9. MODULAR FORMS

9.1. Introduction A modular form is an analytic function which satisfies a certain simple relationship under the action of Möbius transformations together with some other simple properties, to be defined. The importance of modular forms is that they underpin a lot of interesting number theoretic structures.
9.2. Properties of Möbius transformations. Let

$$
\begin{equation*}
f(z)=\frac{a z+b}{c z+d} ; a, b, c, d \in \mathbb{C}, a d \neq b c . \tag{1}
\end{equation*}
$$

The assumption $a d \neq b c$ is to ensure that f is not a constant and is well defined (c and d cannot both be 0). This defines $f(z)$ for all z in the extended complex plane $\tilde{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ except for $z=-d / c$ and $z=\infty$. We extend the definition to $\widetilde{\mathbb{C}}$ by taking

$$
F(-d / c)=\infty, \quad f(\infty)=a / c
$$

with the usual convention that $w / 0=\infty$ when $w \neq 0$, and vice versa. Clearly f is analytic on $\tilde{\mathbb{C}}$ except for a simple pole at $-d / c$ and maps $\tilde{\mathbb{C}}$ onto $\tilde{\mathbb{C}}$. Moreover given $w \in \tilde{\mathbb{C}}$ the point

$$
z=\frac{d w-b}{-c w+a}
$$

has the property that $f(z)=w$. Thus

$$
g(z)=\frac{d w-b}{-c w+a}
$$

is the inverse of f and f is a bijection from $\tilde{\mathbb{C}}$ to itself. We have

$$
\begin{equation*}
\frac{f(w)-f(z)}{w-z}=\frac{a d-b c}{(c w+d)(c z+d)} \tag{2}
\end{equation*}
$$

and letting $w \rightarrow z$ gives

$$
f^{\prime}(z)=\frac{a d-b c}{(c z+d)^{2}} .
$$

This is non-zero. Thus f is conformal except possibly at $z=-d / c$.
Consider the equation

$$
A z \bar{z}+B z+\bar{B} \bar{z}+C=0
$$

where A and C are real. The points on any circle satisfy such an equation with $A \neq 0\left(A|z+B / A|^{2}=\right.$ $\left.|B|^{2} / A-C\right)$ and the points on any line satisfy such an equation with $A=0$. Suppose that

$$
z=\frac{a w+b}{c w+d} .
$$

Then on substituting in the above equtions, clearing the denominators $c w+d . c \bar{w}+d$ and collecting tegether coefficients of $w \bar{w}, w$ and \bar{w} gives

$$
A^{\prime} w \bar{w}+B^{\prime} w+\overline{B^{\prime}} \bar{w}+C^{\prime}=0 .
$$

Hence every Möbius tranformation maps circles and lines into circles and lines.
Since for any $D \in \mathbb{C} \backslash\{0\}$ we have

$$
\frac{a z+b}{c z+d}=\frac{(a / D) z+b / D}{(c / D) z+d / D}
$$

and

$$
\frac{a}{D} \cdot \frac{d}{D}-\frac{b}{D} \cdot \frac{c}{D}=\frac{a d-b c}{D^{2}}
$$

we can suppose that

$$
a d-b c=1
$$

We can associate with

$$
f(z)=\frac{a z+b}{c z+d}
$$

the 2×2 matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Then $\operatorname{det} A=1$. If f and g are Möbius tranformations with associated matrices A and B, then $(f \circ g)(z)=$ $f(g(z))$ has associated matrix $A B$. The identity matrix $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ corresponds to $f(z)=z$ and the inverse matrix

$$
A^{-1}=\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) \quad\left(\text { note } \operatorname{det} A^{-1}=d a-b c=1\right)
$$

is associated with $f^{-1}(z)$.
9.3. The modular group. The set of all Möbius transforms form a group under composition, and this is associated with $\mathrm{SL}_{2}(\mathbb{C})$. We will mostly be concerned with the subgroup $\mathrm{SL}_{2}(\mathbb{Z})$. When a, b, c, d are real one has

$$
\Im f(z)=\Im \frac{(a z+b)(c \bar{z}+d)}{|c z+d|^{2}}=\Im \frac{z+b c(z+\bar{z})}{|c z+d|^{2}}=\Im \frac{z+b c(z+\bar{z})}{|c z+d|^{2}},
$$

so

$$
\begin{equation*}
\Im f(z)=\frac{\Im z}{|c z+d|^{2}} \tag{3}
\end{equation*}
$$

Thus f maps the upper half-plane

$$
\mathbb{H}=\{z: \Im z>0\}
$$

bijectively to \mathbb{H}.
Another important remark is that

$$
\frac{a z+b}{c z+d}=\frac{(-a) z+(-b)}{(-c) z+(-d)}
$$

In other words,

$$
A \quad \text { and } \quad A\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
$$

give identical maps. Thus it is normal to restrict ones attention to

$$
\operatorname{PSL}_{2}(\mathbb{R})=\mathrm{SL}_{2}(\mathbb{R}) /\{ \pm I\}
$$

and

$$
\operatorname{PSL}_{2}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}) /\{ \pm I\} .
$$

Since $\mathrm{PSL}_{2}(\mathbb{Z})$ is a handful to write one tends to use a shorthand. Serre uses G and Apostol and many others use Γ, and we will follow the herd. This group is called the modular group.
Theorem 9.1. The modular group Γ is generated by

$$
T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad S=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

i.e. every $A \in \Gamma$ can be expressed in the form

$$
A=T^{n_{1}} S T^{n_{2}} S \ldots S T^{n_{k}}
$$

where the $n_{j} \in \mathbb{Z}$.
Remark. The matrices S and T correspond to $z \rightarrow-1 / z$ and $z \rightarrow z+1$ respectively.
Proof. Since we are working modulo $\pm I$ we need only consider the

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

with $c \geq 0$. We argue by induction on c. If $c=0$, then $a d=1$ so $a=d= \pm 1$ and

$$
A=\left(\begin{array}{cc}
\pm 1 & b \\
0 & \pm 1
\end{array}\right) \equiv\left(\begin{array}{cc}
1 & \pm b \\
0 & 1
\end{array}\right)=T^{ \pm b}
$$

If $c=1$, then $a d-b c=1$, so $b=a d-1$ and

$$
A=\left(\begin{array}{cc}
a & a d-1 \\
1 & d
\end{array}\right)=\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & d \\
0 & 1
\end{array}\right)=T^{a} S T^{d} .
$$

Now suppose that $c>1$ and assume the conclusion for all

$$
A^{\prime}=\left(\begin{array}{ll}
a^{\prime} & b^{\prime} \\
c^{\prime} & d^{\prime}
\end{array}\right)
$$

with $0 \leq c^{\prime}<c$. Since $a d-b c=1$ we have $(d, c)=1$. Hence $d=c q+r$ where $0<r<c$. Then

$$
A T^{-q}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1 & -q \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & b-a q \\
c & r
\end{array}\right)
$$

and

$$
A T^{-q} S=\left(\begin{array}{cc}
a & b-a q \\
c & r
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
b-a q & -a \\
r & -c
\end{array}\right) .
$$

The only other observation we need is that $S^{2}=-I \equiv I$.
9.3 Fundamental Domains. We are interested in the behaviour of the modular group acting on points in \mathbb{H}.

Definition 9.1. Let G be a subgroup of Γ. Two points $z, w \in \mathbb{H}$ are equivalent under G when $z=A w$ for some A in G. This equivalence relation partitions \mathbb{H} into equivalence classes called orbits (of G), i.e for a given $z \in \mathbb{H}$ an orbit is the set of all $A z$ with $A \in G$.

Definition 9.2. Let G be a subgroup of Γ. Any simply connected subset \mathbb{D}_{G} of \mathbb{H} is called a fundamental domain (or region) of G when it satisfies the following.
(i) No two distinct points of \mathbb{D}_{G} are in the same orbit of G.
(ii) Every orbit of G contains a point of \mathbb{D}_{G}.

When $G=\Gamma$ we simplify the notation by writing \mathbb{D} for \mathbb{D}_{Γ}.
Theorem 9.2. Let

$$
\mathbb{D}=\left\{z: \text { either }|z|>1,-\frac{1}{2} \leq \Re z<\frac{1}{2} \text { and } \Im z>0, \text { or }|z|=1,-\frac{1}{2} \leq \Re z \leq 0 \text { and } \Im z>0\right\} .
$$

Then \mathbb{D} is a fundamental domain for Γ.
Proof. Suppose that $z \in \mathbb{H}$. Let N denote the number of integers c and d such that $|c z+d| \leq 1$. Since $\Im z>0$ we have $|c| \Im z=|\Im(c z+d)| \leq|c z+d| \leq 1$, so that $|c| \leq 1 / \Im z$ and $|d|=|c z+d-c z| \leq|c z+d|+|c z| \leq 1+|z| / \Im z$. Thus $N \leq(1+2 / \Im z)(3+2|z| / \Im z)$. Thus for all but N choices of c and d we have $|c z+d|>1$ and so

$$
\Im(A z)=\frac{\Im z}{|c z+d|^{2}}<\Im z
$$

Thus there is an $A \in \Gamma$ for which $\Im(A z)$ is maximal. Now choose $n \in \mathbb{Z}$ so that $-\frac{1}{2} \leq \Re A z+n<\frac{1}{2}$. In other words $-\frac{1}{2} \leq \Re T^{n} A z<\frac{1}{2}$. Then $\Im T^{n} A z=\Im A z$ is also maximal. If $\left|T^{n} A z\right|<1$, then $\left|S T^{n} A z\right|=$ $\left|-1 /\left(T^{n} A z\right)\right|>1$ so that $\Im\left(S T^{n} A z\right)=\Im\left(T^{n} A z\right)\left|T^{n} A z\right|^{2}>\Im\left(T^{n} A z\right)=\Im(A z)$ which would contradict the maximality of $\Im(A z)$. Hence $\left|T^{n} A z\right| \geq 1$. If $\left|T^{n} A z\right|>1$ or $\left|T^{n} A z\right|=1$ and $-\frac{1}{2} \leq \Re T^{n} A z \leq 0$, then $T^{n} A z \in \mathbb{D}$. If $\left|T^{n} A z\right|=1$ and $0<\Re T^{n} A z<\frac{1}{2}$, then $S T^{n} A z \in \mathbb{D}$.

We complete the proof by showing that if $z, w \in \mathbb{D}, A \in \Gamma, z=A w$, then $z=w$. As usual we associate A with the element

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

of $\mathrm{SL}_{2} \mathbb{Z}$. If $c=0$, then $a d=1, a=d= \pm 1$ and $w=A z=z \pm b$. Hence $b=0$ and $w=z$. Now suppose that $c \neq 0$. We have (3). Since $A^{-1} w=z$ we also have

$$
\begin{equation*}
\Im z=\Im\left(A^{-1} w\right)=\frac{\Im z}{|-c w+a|^{2}} \tag{4}
\end{equation*}
$$

Moreover

$$
|c z+d|^{2}=c^{2}|z|^{2}+2 c d \Re z+d^{2} \geq c^{2}|z|^{2}-|c d|+d^{2} \geq c^{2}-|c d|+d^{2} .
$$

Since $c \neq 0$ and $u^{2}-u+1$ has no real roots we have

$$
\begin{equation*}
|c z+d|^{2} \geq c^{2}|z|^{2}-|c d|+d^{2} \geq 1 \tag{5}
\end{equation*}
$$

Likewise

$$
\begin{equation*}
|-c w+a|^{2} \geq c^{2}|w|^{2}-|c a|+a^{2} \geq 1 . \tag{6}
\end{equation*}
$$

Note that equality could only occur in these last two inequalities if $|z|=|w|=1$. By (2) and (5), §w $\leq \Im z$ and by (4) and (6), $\Im z \leq \Im w$, so $\Im z=\Im w$. But then we have equality in (5) and (6), so $|z|=|w|$, and hence $|\Re z|=|\Re w|$. But on that part of \mathbb{D} with $|z|=1$ we have $\Re z \leq 0$ hence $\Re z=\Re w$.

Exercises 9.1.

Γ denotes the modular group and S, T are its generators, $S(z)=-1 / z, T(z)=z+1$. Given a quadratic form $Q(x, y)=a x^{2}+b x y+c y^{2}$ with real coefficients, $d=d_{Q}=b^{2}-4 a c$ is called the discriminant of Q.

1. (i) Find all elements A of Γ which commute with S.
(ii) Find all elements A of Γ which commute with T.
(iii) Find the smallest $n>0$ such that $(S T)^{n}=I$.
(iv) Determine all A in Γ which leave i fixed.
(v) Determine all A in Γ which leave $\rho=e(1 / 3)$ fixed.
2. Prove that if $A \in \Gamma$, and $(x, y)^{T}=A\left(x^{\prime}, y^{\prime}\right)^{T}$, then the quadratic form Q^{\prime} defined by $Q^{\prime}\left(x^{\prime}, y^{\prime}\right)=Q(x, y)$ satisfies $d_{Q^{\prime}}=d_{Q}$. Two forms related in this way are called equivalent. This relation separates all forms into equivalence classes. The forms in the same class have the same discriminant and the ranges $Q\left(\mathbb{Z}^{2}\right)$ coincide.
In the remaining exercises it will be supposed that the quadratic forms have positive coefficients of x^{2} and y^{2} and negative discriminant. The associated polynomial $Q(z, 1)$ has two complex roots. The one in \mathbb{H} is called the representative of Q.
3. (i) If d is fixed, prove that there is a bijection between the set of forms with discriminant d and the members of \mathbb{H}.
(ii) Prove that two quadratic forms with discriminant d are equivalent iff their representatives are equivalent under Γ.

A reduced form is one whose representative lies in the fundamental domain \mathbb{D}, the set of z such that either $|z|>1$ and $-1 / 2 \leq \Re z<1 / 2$ or $|z|=1$ and $-1 / 2 \leq \Re z \leq 0$. Thus two reduced forms are equivalent iff they are identical, and moreover each equivalence class contains exactly one reduced form.
4. Prove that $Q(x, y)=a x^{2}+b x y+c y^{2}$ is reduced iff either $-a<b \leq a<c$ or $0 \leq b \leq a=c$.

In questions 5,6 it is assumed that the quadratic forms have integer coefficients.
5. Prove that the number of reduced forms with a given discriminant $d<0$ is finite. The number of such classes is called the class number and is denoted by $h(d)$.
6. When $d=-3,-4,-7,-8,-11,-15,-19,-20,-23$ determine all reduced forms with discriminant d, and the corresponding class number $h(d)$.
7. (i) Prove that if $p \equiv 1(\bmod 3)$, then $\left(\frac{-3}{p}\right)_{L}=1$.
(ii) Let $\mathcal{M}=\{n \in \mathbb{N}: p \mid n \Longrightarrow p \equiv 1(\bmod 3)\}$. Prove that if $n \in \mathcal{M}$, then $x^{2}+3 \equiv 0(\bmod 4 n)$ is soluble in x.
(iii) Let $n \in \mathcal{M}$. Prove that there are $a, B \in \mathbb{Z}$ with $a>0$ such that $B^{2}+12=4 a n$. Let $b=B-2 a$, $c=\left(b^{2}+12\right) / 4 a$. Prove that $b^{2}-4 a c=-12$ and $a+b+c=n$.
(iv) Let $h(d)$ be defined as in homework 11. Prove that $h(-12)=2$.
(v) Prove that if $n \in \mathcal{M}$, then $x^{2}+3 y^{2}=n$ is soluble in integers x and y.
8. (i) Prove that if $p \equiv 1,4(\bmod 7)$, then $\left(\frac{-7}{p}\right)_{L}=1$.
(ii) Let $\mathcal{N}=\{n \in \mathbb{N}: p \mid n \Longrightarrow p \equiv 1,4(\bmod 7)\}$. Prove that if $n \in \mathcal{N}$, then $x^{2}+7 \equiv 0(\bmod 4 n)$ is soluble in x.
(iii) Let $n \in \mathcal{N}$. Prove that there are $a, B \in \mathbb{Z}$ with $a>0$ such that $B^{2}+7=4 a n$. Let $b=B-2 a$, $c=\left(b^{2}+7\right) / 4 a$. Prove that $b^{2}-4 a c=-7$ and $a+b+c=n$.
(iv) Recall from homework 11 that $h(-7)=1$. Prove that if $n \in \mathcal{N}$, then $x^{2}+x y+2 y^{2}=n$ is soluble in integers x and y.
(v) Let $n \in \mathcal{N}$. Prove that $x^{2}+7 y^{2}=4 n$ is soluble in integers x, y. Moreover prove that x and y are both even, and thus $x^{2}+7 y^{2}=n$ is also soluble in integers x, y.

9.4. Modular functions.

Definition 9.3. Let $k \in \mathbb{Z}$. Then f is weakly modular of weight $2 k$ when f is meromorphic on \mathbb{H} and satisfies

$$
f(z)=(c z+d)^{-2 k} f\left(\frac{a z+b}{c z+d}\right) \quad \text { for all } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

Theorem 9.3.. Let f be meromorphic on \mathbb{H}. Then f is weakly modular of weight $2 k$ where $k \in \mathbb{Z}$ if and only if

$$
\begin{gathered}
f(z+1)=f(z) \\
f(-1 / z)=z^{2 k} f(z)
\end{gathered}
$$

for all $z \in \mathbb{H}$.
Proof. If f is weakly modular of weight $2 k$, then at once it must satisfy the above relations. Suppose conversely that it satisfies them. Then we can apply Theorem 9.1 to obtain $f(A z)$ where A is any member of $S L_{2}(\mathbb{Z})$. We need to show that the correct factor $(c z+d)^{-2 k}$ arises. It suffices to show that if $A=S$ or T, so that $a=1, b=1, c=0, d=1$ or $a=0, b=1, c=-1, d-0$, and

$$
B=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

then, for example inductively on the number of terms in Theorem 9.1, either

$$
((c \alpha+d \gamma) z+c \beta+d \delta)^{-2 k} f(A B z)=(\gamma z+\delta)^{-2 k} f(B z)=f(z)
$$

or

$$
((c \alpha+d \gamma) z+c \beta+d \delta)^{-2 k} f(A B z)=(\alpha z+\beta)^{-2 k} f\left(\frac{-1}{B z}\right)=(\alpha z+\beta)^{-2 k} f\left(\frac{-\gamma z-\delta}{\alpha z+\beta}\right)=f(z)
$$

The first of the above relationships tells us that f is periodic with period 1 . Thus we can write f as a function of

$$
q=e^{2 \pi i z}
$$

More precisely we could put $|q|=e^{-2 \pi \Im z}, \arg q=2 \pi(\Re z-\lfloor z\rfloor)$. Then $z \in \mathbb{Z}$ and z satisfying, say, $-\frac{1}{2} \leq$ $\Im z<\frac{1}{2}$ is equivalent to $0<|q|<1$. In other words, regardless of the branch of the logarithm,

$$
f(z)=f\left(\frac{\log q}{2 \pi i}\right)=\widetilde{f}(q)
$$

where \widetilde{f} is meromorphic on the punctured disc $\mathcal{A}=\{q: 0<|q|<1\}$. If we can extend \tilde{f} to being meromorphic (or analytic) at 0 , then we can say that f is meromorphic (or analytic) at ∞. More precisely this would mean that \tilde{f} has a Laurent expansion about 0 ,

$$
\widetilde{f}(q)=\sum_{n=-N}^{\infty} a_{n} q^{n} .
$$

Definition 9.4. A weakly modular function is called a modular function when it is meromorphic at ∞, and if it is analytic there we write $f(\infty)=\widetilde{f}(0)$. A modular function which is analytic on $\widetilde{\mathbb{H}}=\mathbb{H} \cup\{\infty\}$ is called a modular form. If such a function is 0 at ∞, then it is called a cusp form.

Thus a modular form of weight $2 k$ is given by a series

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} q^{n}=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z} \tag{7}
\end{equation*}
$$

which converges for all $q \in \mathcal{D}=\{q:|q|<1\}$ and satisfies

$$
f(-1 / z)=z^{2 k} f(z)
$$

It is a cusp form when $a_{0}=0$. The expansion (7) is called the Fourier expansion of f.
9.5. Lattice functions and modular forms. A lattice Λ can be thought of in various ways. One is that it is a discrete subgroup of a finite dimensional vector space V over \mathbb{R} and there is an \mathbb{R}-basis $\left(e_{1}, \ldots, e_{n}\right)$ of V which is a \mathbb{Z}-basis of Λ. Thus when $V=\mathbb{C}$ we could suppose that there are $\omega_{1}, \omega_{2} \in \mathbb{C} \backslash\{0\}$ such that $\Im\left(\omega_{1} / \omega_{2}\right)>0$ and

$$
\Lambda\left(\omega_{1}, \omega_{2}\right)=\mathbb{Z} \omega_{1} \oplus \mathbb{Z} \omega_{2}
$$

i.e.

$$
\Lambda\left(\omega_{1}, \omega_{2}\right)=\left\{m_{1} \omega_{1}+m_{2} \omega_{2}: m_{1}, m_{2} \in \mathbb{Z}\right\} .
$$

Let

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=A \in \mathrm{SL}_{2}(\mathbb{Z})
$$

Then

$$
\begin{aligned}
& \omega_{1}^{\prime}=a \omega_{1}+b \omega_{2} \\
& \omega_{2}^{\prime}=c \omega_{1}+d \omega_{2} .
\end{aligned}
$$

is another basis of $\Lambda\left(\omega_{1}, \omega_{2}\right)$. Since

$$
\begin{equation*}
\frac{\omega_{1}^{\prime}}{\omega_{2}^{\prime}}=\frac{a \omega_{1} / \omega_{2}+b}{c \omega_{1} / \omega_{2}+d} \tag{8}
\end{equation*}
$$

it follows from (2) that $\Im\left(\omega_{1}^{\prime} / \omega_{2}^{\prime}\right)>0$ also. Let

$$
\mathcal{M}=\left\{\left(\omega_{1}, \omega_{2}\right) \in(\mathbb{C} \backslash\{0\})^{2}: \Im\left(\omega_{1} / \omega_{2}\right)>0\right\}
$$

Theorem 9.4. Two elements of \mathcal{M} define the same lattice if and only if they are congruent modulo $\mathrm{SL}_{2}(\mathbb{Z})$. Proof. In view of the discussion above it suffices to show that if $\left(\omega_{1}, \omega_{2}\right)$ and $\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}\right)$ define the same lattice, then (8) holds with $\operatorname{det} A=1$. In fact it suffices to show that (8) holds with $\operatorname{det} A= \pm 1$ for then the positive sign follows from (2) and the facts that $\Im\left(\omega_{1} / \omega_{2}\right)>0$ and $\Im\left(\omega_{1}^{\prime} / \omega_{2}^{\prime}\right)>0$.

We have $\boldsymbol{\omega}^{\prime}=A \boldsymbol{\omega}$ and $\boldsymbol{\omega}=A^{\prime} \boldsymbol{\omega}^{\prime}$ where \mathbf{w} denotes the column vector $\left(w_{1}, w_{2}\right)^{T}$ and $A, A^{\prime} \in \mathrm{GL}_{2}(\mathbb{Z})$. Then $\boldsymbol{\omega}=A^{\prime} \boldsymbol{\omega}^{\prime}=A^{\prime} A \boldsymbol{\omega}$ and since ω_{1} and ω_{2} are linearly independent over \mathbb{Z} we have $A^{\prime} A=I$. Thus $\operatorname{det} A^{\prime} \operatorname{det} A=1$. But $\operatorname{det} A^{\prime}, \operatorname{det} A \in \mathbb{Z}$. Hence $\operatorname{det} A= \pm 1$.

Let \mathcal{R} denote the set of lattices $\Lambda\left(\omega_{1}, \omega_{2}\right)$ with $\left(\omega_{1}, \omega_{2}\right) \in \mathcal{M}$ and suppose that F satisfies

$$
F: \mathcal{R} \rightarrow \mathbb{C}
$$

Let $k \in \mathbb{Z}$. Then F is of weight $2 k$ when

$$
F(\lambda \Lambda)=\lambda^{-2 k} F(\Lambda)
$$

for every $\Lambda \in \mathcal{R}$ and every $\lambda \in \widetilde{\mathbb{C}}$. Now Λ is invariant under the action of $\mathrm{SL}_{2} \mathbb{Z}$. Moreover

$$
\lambda \Lambda\left(\omega_{1}, \omega_{2}\right)=\Lambda\left(\lambda \omega_{1}, \lambda \omega_{2}\right)
$$

Thus

$$
\omega_{2}^{2 k} F\left(\Lambda\left(\omega_{1}, \omega_{2}\right)\right)=F\left(\omega_{2}^{-1} \Lambda\left(\omega_{1}, \omega_{2}\right)\right)=F\left(\Lambda\left(\omega_{1} / \omega_{2}, 1\right)\right)
$$

Thus there is a function f on \mathbb{H} such that

$$
F\left(\Lambda\left(\omega_{1}, \omega_{2}\right)\right)=\omega_{2}^{-2 k} f\left(\omega_{1} / \omega_{2}\right)
$$

Since F is invariant under $\mathrm{SL}_{2}(\mathbb{Z})$,

$$
f(z)=(c z+d)^{-2 k} f(A z) \quad \text { for all } A \in \mathrm{SL}_{2}(\mathbb{Z}), z \in \widetilde{\mathbb{H}} .
$$

On the other hand given such a function f we can reverse the process and obtain a lattice function of weight $2 k$. Thus lattice functions are a fruitful way of creating and identifying modular forms. Perhaps the easiest way is by considering Eisenstein series

$$
G_{k}(\Lambda)=\sum_{\omega \in \Lambda\left(\omega_{1}, \omega_{2}\right) \backslash\{0\}} \frac{1}{\omega^{2 k}}=\sum_{m, n \neq 0,0} \frac{1}{\left(m \omega_{1}+n \omega_{2}\right)^{2 k}}
$$

The corresponding function on \mathbb{H} is

$$
\begin{equation*}
G_{k}(z)=\sum_{m, n \neq 0,0} \frac{1}{(m z+n)^{2 k}} \tag{9}
\end{equation*}
$$

By the way the above construction would fail if the exponent $2 k$ were to be replaced by an odd exponent, for then the function would be identically 0 .

Before proceeding further we need to discuss convergence. The following Lemma provides a basis for sufficiency.
Lemma. Suppose that $\sigma>2,0<v_{1}<v_{2}$ and $0<u$, and \mathcal{H} denotes the closed rectangle $\{z \in \mathbb{C}:-u \leq$ $\left.\Re z \leq u, v_{1} \leq \Im z \leq v_{2}\right\}$. Then

$$
\sum_{(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\}} \sup _{z \in \mathcal{H}} \frac{1}{|m z+n|^{\sigma}}
$$

converges.
Proof. For each pair (m, n) which we sum over,

$$
|m z+n|^{2}=(m \Re z+n)^{2}+(m \Im z)^{2} \geq v_{1}^{2} m^{2}
$$

and

$$
|m z+n|^{2}=|z|^{2}\left|m+n z^{-1}\right|^{2} \geq|z|^{2}\left(n \Im\left(z^{-1}\right)\right)^{2}=n^{2}|z|^{-2}(\Im \bar{z})^{2} \geq \frac{v_{1}^{2} n^{2}}{u^{2}+v_{2}^{2}}
$$

Thus $|m z+n|^{-1} \ll(\max (m, n))^{-1}$ uniformly for $z \in \mathcal{H}$, and so for any real $R>1$

$$
\sum_{\substack{(m, n) \in \mathbb{Z}^{2} \backslash\{(0,0)\} \\|m z+n| \leq R}} \sup _{z \in \mathcal{H}} \frac{1}{|m z+n|^{\sigma}} \ll \sum_{\substack{n \in \mathbb{Z} \backslash\{0\} \\ n \ll R}}|n|^{-\sigma}+\sum_{\substack{m, n \\ 0<|m| \leq|n| \ll R}}|n|^{-\sigma} \ll \sum_{n=1}^{\infty} \frac{1}{n^{\sigma-1}}
$$

Theorem 9.5. Let $k \in \mathbb{N}, k>1$. Then the Eisenstein series $G_{k}(z)$ given by (9) is a modular form of weight $2 k$ and G_{k} has the Fourier expansion

$$
G_{k}(z)=2 \zeta(2 k)+\frac{2^{2 k+1} \pi^{2 k}(-1)^{k}}{(2 k-1)!} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) e^{2 \pi i n z}
$$

Proof. By the Lemma G_{k} is uniformly and absolutely convergent on \mathcal{H}, and each term of the series is analytic on \mathbb{H}. Hence, by a theorem of Weierstrasse G_{k} is analytic in \mathcal{H}, and hence at every point of \mathcal{H}.

We have $m(z+1)+n=m z+m+n=0 \cdot z+0$ if and only if $m=n=0$. Thus

$$
G_{k}(z+1)=G_{k}(z)
$$

Obviously $m(-1 / z)+n=(-1 / z)((-n) z+m)$, so

$$
G_{k}(-1 / z)=z^{2 k} G_{k}(z)
$$

Thus, by Theorem $9.3, G_{k}$ is weakly modular. We have to show that G_{k} is analytic at ∞. We establish this by exhibiting a Fourier series for G_{k} that is analytic at $q=0$. We start from the partial fraction decomposition

$$
\begin{equation*}
\pi \cot \pi z=\frac{1}{z}+\sum_{\substack{n=-\infty \\ n \neq 0}}\left(\frac{1}{z+n}-\frac{1}{n}\right) \tag{10}
\end{equation*}
$$

which is valid for all $z \in \mathbb{C} \backslash \mathbb{Z}$ and converges locally uniformly and absolutely in that domain. For $z \in \mathbb{H}$ we have

$$
\pi \cot \pi z=\pi i \frac{e^{2 \pi i z}+1}{e^{2 \pi i z}-1}=\pi i \frac{q+1}{q-1}
$$

Thus

$$
\frac{1}{z}+\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty}\left(\frac{1}{z+n}-\frac{1}{n}\right)=-\pi i\left(1+2 \sum_{r=1}^{\infty} q^{r}\right)
$$

Differentiating both sides l times gives

$$
\frac{(-1)^{l} l!}{z^{l+1}}+\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{(-1)^{l} l!}{(z+n)^{l+1}}=-(2 \pi i)^{l+1} \sum_{r=1}^{\infty} r^{l} e^{2 \pi i r z}
$$

Now for $m \in \mathbb{N}$, we have $z \in \mathbb{H}$ if and only if $m z \in \mathbb{H}$. Thus

$$
\sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{(-1)^{l} l!}{(m z+n)^{l+1}}=-(2 \pi i)^{l+1} \sum_{m=1}^{\infty} \sum_{r=1}^{\infty} r^{l} e^{2 \pi i r m z}=-(2 \pi i)^{l+1} \sum_{n=1}^{\infty} \sigma_{l}(n) e^{2 \pi i n z}
$$

where

$$
\sigma_{l}(n)=\sum_{d \mid n} d^{l}
$$

When l is odd, say $l=2 k-1 \geq 3$,

$$
\sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{(2 k-1)!}{(m z+n)^{2 k}}=(2 \pi i)^{2 k} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) e^{2 \pi i n z}
$$

Moreover

$$
\sum_{m=-\infty}^{-1} \sum_{n=-\infty}^{\infty} \frac{1}{(m z+n)^{2 k}}=\sum_{m=1}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(m z+n)^{2 k}}
$$

Hence

$$
\sum_{\substack{m=-\infty \\ m \neq 0}}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(m z+n)^{2 k}}=\frac{2^{2 k+1} \pi^{2 k}(-1)^{k}}{(2 k-1)!} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) e^{2 \pi i n z}
$$

Adding in the terms with $m=0$ (and $n \neq 0)$ gives an extra $2 \zeta(2 k)$.
Recall that

$$
\begin{equation*}
\zeta(2 k)=(-1)^{k-1} 2^{2 k-1} \pi^{2 k} B_{2 k} /(2 k)! \tag{11}
\end{equation*}
$$

where B_{l} is the l-th Bernoulli number, and
TABLE 1

k	B_{k}		
0	$1 / 1$	$=$	1.0000000000
1	$-1 / 2$	$=$	-0.5000000000
2	$1 / 6$	$=$	0.1666666667
4	$-1 / 30$	$=$	-0.0333333333
6	$1 / 42$	$=$	0.0238095238
8	$-1 / 30$	$=-0.0333333333$	
10	$5 / 66$	$=$	0.0757575758
12	$-691 / 2730$	$=-0.2531135531$	
14	$7 / 6$	$=$	1.1666666667
16	$-3617 / 510$	$=-7.0921568627$	
18	$43867 / 798$	$=$	54.9711779449
20	$-174611 / 330$	$=-529.1242424242$	

Thus $\zeta(4)=\frac{\pi^{4}}{90}, \zeta(6)=\frac{\pi^{6}}{945}$. There are various standard notations. For example

$$
g_{2}(z)=60 G_{2}(z), g_{3}(z)=140 G_{3}(z)
$$

and then it follows that the Fourier expansion of

$$
\begin{equation*}
\Delta(z)=g_{2}(z)^{3}-27 g_{2}(z)^{2} \tag{12}
\end{equation*}
$$

has no constant term. Thus Δ is a cusp form of weight 12. By multiplying out the series and collecting together like powers of q it follows that

$$
\Delta(z)=(2 \pi)^{12} \sum_{n=1}^{\infty} \tau(n) e^{2 \pi i n z}
$$

where the $\tau(n)$ are integers with $\tau(1)=1, \tau(2)=-24$. This function was first studied by Ramanujan, and we will come back to it in Chapter 10.

Other standard notation is

$$
E_{k}(z)=G_{k}(z) /(2 \zeta(2 k))
$$

and then the Fourier expansion has constant term 1. Moreover, by (11),

$$
\frac{2^{2 k+1} \pi^{2 k}(-1)^{k}}{(2 k-1)!2 \zeta(2 k)}=\frac{2^{2 k+1} \pi^{2 k}(-1)^{k}(2 k)!}{(2 k-1)!(-1)^{k-1} 2^{2 k} \pi^{2 k} B_{2 k}}=-\frac{4 k}{B_{2 k}}
$$

Thus

$$
E_{k}(z)=1-\frac{4 k}{B_{2 k}} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) e^{2 \pi i n z}
$$

It should be born in mind that some authors write $G_{2 k}$ and $E_{2 k}$ for G_{k} and E_{k} respectively.
9.6. Zeros and poles of modular functions. For a function f, meromorphic on $\widetilde{\mathbb{H}}$ and not identically 0 we define, for each $w \in \mathbb{H}, v=v_{w}(f)$ so that $f(z)(z-w)^{-v}$ is analytic and non-zero at $w . v_{w}(f)$ is called the order of f at w. If $v_{w}(f)$ is positive, then it is the order of the zero of f at w. Likewise if $v_{w}(f)$ is negative, then $-v_{w}(f)$ is the order of the pole at w. When f is a modular function of weight $2 k$ and w and $A w$ are both finite, then the relationship

$$
f(z)=(c z+d)^{-2 k} f(A z)
$$

shows that $v_{w}(f)=v_{A w}(f)$. For points at ∞ we define v_{∞} to be the order (in q) of $\tilde{f}(q)$.

Theorem 9.6. Let f be a modular function of weight $2 k$, not identically 0 . Then

$$
v_{\infty}+\frac{1}{2} v_{i}(f)+\frac{1}{3} v_{\rho}(f)+\sum_{w \in \mathbb{D}^{*}} v_{w}(f)=\frac{k}{6}
$$

where $\rho=e^{2 \pi i / 3}$ and $\mathbb{D}^{*}=\mathbb{D} \backslash\{i, \rho\}$.
Proof. We consider

$$
\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{f^{\prime}(z)}{f(z)} d z
$$

where \mathcal{C} is, with some provisos, the contour consisting of the horizontal line L from $\frac{1}{2}+i Y$ to $-\frac{1}{2}+i Y$ (where $Y>1$), the vertical line segment L_{-}from $-\frac{1}{2}+i Y$ to ρ, the circular arc C of radius 1 , centred at 0 from ρ to $-\bar{\rho}$ through i and the vertical line segment L_{+}from $-\bar{\rho}$ to $\frac{1}{2}+i Y$. The provisos are (i) that Y is chosen so that L avoids any singularity of the integrand, and (ii) if the integrand has a singularity on the remaining path, then the contour traverses a small detour consisting of a circular arc of small radius centred at the singularity and oriented so that singularities in \mathbb{D}^{*} are included in the interior and those not in \mathbb{D}^{*} are excluded from the interior. The integrand has singularities precisely at the zeros and poles of f and the residue at such points is the order of f at that point. Thus, by Cauchy's integral formula,

$$
\frac{1}{2 \pi i} \int_{\mathcal{C}} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{w \in \mathbb{D}^{*}(Y)} v_{w}(f)
$$

where $\mathbb{D}^{*}(Y)=\left\{z \in \mathbb{D}^{*}: \Im z \leq Y\right\}$.
Since $f(z)=f(z+1)$ we have

$$
\begin{equation*}
\frac{f^{\prime}}{f}(z)=\frac{f^{\prime}}{f}(z+1) \tag{13}
\end{equation*}
$$

and thus

$$
\int_{L_{-}} \frac{f^{\prime}(z)}{f(z)} d z=-\int_{L_{+}} \frac{f^{\prime}(z)}{f(z)} d z
$$

where any possible detours, except any which might occur at ρ and $-\bar{\rho}$, are included in the paths. In view of the relationship (13) such detours will match exactly. We also have

$$
\begin{equation*}
f(z)=z^{-2 k} f(-1 / z) \tag{14}
\end{equation*}
$$

so

$$
f^{\prime}(z)=-2 k z^{-2 k-1} f(-1 / z)-z^{-2 k-2} f^{\prime}(-1 / z)
$$

Thus

$$
\frac{f^{\prime}}{f}(z)=-\frac{2 k}{z}-\frac{f^{\prime}}{z^{2} f}(-1 / z) .
$$

Let C_{-}be the subpath of C from ρ to i and C_{+}the subpath from i to $-\bar{\rho}$, with the poviso that we exclude any possible detours around ρ, i and $-\bar{\rho}$. Then

$$
\int_{C_{-}} \frac{f^{\prime}}{f}(z) d z=\int_{C_{-}}-\frac{2 k}{z}-\frac{f^{\prime}}{z^{2} f}(-1 / z) d z
$$

and by the change of variable $w=-1 / z$ this is

$$
-2 k\left(-\frac{2 \pi i}{12}\right)-\int_{C+} \frac{f^{\prime}}{f}(w) d w
$$

Thus

$$
\int_{C} \frac{f^{\prime}}{f}(z) d z=\frac{2 \pi i k}{6}
$$

There may be detours around ρ, i and $-\bar{\rho}$. If f has a zero or pole at ρ, then by there will be one at $-\bar{\rho}$ of the same order. Letting the radius of the detour at ρ tend to 0 we pick up the i times the residue times minus the angle subtended by the paths L_{-}and C at ρ, which is $-2 \pi / 6$. Hence the contribution from ρ and $-\bar{\rho}$ to the integral along the path is

$$
-2 \pi i v_{\rho}(f) / 3
$$

A detour around i likewise will pick up i times the residue times minus the angle subtended by the path C at i, which is $-\pi$. Thus the contribution from i to the integral along the path is

$$
-\pi i v_{i}(f) .
$$

It remains to deal with the contribution from L. To summarise so far

$$
\int_{L} \frac{f^{\prime}}{f}(z) d z+\frac{2 \pi i k}{6}-2 \pi i v_{\rho}(f) / 3-\pi i v_{i}(f)=2 \pi i \sum_{w \in \mathbb{D}^{*}(Y)} v_{w}(f) .
$$

In the integral along L we make the substitution $q=e^{2 \pi i z}$. Then L is tranformed into the circle C_{0} centred at 0 of radius $e^{-2 \pi Y}$ and traversed in the clockwise direction. Moreover as $\widetilde{f}(q)=f(z)$, we have $\frac{\tilde{f}^{\prime}}{\tilde{f}}(q) \frac{d q}{d z}=\frac{f^{\prime}(z)}{f(z)}$. Hence

$$
\int_{L} \frac{f^{\prime}}{f}(z) d z=\int_{C_{0}} \frac{\widetilde{f}^{\prime}}{\widetilde{f}}(q) d q .
$$

Since $\tilde{f}(q)$ is meromorphic at 0 there will be a punctured disc \mathcal{A} centred at 0 on which \tilde{f} is analytic. Thus if Y is large enough $C_{0} \subset \mathcal{A}$. Hence by Cauchy's integral formula

$$
\int_{C_{0}} \frac{\tilde{f}^{\prime}}{\widetilde{f}}(q) d q=-2 \pi i v_{\infty}(f)
$$

Moreover

$$
\sum_{w \in \mathbb{D}^{*}(Y)} v_{w}(f)=\sum_{w \in \mathbb{D}^{*}} v_{w}(f) .
$$

This completes the proof of the theorem.
When $k \in \mathbb{Z}$, let M_{k} denote the vector space over \mathbb{C} of modular forms of weight $2 k$, and let M_{k}^{0} denote the subspace of cusp forms of weight $2 k$. Let f be a non-cusp member of M_{k}. If g is another, then for some scalar $c, f-c g$ will be a cusp form. Thus every non-cusp member of M_{k} is a linear combination of f and a cusp form. Thus

$$
\begin{equation*}
\operatorname{dim}\left(M_{k} \backslash M_{k}^{0}\right) \leq 1 \tag{15}
\end{equation*}
$$

Indeed a concomitant argument shows that if M_{k}^{j} denotes the subspace of $f \in M_{k}$ in which $v_{\infty}(f) \geq j+1$ in q, then

$$
\begin{equation*}
\operatorname{dim}\left(M_{k}^{j-1} \backslash M_{k}^{j}\right) \leq 1 \tag{16}
\end{equation*}
$$

When $k \geq 2, G_{k} \in M_{k}$ but $G_{k} \notin M_{k}^{0}$. Thus

$$
\begin{equation*}
M_{k}=\mathbb{G}_{k} \oplus M_{k}^{0} \quad(k \geq 2) . \tag{17}
\end{equation*}
$$

Let $f \in M_{k}$, so that f is analytic on $\widetilde{\mathbb{H}}$. In Theorem 9.6 each $v_{z}(f)$ is non-negative. Hence $k \geq 0$. Thus M_{k} is empty when $k<0$. When $k=1$ there is no solution to $l+\frac{1}{2} m+\frac{1}{3} n=\frac{k}{6}$ with l, m, n non-negative. Hence

$$
M_{1}=\emptyset .
$$

When $k=6$, we have seen that Δ is a cusp form of weight 12 . Thus $v_{\infty}(\Delta) \geq 1$. Hence all other $v_{z}(\Delta)$ are 0 . Thus Δ does not vanish on \mathbb{H} and has a simple zero at ∞. Let k be arbitrary and $f \in M_{k}^{0}$. Then $g=f / \Delta$ has weight $2 k-12$ and

$$
v_{z}(g)=v_{z}(f)-v_{z}(\Delta)= \begin{cases}v_{z}(f)-1 & (z=\infty) \\ v_{z}(f) & (z \neq \infty)\end{cases}
$$

Thus $v_{z}(g) \geq 0$ and is analytic on $\widetilde{\mathbb{H}}$ and thus belongs to M_{k-6}. In fact the relationship $f \rightarrow f / \Delta$ give an isomorphism between the vector spaces M_{k}^{0} and M_{k-6}. More generally this relationship gives an isomorphism between M_{k}^{j+1} and M_{k-6}^{j}. We have seen that M_{k}^{0} is empty when $k<6$ or $k=1$. Thus $\operatorname{dim} M_{k} \leq 1$ when $1 \leq k \leq 5$ and $k=7$. We have $1 \in M_{0}$. Hence

$$
\operatorname{dim} M_{0}=1 .
$$

Also, by (17), when $2 \leq k \leq 5$ or $k=7$,

$$
\operatorname{dim} M_{k}=1 .
$$

Theorem 9.7. For convenience define $G_{0}(z)=1$. Then
(i) M_{k} is empty when $k<0$ or $k=1$.
(ii) when $k \geq 0$,

$$
\operatorname{dim} M_{k}= \begin{cases}\lfloor k / 6\rfloor & k \equiv 1(\bmod 6), \\ \lfloor k / 6\rfloor+1 & k \not \equiv 1(\bmod 6) .\end{cases}
$$

(iii) when $k \geq 0$ and $k \neq 1$,

$$
M_{k}=\mathbb{C} G_{k} \oplus \mathbb{C} \Delta G_{k-6} \oplus+\cdots+\oplus \mathbb{C} \Delta^{j} G_{k-6 j}
$$

where

$$
j= \begin{cases}\lfloor k / 6\rfloor-1 & k \equiv 1(\bmod 6), \\ \lfloor k / 6\rfloor & k \not \equiv 1(\bmod 6) .\end{cases}
$$

Recall that Δ is a linear combination of G_{2}^{3} and G_{3}^{2}. In fact it can be shown that every G_{k} is polynomial in G_{2} and G_{3}, and indeed that every M_{k} is spanned by the monomials $G_{2}^{u} G_{3}^{v}$ where u and v run over the solutions to $2 u+3 v=k$ with $u \geq 0, v \geq 0$.

It can also be shown that

$$
G_{2}(\rho)=0, \quad G_{3}(i)=0,
$$

either directly or by utilising Theorem 9.6.
The cusp form Δ has several remarkable properties. One of them is the product formula below.
Theorem 9.8. Let $z \in \mathbb{H}$. Then

$$
\Delta(z)=(2 \pi)^{12} q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} \quad\left(q=e^{2 \pi i z}\right)
$$

Proof. There is no very simple proof. We know that $\Delta \in M_{6}^{0}, \operatorname{dim} M_{6}^{0}=1$, and the coefficient of q in Δ is $(2 \pi)^{12}$. Thus it suffices to show that

$$
F(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}
$$

is of weight 12. Since it is immediate that it is periodic with period 1 , it suffices to show that

$$
F(-1 / z)=z^{12} F(z) \quad(z \in \mathbb{H}) .
$$

Consider the function

$$
\begin{equation*}
G_{1}(z)=\frac{\pi^{2}}{3}-8 \pi^{2} \sum_{n=1}^{\infty} \sigma(n) q^{n} . \tag{18}
\end{equation*}
$$

We will show that

$$
\begin{equation*}
G_{1}(z)=\frac{2 \pi i}{z}+\frac{1}{z^{2}} G_{1}(-1 / z) \quad(z \in \mathbb{H}) . \tag{19}
\end{equation*}
$$

Then, by logarithmic differentiation,

$$
\begin{aligned}
\frac{F^{\prime}}{F}(z) & =2 \pi i\left(1-\sum_{n=1}^{\infty} \frac{24 q^{n}}{1-q^{n}}\right) \\
& =2 \pi i\left(1-24 \sum_{m=1}^{\infty} \sigma(m) q^{m}\right) \\
& =\frac{2 \pi i .3}{\pi^{2}} G_{1}(z) \\
& =\frac{6 i}{\pi} G_{1}(z) \\
& =\frac{6 i}{\pi}\left(\frac{2 \pi i}{z}+\frac{1}{z^{2}} G_{1}(-1 / z)\right) \\
& =-\frac{12}{z}+\frac{d}{d z} \log F(-1 / z)
\end{aligned}
$$

Thus F satisfies

$$
z^{12} F(z)=C f(-1 / z)
$$

for some $C \in \mathbb{C}$. Since $F(-1 / i)=F(i)$ and $i^{12}=1$ we have $C=1$.
To complete the proof of the theorem it suffices to show that G_{1}, given by (18), satisfies (19). Following the proof of Theorem 9.5, with some care as the double series is no longer absolutely convergent, we have

$$
G_{1}(z)=2 \zeta(2)+\sum_{\substack{m=-\infty \\ m \neq 0}}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(m z+n)^{2}}
$$

Then

$$
\begin{aligned}
G_{1}(-1 / z) & =2 \zeta(2)+z^{2} \sum_{\substack{m=-\infty \\
m \neq 0}}^{\infty} \sum_{n=-\infty}^{\infty} \frac{1}{(m+n z)^{2}} \\
& =2 \zeta(2)+z^{2} 2 \zeta(2)+z^{2} \sum_{\substack{m=-\infty \\
m \neq 0}}^{\infty} \sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \frac{1}{(m+n z)^{2}} . \\
& =z^{2} 2 \zeta(2)+z^{2} \sum_{m=-\infty}^{\infty} \sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \frac{1}{(m+n z)^{2}} .
\end{aligned}
$$

Thus it suffices to show that $L(z)$ and $R(z)$ converge and

$$
\begin{equation*}
L(z)=-\frac{2 \pi i}{z}+R(z) \tag{20}
\end{equation*}
$$

where

$$
L(z)=\sum_{m=-\infty}^{\infty} \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{1}{(m+n z)^{2}}
$$

and

$$
R(z)=\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \sum_{m=-\infty}^{\infty} \frac{1}{(m+n z)^{2}}
$$

Note that the sums are different even though they are only interchanged. Let

$$
S(z)=\sum_{m=-\infty}^{\infty} \sum_{\substack{n=-\infty \\(m, n) \neq(0,0),(1,0)}}^{\infty} \frac{1}{(m-1+n z)(m+n z)}
$$

and

$$
T(z)=\sum_{n=-\infty}^{\infty} \sum_{\substack{m=-\infty \\(m, n) \neq(0,0),(0,1)}}^{\infty} \frac{1}{(m-1+n z)(m+n z)}
$$

We will show below that these series converge. Then the convergence of L follows from the relationship

$$
S(z)-L(z)=\sum_{m=-\infty}^{\infty} \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{1}{(m-1+n z)(m+n z)^{2}}+\sum_{m \neq 0,1} \frac{1}{m(m-1)} .
$$

In the last sum the terms with $m>1$ sum to 1 and those with $m<0$ sum to -1 . Hence the above becomes

$$
S(z)-L(z)=\sum_{m=-\infty}^{\infty} \sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty} \frac{1}{(m-1+n z)(m+n z)^{2}} .
$$

Similarly the convergence of R follows from

$$
\begin{aligned}
T(z)-R(z) & =\sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \sum_{m=-\infty}^{\infty} \frac{1}{(m-1+n z)(m+n z)^{2}}+\sum_{m \neq 0,1} \frac{1}{m(m-1)} \\
& =\sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty} \sum_{m=-\infty}^{\infty} \frac{1}{(m-1+n z)(m+n z)^{2}} .
\end{aligned}
$$

These series are absolutely convergent and hence can be interchanged. Thus they are identical. Therefore not only will the convergence of $L(z)$ and $R(z)$ follow from that of $S(z)$ and $T(z)$ but we will have

$$
L(z)-R(z)=S(z)-T(z) .
$$

Thus to prove (20) it suffices to show that $S(z)$ and $T(z)$ converge and

$$
\begin{equation*}
S(z)-T(z)=-\frac{2 \pi i}{z} \tag{21}
\end{equation*}
$$

The sum over m in T when $n \neq 0$ is

$$
\sum_{m=-\infty}^{\infty}\left(\frac{1}{m-1+n z}-\frac{1}{m+n z}\right)
$$

The part with $m \geq 0$ sums to $\frac{1}{-1+n z}$ and the part with $m \leq-1$ sums to $-\frac{1}{-1+n z}$ Hence when $n \neq 0$ the sum over m in T is 0 . When $n=0$ the sum over m is

$$
\sum_{m=2}^{\infty}\left(\frac{1}{m-1}-\frac{1}{m}\right)+\sum_{m=-\infty}^{-1}\left(\frac{1}{m-1}-\frac{1}{m}\right)=1+1=2
$$

Hence $T(z)$ converges to 2 .
The series $S(z)$ is more complicated. We will complete the proof of the theorem by showing that it converges to $2-\frac{2 \pi i}{z}$. We have

$$
\begin{aligned}
S(z) & =\sum_{\substack{m=-\infty}}^{\infty} \sum_{\substack{n=-\infty \\
n \neq 0}}^{\infty}\left(\frac{1}{m-1+n z}-\frac{1}{m+n z}\right)+\sum_{\substack{m=-\infty \\
m \neq 0,1}}^{\infty}\left(\frac{1}{m-1}-\frac{1}{m}\right) \\
& =\frac{1}{z} \sum_{m=-\infty}^{\infty}(U((m-1) / z)-U(m / z))+2
\end{aligned}
$$

where

$$
U(w)=\sum_{\substack{n=-\infty \\ n \neq 0}}^{\infty}\left(\frac{1}{w+n}-\frac{1}{n}\right)
$$

For $m \neq 0$, by (10),

$$
U(w)=\pi \cot \pi w-\frac{1}{w}
$$

Clearly

$$
S(z)=2+\frac{1}{z}\left(\lim _{M^{\prime} \rightarrow-\infty} U\left(M^{\prime} / z\right)-\lim _{M \rightarrow \infty} U(M / z)\right)
$$

and the convergence of $S(z)$ stands or falls on the existence of the limits above. Obviously

$$
\lim _{M \rightarrow \pm \infty} U(M / z)=\lim _{M \rightarrow \pm \infty} \pi \cot \pi(M / z)
$$

Now $\Re 2 \pi i M / z=\Re 2 \pi i M(x-i y) /|z|^{2}=2 \pi M y /|z|^{2}$ and as $M \rightarrow \infty, e^{-2 \pi i M / z} \rightarrow 0$. Thus

$$
\pi \cot \pi M / z=\pi i \frac{1+e^{-2 \pi i M / z}}{1-e^{-2 \pi i M / z}} \rightarrow \pi i .
$$

On the other hand, as $M \rightarrow-\infty$

$$
\pi \cot \pi M / z \rightarrow-\pi i
$$

This establishes the convergence of $S(z)$ and its evaluation, and completes the proof of the theorem.

Exercises 9.2.

1. Let $E_{k}(z)=G_{k}(z) /(2 \zeta(2 k)), q=e^{2 \pi i z}$. Show that

$$
\begin{aligned}
& E_{2}(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n} \\
& E_{3}(z)=1-540 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n} \\
& E_{4}(z)=1+480 \sum_{n=1}^{\infty} \sigma_{7}(n) q^{n} \\
& E_{5}(z)=1-264 \sum_{n=1}^{\infty} \sigma_{9}(n) q^{n} \\
& E_{6}(z)=1+\frac{65520}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^{n},
\end{aligned}
$$

2. Prove that $\sigma_{7}(n)=\sigma_{3}(n)+120 \sum_{m=1}^{n} \sigma_{3}(m) \sigma_{3}(n-m)$.
3. Prove that $11 \sigma_{9}(n)=21 \sigma_{5}(n)-10 \sigma_{3}(n)+5040 \sum_{m=1}^{n-1} \sigma_{3}(m) \sigma_{5}(n-m)$.
4. Prove that $756 \tau(n)=65 \sigma_{11}(n)+691 \sigma_{5}(n)-691.252 \sum_{m=1}^{n-1} \sigma_{5}(m) \sigma_{5}(n-m)$. Deduce Ramanujan's congruence $\tau(n) \equiv \sigma_{11}(n)(\bmod 691)$.
