2k−1−2s

+ c(p)p−s − p2k−1−2s +
∞∑

r=1

(
c(pr+1)p−rs−s − c(p)c(pr)p−rs−s + c(pr−1)p2k−1−rs−s

)

and by the last part of Theorem 10.9 this is 1.


