
9. MODULAR FORMS

9.1. Introduction A modular form is an analytic function which satisfies a certain simple relationship
under the action of Möbius transformations together with some other simple properties, to be defined. The
importance of modular forms is that they underpin a lot of interesting number theoretic structures.

9.2. Properties of Möbius transformations. Let

f(z) =
az + b

cz + d
; a, b, c, d ∈ C, ad ̸= bc. (1)

The assumption ad ̸= bc is to ensure that f is not a constant and is well defined (c and d cannot both be 0).

This defines f(z) for all z in the extended complex plane C̃ = C ∪ {∞} except for z = −d/c and z = ∞. We

extend the definition to C̃ by taking

F (−d/c) = ∞, f(∞) = a/c

with the usual convention that w/0 = ∞ when w ̸= 0, and vice versa. Clearly f is analytic on C̃ except for

a simple pole at −d/c and maps C̃ onto C̃. Moreover given w ∈ C̃ the point

z =
dw − b

−cw + a

has the property that f(z) = w. Thus

g(z) =
dw − b

−cw + a

is the inverse of f and f is a bijection from C̃ to itself. We have

f(w)− f(z)

w − z
=

ad− bc

(cw + d)(cz + d)
(2)

and letting w → z gives

f ′(z) =
ad− bc

(cz + d)2
.

This is non-zero. Thus f is conformal except possibly at z = −d/c.
Consider the equation

Azz +Bz +Bz + C = 0

where A and C are real. The points on any circle satisfy such an equation with A ̸= 0 (A|z + B/A|2 =
|B|2/A− C) and the points on any line satisfy such an equation with A = 0. Suppose that

z =
aw + b

cw + d
.

Then on substituting in the above equtions, clearing the denominators cw+d. cw+d and collecting tegether
coefficients of ww, w and w gives

A′ww +B′w +B′w + C ′ = 0.

Hence every Möbius tranformation maps circles and lines into circles and lines.
Since for any D ∈ C\{0} we have

az + b

cz + d
=

(a/D)z + b/D

(c/D)z + d/D
1
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and
a

D
· d

D
− b

D
· c

D
=

ad− bc

D2

we can suppose that
ad− bc = 1.

We can associate with

f(z) =
az + b

cz + d

the 2× 2 matrix

A =

(
a b
c d

)
.

Then detA = 1. If f and g are Möbius tranformations with associated matrices A and B, then (f ◦ g)(z) =

f(g(z)) has associated matrix AB. The identity matrix I =

(
1 0
0 1

)
corresponds to f(z) = z and the inverse

matrix

A−1 =

(
d −b
−c a

)
(note detA−1 = da− bc = 1)

is associated with f−1(z).
9.3. The modular group. The set of all Möbius transforms form a group under composition, and this

is associated with SL2(C). We will mostly be concerned with the subgroup SL2(Z). When a, b, c, d are real
one has

ℑf(z) = ℑ (az + b)(cz + d)

|cz + d|2
= ℑz + bc(z + z)

|cz + d|2
= ℑz + bc(z + z)

|cz + d|2
,

so

ℑf(z) = ℑz
|cz + d|2

. (3)

Thus f maps the upper half–plane
H = {z : ℑz > 0}

bijectively to H.
Another important remark is that

az + b

cz + d
=

(−a)z + (−b)

(−c)z + (−d)
.

In other words,

A and A

(
−1 0
0 −1

)
give identical maps. Thus it is normal to restrict ones attention to

PSL2(R) = SL2(R)/{±I}

and
PSL2(Z) = SL2(Z)/{±I}.

Since PSL2(Z) is a handful to write one tends to use a shorthand. Serre uses G and Apostol and many others
use Γ, and we will follow the herd. This group is called the modular group.

Theorem 9.1. The modular group Γ is generated by

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
,

i.e. every A ∈ Γ can be expressed in the form

A = Tn1STn2S . . . STnk
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where the nj ∈ Z.

Remark. The matrices S and T correspond to z → −1/z and z → z + 1 respectively.

Proof. Since we are working modulo ±I we need only consider the

A =

(
a b
c d

)
with c ≥ 0. We argue by induction on c. If c = 0, then ad = 1 so a = d = ±1 and

A =

(
±1 b
0 ±1

)
≡
(
1 ±b
0 1

)
= T±b.

If c = 1, then ad− bc = 1, so b = ad− 1 and

A =

(
a ad− 1
1 d

)
=

(
1 a
0 1

)(
0 −1
1 0

)(
1 d
0 1

)
= T aST d.

Now suppose that c > 1 and assume the conclusion for all

A′ =

(
a′ b′

c′ d′

)
with 0 ≤ c′ < c. Since ad− bc = 1 we have (d, c) = 1. Hence d = cq + r where 0 < r < c. Then

AT−q =

(
a b
c d

)(
1 −q
0 1

)
=

(
a b− aq
c r

)
and

AT−qS =

(
a b− aq
c r

)(
0 −1
1 0

)
=

(
b− aq −a

r −c

)
.

The only other observation we need is that S2 = −I ≡ I.

9.3 Fundamental Domains. We are interested in the behaviour of the modular group acting on points
in H.

Definition 9.1. Let G be a subgroup of Γ. Two points z, w ∈ H are equivalent under G when z = Aw for
some A in G. This equivalence relation partitions H into equivalence classes called orbits (of G), i.e for a
given z ∈ H an orbit is the set of all Az with A ∈ G.

Definition 9.2. Let G be a subgroup of Γ. Any simply connected subset DG of H is called a fundamental
domain (or region) of G when it satisfies the following.

(i) No two distinct points of DG are in the same orbit of G.
(ii) Every orbit of G contains a point of DG.

When G = Γ we simplify the notation by writing D for DΓ.

Theorem 9.2. Let

D = {z : either |z| > 1,− 1
2 ≤ ℜz < 1

2 and ℑz > 0, or |z| = 1,− 1
2 ≤ ℜz ≤ 0 and ℑz > 0}.

Then D is a fundamental domain for Γ.

Proof. Suppose that z ∈ H. Let N denote the number of integers c and d such that |cz+d| ≤ 1. Since ℑz > 0
we have |c|ℑz = |ℑ(cz+d)| ≤ |cz+d| ≤ 1, so that |c| ≤ 1/ℑz and |d| = |cz+d−cz| ≤ |cz+d|+|cz| ≤ 1+|z|/ℑz.
Thus N ≤ (1 + 2/ℑz)(3 + 2|z|/ℑz). Thus for all but N choices of c and d we have |cz + d| > 1 and so

ℑ(Az) =
ℑz

|cz + d|2
< ℑz.
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Thus there is an A ∈ Γ for which ℑ(Az) is maximal. Now choose n ∈ Z so that − 1
2 ≤ ℜAz + n < 1

2 . In

other words − 1
2 ≤ ℜTnAz < 1

2 . Then ℑTnAz = ℑAz is also maximal. If |TnAz| < 1, then |STnAz| =
| − 1/(TnAz)| > 1 so that ℑ(STnAz) = ℑ(TnAz)|TnAz|2 > ℑ(TnAz) = ℑ(Az) which would contradict
the maximality of ℑ(Az). Hence |TnAz| ≥ 1. If |TnAz| > 1 or |TnAz| = 1 and − 1

2 ≤ ℜTnAz ≤ 0, then

TnAz ∈ D. If |TnAz| = 1 and 0 < ℜTnAz < 1
2 , then STnAz ∈ D.

We complete the proof by showing that if z, w ∈ D, A ∈ Γ, z = Aw, then z = w. As usual we associate A
with the element (

a b
c d

)
of SL2Z. If c = 0, then ad = 1, a = d = ±1 and w = Az = z ± b. Hence b = 0 and w = z. Now suppose that
c ̸= 0. We have (3). Since A−1w = z we also have

ℑz = ℑ(A−1w) =
ℑz

| − cw + a|2
. (4)

Moreover
|cz + d|2 = c2|z|2 + 2cdℜz + d2 ≥ c2|z|2 − |cd|+ d2 ≥ c2 − |cd|+ d2.

Since c ̸= 0 and u2 − u+ 1 has no real roots we have

|cz + d|2 ≥ c2|z|2 − |cd|+ d2 ≥ 1. (5)

Likewise
| − cw + a|2 ≥ c2|w|2 − |ca|+ a2 ≥ 1. (6)

Note that equality could only occur in these last two inequalities if |z| = |w| = 1. By (2) and (5), ℑw ≤ ℑz
and by (4) and (6), ℑz ≤ ℑw, so ℑz = ℑw. But then we have equality in (5) and (6), so |z| = |w|, and hence
|ℜz| = |ℜw|. But on that part of D with |z| = 1 we have ℜz ≤ 0 hence ℜz = ℜw.

Exercises 9.1.

Γ denotes the modular group and S, T are its generators, S(z) = −1/z, T (z) = z + 1. Given a quadratic
form Q(x, y) = ax2 + bxy + cy2 with real coefficients, d = dQ = b2 − 4ac is called the discriminant of Q.

1. (i) Find all elements A of Γ which commute with S.
(ii) Find all elements A of Γ which commute with T .
(iii) Find the smallest n > 0 such that (ST )n = I.
(iv) Determine all A in Γ which leave i fixed.
(v) Determine all A in Γ which leave ρ = e(1/3) fixed.

2. Prove that if A ∈ Γ, and (x, y)T = A(x′, y′)T , then the quadratic form Q′ defined by Q′(x′, y′) = Q(x, y)
satisfies dQ′ = dQ. Two forms related in this way are called equivalent. This relation separates all forms into
equivalence classes. The forms in the same class have the same discriminant and the ranges Q(Z2) coincide.

In the remaining exercises it will be supposed that the quadratic forms have positive coefficients of x2 and y2

and negative discriminant. The associated polynomial Q(z, 1) has two complex roots. The one in H is called
the representative of Q.

3. (i) If d is fixed, prove that there is a bijection between the set of forms with discriminant d and the
members of H.
(ii) Prove that two quadratic forms with discriminant d are equivalent iff their representatives are equivalent
under Γ.

A reduced form is one whose representative lies in the fundamental domain D, the set of z such that either
|z| > 1 and −1/2 ≤ ℜz < 1/2 or |z| = 1 and −1/2 ≤ ℜz ≤ 0. Thus two reduced forms are equivalent iff they
are identical, and moreover each equivalence class contains exactly one reduced form.

4. Prove that Q(x, y) = ax2 + bxy + cy2 is reduced iff either −a < b ≤ a < c or 0 ≤ b ≤ a = c.

In questions 5,6 it is assumed that the quadratic forms have integer coefficients.
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5. Prove that the number of reduced forms with a given discriminant d < 0 is finite. The number of such
classes is called the class number and is denoted by h(d).

6. When d = −3,−4,−7,−8,−11,−15,−19,−20,−23 determine all reduced forms with discriminant d, and
the corresponding class number h(d).

7. (i) Prove that if p ≡ 1 (mod 3), then
(

−3
p

)
L
= 1.

(ii) Let M = {n ∈ N : p|n =⇒ p ≡ 1 (mod 3)}. Prove that if n ∈ M, then x2 + 3 ≡ 0 (mod 4n) is soluble
in x.
(iii) Let n ∈ M. Prove that there are a, B ∈ Z with a > 0 such that B2 + 12 = 4an. Let b = B − 2a,
c = (b2 + 12)/4a. Prove that b2 − 4ac = −12 and a+ b+ c = n.
(iv) Let h(d) be defined as in homework 11. Prove that h(−12) = 2.
(v) Prove that if n ∈ M, then x2 + 3y2 = n is soluble in integers x and y.

8. (i) Prove that if p ≡ 1, 4 (mod 7), then
(

−7
p

)
L
= 1.

(ii) Let N = {n ∈ N : p|n =⇒ p ≡ 1, 4 (mod 7)}. Prove that if n ∈ N , then x2 + 7 ≡ 0 (mod 4n) is soluble
in x.
(iii) Let n ∈ N . Prove that there are a, B ∈ Z with a > 0 such that B2 + 7 = 4an. Let b = B − 2a,
c = (b2 + 7)/4a. Prove that b2 − 4ac = −7 and a+ b+ c = n.
(iv) Recall from homework 11 that h(−7) = 1. Prove that if n ∈ N , then x2 + xy + 2y2 = n is soluble in
integers x and y.
(v) Let n ∈ N . Prove that x2 + 7y2 = 4n is soluble in integers x, y. Moreover prove that x and y are both
even, and thus x2 + 7y2 = n is also soluble in integers x, y.

9.4. Modular functions.

Definition 9.3. Let k ∈ Z. Then f is weakly modular of weight 2k when f is meromorphic on H and satisfies

f(z) = (cz + d)−2kf

(
az + b

cz + d

)
for all

(
a b
c d

)
∈ SL2(Z).

Theorem 9.3.. Let f be meromorphic on H. Then f is weakly modular of weight 2k where k ∈ Z if and
only if

f(z + 1) = f(z),

f(−1/z) = z2kf(z)

for all z ∈ H.

Proof. If f is weakly modular of weight 2k, then at once it must satisfy the above relations. Suppose conversely
that it satisfies them. Then we can apply Theorem 9.1 to obtain f(Az) where A is any member of SL2(Z).
We need to show that the correct factor (cz + d)−2k arises. It suffices to show that if A = S or T , so that
a = 1, b = 1, c = 0, d = 1 or a = 0, b = 1, c = −1, d− 0, and

B =

(
α β
γ δ

)
∈ SL2(Z),

then, for example inductively on the number of terms in Theorem 9.1, either(
(cα+ dγ)z + cβ + dδ

)−2k
f(ABz) = (γz + δ)−2kf(Bz) = f(z)

or (
(cα+ dγ)z + cβ + dδ

)−2k
f(ABz) = (αz + β)−2kf

(
−1

Bz

)
= (αz + β)−2kf

(
−γz − δ

αz + β

)
= f(z).

The first of the above relationships tells us that f is periodic with period 1. Thus we can write f as a
function of

q = e2πiz.
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More precisely we could put |q| = e−2πℑz, arg q = 2π(ℜz − ⌊z⌋). Then z ∈ Z and z satisfying, say, − 1
2 ≤

ℑz < 1
2 is equivalent to 0 < |q| < 1. In other words, regardless of the branch of the logarithm,

f(z) = f
(

log q
2πi

)
= f̃(q)

where f̃ is meromorphic on the punctured disc A = {q : 0 < |q| < 1}. If we can extend f̃ to being meromorphic
(or analytic) at 0, then we can say that f is meromorphic (or analytic) at ∞. More precisely this would mean

that f̃ has a Laurent expansion about 0,

f̃(q) =

∞∑
n=−N

anq
n.

Definition 9.4. A weakly modular function is called a modular function when it is meromorphic at ∞, and

if it is analytic there we write f(∞) = f̃(0). A modular function which is analytic on H̃ = H∪ {∞} is called
a modular form. If such a function is 0 at ∞, then it is called a cusp form.

Thus a modular form of weight 2k is given by a series

f(z) =

∞∑
n=0

anq
n =

∞∑
n=1

ane
2πinz (7)

which converges for all q ∈ D = {q : |q| < 1} and satisfies

f(−1/z) = z2kf(z).

It is a cusp form when a0 = 0. The expansion (7) is called the Fourier expansion of f .

9.5. Lattice functions and modular forms. A lattice Λ can be thought of in various ways. One is that
it is a discrete subgroup of a finite dimensional vector space V over R and there is an R–basis (e1, . . . , en)
of V which is a Z–basis of Λ. Thus when V = C we could suppose that there are ω1, ω2 ∈ C\{0} such that
ℑ(ω1/ω2) > 0 and

Λ(ω1, ω2) = Zω1 ⊕ Zω2,

i.e.

Λ(ω1, ω2) = {m1ω1 +m2ω2 : m1,m2 ∈ Z}.

Let (
a b
c d

)
= A ∈ SL2(Z).

Then

ω′
1 = aω1 + bω2

ω′
2 = cω1 + dω2.

is another basis of Λ(ω1, ω2). Since

ω′
1

ω′
2

=
aω1/ω2 + b

cω1/ω2 + d
(8)

it follows from (2) that ℑ(ω′
1/ω

′
2) > 0 also. Let

M = {(ω1, ω2) ∈ (C \ {0})2 : ℑ(ω1/ω2) > 0}.
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Theorem 9.4. Two elements of M define the same lattice if and only if they are congruent modulo SL2(Z).
Proof. In view of the discussion above it suffices to show that if (ω1, ω2) and (ω′

1, ω
′
2) define the same lattice,

then (8) holds with detA = 1. In fact it suffices to show that (8) holds with detA = ±1 for then the positive
sign follows from (2) and the facts that ℑ(ω1/ω2) > 0 and ℑ(ω′

1/ω
′
2) > 0.

We have ω′ = Aω and ω = A′ω′ where w denotes the column vector (w1, w2)
T and A, A′ ∈ GL2(Z).

Then ω = A′ω′ = A′Aω and since ω1 and ω2 are linearly independent over Z we have A′A = I. Thus
detA′ detA = 1. But detA′, detA ∈ Z. Hence detA = ±1.

Let R denote the set of lattices Λ(ω1, ω2) with (ω1, ω2) ∈ M and suppose that F satisfies

F : R → C.
Let k ∈ Z. Then F is of weight 2k when

F (λΛ) = λ−2kF (Λ)

for every Λ ∈ R and every λ ∈ C̃. Now Λ is invariant under the action of SL2Z. Moreover

λΛ(ω1, ω2) = Λ(λω1, λω2).

Thus
ω2

2kF
(
Λ(ω1, ω2)

)
= F

(
ω−1
2 Λ(ω1, ω2)

)
= F

(
Λ(ω1/ω2, 1)

)
.

Thus there is a function f on H such that

F
(
Λ(ω1, ω2)

)
= ω2

−2kf(ω1/ω2).

Since F is invariant under SL2(Z),

f(z) = (cz + d)−2kf(Az) for all A ∈ SL2(Z), z ∈ H̃.

On the other hand given such a function f we can reverse the process and obtain a lattice function of weight
2k. Thus lattice functions are a fruitful way of creating and identifying modular forms. Perhaps the easiest
way is by considering Eisenstein series

Gk(Λ) =
∑

ω∈Λ(ω1,ω2)\{0}

1

ω2k
=

∑
m,n ̸=0,0

1

(mω1 + nω2)2k
.

The corresponding function on H is

Gk(z) =
∑

m,n ̸=0,0

1

(mz + n)2k
. (9)

By the way the above construction would fail if the exponent 2k were to be replaced by an odd exponent, for
then the function would be identically 0.

Before proceeding further we need to discuss convergence. The following Lemma provides a basis for
sufficiency.

Lemma. Suppose that σ > 2, 0 < v1 < v2 and 0 < u, and H denotes the closed rectangle {z ∈ C : −u ≤
ℜz ≤ u, v1 ≤ ℑz ≤ v2}. Then ∑

(m,n)∈Z2\{(0,0)}

sup
z∈H

1

|mz + n|σ

converges.

Proof. For each pair (m,n) which we sum over,

|mz + n|2 = (mℜz + n)2 + (mℑz)2 ≥ v21m
2

and

|mz + n|2 = |z|2|m+ nz−1|2 ≥ |z|2(nℑ(z−1))2 = n2|z|−2(ℑz)2 ≥ v21n
2

u2 + v22
.

Thus |mz + n|−1 ≪ (max(m,n))−1 uniformly for z ∈ H, and so for any real R > 1∑
(m,n)∈Z2\{(0,0)}

|mz+n|≤R

sup
z∈H

1

|mz + n|σ
≪

∑
n∈Z\{0}
n≪R

|n|−σ +
∑
m,n

0<|m|≤|n|≪R

|n|−σ ≪
∞∑

n=1

1

nσ−1
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Theorem 9.5. Let k ∈ N, k > 1. Then the Eisenstein series Gk(z) given by (9) is a modular form of weight
2k and Gk has the Fourier expansion

Gk(z) = 2ζ(2k) +
22k+1π2k(−1)k

(2k − 1)!

∞∑
n=1

σ2k−1(n)e
2πinz.

Proof. By the Lemma Gk is uniformly and absolutely convergent on H, and each term of the series is analytic
on H. Hence, by a theorem of Weierstrasse Gk is analytic in H, and hence at every point of H.

We have m(z + 1) + n = mz +m+ n = 0 · z + 0 if and only if m = n = 0. Thus

Gk(z + 1) = Gk(z).

Obviously m(−1/z) + n = (−1/z)((−n)z +m), so

Gk(−1/z) = z2kGk(z).

Thus, by Theorem 9.3, Gk is weakly modular. We have to show that Gk is analytic at ∞. We establish this by
exhibiting a Fourier series for Gk that is analytic at q = 0. We start from the partial fraction decomposition

π cotπz =
1

z
+
∑

n=−∞
n ̸=0

(
1

z + n
− 1

n

)
(10)

which is valid for all z ∈ C \ Z and converges locally uniformly and absolutely in that domain. For z ∈ H we
have

π cotπz = πi
e2πiz + 1

e2πiz − 1
= πi

q + 1

q − 1
.

Thus
1

z
+

∞∑
n=−∞
n ̸=0

(
1

z + n
− 1

n

)
= −πi

(
1 + 2

∞∑
r=1

qr

)
.

Differentiating both sides l times gives

(−1)ll!

zl+1
+

∞∑
n=−∞
n ̸=0

(−1)ll!

(z + n)l+1
= −(2πi)l+1

∞∑
r=1

rle2πirz.

Now for m ∈ N, we have z ∈ H if and only if mz ∈ H. Thus

∞∑
m=1

∞∑
n=−∞

(−1)ll!

(mz + n)l+1
= −(2πi)l+1

∞∑
m=1

∞∑
r=1

rle2πirmz = −(2πi)l+1
∞∑

n=1

σl(n)e
2πinz

where
σl(n) =

∑
d|n

dl.

When l is odd, say l = 2k − 1 ≥ 3,

∞∑
m=1

∞∑
n=−∞

(2k − 1)!

(mz + n)2k
= (2πi)2k

∞∑
n=1

σ2k−1(n)e
2πinz.

Moreover
−1∑

m=−∞

∞∑
n=−∞

1

(mz + n)2k
=

∞∑
m=1

∞∑
n=−∞

1

(mz + n)2k
.
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Hence
∞∑

m=−∞
m ̸=0

∞∑
n=−∞

1

(mz + n)2k
=

22k+1π2k(−1)k

(2k − 1)!

∞∑
n=1

σ2k−1(n)e
2πinz.

Adding in the terms with m = 0 (and n ≠ 0) gives an extra 2ζ(2k).

Recall that
ζ(2k) = (−1)k−122k−1π2kB2k/(2k)!. (11)

where Bl is the l–th Bernoulli number, and

Table 1

k Bk

0 1/1 = 1.00000 00000
1 −1/2 = −0.50000 00000
2 1/6 = 0.16666 66667
4 −1/30 = −0.03333 33333
6 1/42 = 0.02380 95238
8 −1/30 = −0.03333 33333

10 5/66 = 0.07575 75758
12 −691/2730 = −0.25311 35531
14 7/6 = 1.16666 66667
16 −3617/510 = −7.09215 68627
18 43867/798 = 54.97117 79449
20 −174611/330 = −529.12424 24242

Thus ζ(4) = π4

90 , ζ(6) =
π6

945 . There are various standard notations. For example

g2(z) = 60G2(z), g3(z) = 140G3(z)

and then it follows that the Fourier expansion of

∆(z) = g2(z)
3 − 27g2(z)

2 (12)

has no constant term. Thus ∆ is a cusp form of weight 12. By multiplying out the series and collecting
together like powers of q it follows that

∆(z) = (2π)12
∞∑

n=1

τ(n)e2πinz

where the τ(n) are integers with τ(1) = 1, τ(2) = −24. This function was first studied by Ramanujan, and
we will come back to it in Chapter 10.

Other standard notation is
Ek(z) = Gk(z)/(2ζ(2k))

and then the Fourier expansion has constant term 1. Moreover, by (11),

22k+1π2k(−1)k

(2k − 1)!2ζ(2k)
=

22k+1π2k(−1)k(2k)!

(2k − 1)!(−1)k−122kπ2kB2k
= − 4k

B2k
.

Thus

Ek(z) = 1− 4k

B2k

∞∑
n=1

σ2k−1(n)e
2πinz.

It should be born in mind that some authors write G2k and E2k for Gk and Ek respectively.

9.6. Zeros and poles of modular functions. For a function f , meromorphic on H̃ and not identically
0 we define, for each w ∈ H, v = vw(f) so that f(z)(z − w)−v is analytic and non–zero at w. vw(f) is called
the order of f at w. If vw(f) is positive, then it is the order of the zero of f at w. Likewise if vw(f) is
negative, then −vw(f) is the order of the pole at w. When f is a modular function of weight 2k and w and
Aw are both finite, then the relationship

f(z) = (cz + d)−2kf(Az)

shows that vw(f) = vAw(f). For points at ∞ we define v∞ to be the order (in q) of f̃(q).
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Theorem 9.6. Let f be a modular function of weight 2k, not identically 0. Then

v∞ + 1
2vi(f) +

1
3vρ(f) +

∑
w∈D∗

vw(f) =
k
6

where ρ = e2πi/3 and D∗ = D \ {i, ρ}.

Proof. We consider
1

2πi

∫
C

f ′(z)

f(z)
dz

where C is, with some provisos, the contour consisting of the horizontal line L from 1
2 + iY to − 1

2 + iY

(where Y > 1), the vertical line segment L− from − 1
2 + iY to ρ, the circular arc C of radius 1, centred at

0 from ρ to −ρ through i and the vertical line segment L+ from −ρ to 1
2 + iY . The provisos are (i) that Y

is chosen so that L avoids any singularity of the integrand, and (ii) if the integrand has a singularity on the
remaining path, then the contour traverses a small detour consisting of a circular arc of small radius centred
at the singularity and oriented so that singularities in D∗ are included in the interior and those not in D∗

are excluded from the interior. The integrand has singularities precisely at the zeros and poles of f and the
residue at such points is the order of f at that point. Thus, by Cauchy’s integral formula,

1

2πi

∫
C

f ′(z)

f(z)
dz =

∑
w∈D∗(Y )

vw(f)

where D∗(Y ) = {z ∈ D∗ : ℑz ≤ Y }.
Since f(z) = f(z + 1) we have

f ′

f
(z) =

f ′

f
(z + 1) (13)

and thus ∫
L−

f ′(z)

f(z)
dz = −

∫
L+

f ′(z)

f(z)
dz

where any possible detours, except any which might occur at ρ and −ρ, are included in the paths. In view of
the relationship (13) such detours will match exactly. We also have

f(z) = z−2kf(−1/z) (14)

so
f ′(z) = −2kz−2k−1f(−1/z)− z−2k−2f ′(−1/z).

Thus
f ′

f
(z) = −2k

z
− f ′

z2f
(−1/z).

Let C− be the subpath of C from ρ to i and C+ the subpath from i to −ρ, with the poviso that we exclude
any possible detours around ρ, i and −ρ. Then∫

C−

f ′

f
(z)dz =

∫
C−

−2k

z
− f ′

z2f
(−1/z)dz

and by the change of variable w = −1/z this is

−2k

(
−2πi

12

)
−
∫
C+

f ′

f
(w)dw.

Thus ∫
C

f ′

f
(z)dz =

2πik

6
.
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There may be detours around ρ, i and −ρ. If f has a zero or pole at ρ, then by there will be one at −ρ of the
same order. Letting the radius of the detour at ρ tend to 0 we pick up the i times the residue times minus
the angle subtended by the paths L− and C at ρ, which is −2π/6. Hence the contribution from ρ and −ρ to
the integral along the path is

−2πivρ(f)/3.

A detour around i likewise will pick up i times the residue times minus the angle subtended by the path C
at i, which is −π. Thus the contribution from i to the integral along the path is

−πivi(f).

It remains to deal with the contribution from L. To summarise so far∫
L

f ′

f
(z)dz +

2πik

6
− 2πivρ(f)/3− πivi(f) = 2πi

∑
w∈D∗(Y )

vw(f).

In the integral along L we make the substitution q = e2πiz. Then L is tranformed into the circle C0 centred at

0 of radius e−2πY and traversed in the clockwise direction. Moreover as f̃(q) = f(z), we have f̃ ′

f̃
(q) dqdz = f ′(z)

f(z) .

Hence ∫
L

f ′

f
(z)dz =

∫
C0

f̃ ′

f̃
(q)dq.

Since f̃(q) is meromorphic at 0 there will be a punctured disc A centred at 0 on which f̃ is analytic. Thus if
Y is large enough C0 ⊂ A. Hence by Cauchy’s integral formula∫

C0

f̃ ′

f̃
(q)dq = −2πiv∞(f).

Moreover ∑
w∈D∗(Y )

vw(f) =
∑
w∈D∗

vw(f).

This completes the proof of the theorem.

When k ∈ Z, let Mk denote the vector space over C of modular forms of weight 2k, and let M0
k denote

the subspace of cusp forms of weight 2k. Let f be a non-cusp member of Mk. If g is another, then for some
scalar c, f − cg will be a cusp form. Thus every non-cusp member of Mk is a linear combination of f and a
cusp form. Thus

dim(Mk \M0
k ) ≤ 1. (15)

Indeed a concomitant argument shows that if M j
k denotes the subspace of f ∈ Mk in which v∞(f) ≥ j +1 in

q, then
dim(M j−1

k \M j
k) ≤ 1. (16)

When k ≥ 2, Gk ∈ Mk but Gk ̸∈ M0
k . Thus

Mk = Gk ⊕M0
k (k ≥ 2). (17)

Let f ∈ Mk, so that f is analytic on H̃. In Theorem 9.6 each vz(f) is non–negative. Hence k ≥ 0. Thus
Mk is empty when k < 0. When k = 1 there is no solution to l + 1

2m + 1
3n = k

6 with l, m, n non–negative.
Hence

M1 = ∅.

When k = 6, we have seen that ∆ is a cusp form of weight 12. Thus v∞(∆) ≥ 1. Hence all other vz(∆) are
0. Thus ∆ does not vanish on H and has a simple zero at ∞. Let k be arbitrary and f ∈ M0

k . Then g = f/∆
has weight 2k − 12 and

vz(g) = vz(f)− vz(∆) =

{
vz(f)− 1 (z = ∞),

vz(f) (z ̸= ∞).
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Thus vz(g) ≥ 0 and is analytic on H̃ and thus belongs to Mk−6. In fact the relationship f → f/∆ give an
isomorphism between the vector spaces M0

k and Mk−6. More generally this relationship gives an isomorphism

between M j+1
k and M j

k−6. We have seen that M0
k is empty when k < 6 or k = 1. Thus dimMk ≤ 1 when

1 ≤ k ≤ 5 and k = 7. We have 1 ∈ M0. Hence

dimM0 = 1.

Also, by (17), when 2 ≤ k ≤ 5 or k = 7,

dimMk = 1.

Theorem 9.7. For convenience define G0(z) = 1. Then
(i) Mk is empty when k < 0 or k = 1.
(ii) when k ≥ 0,

dimMk =

{ ⌊k/6⌋ k ≡ 1 (mod 6),

⌊k/6⌋+ 1 k ̸≡ 1 (mod 6).

(iii) when k ≥ 0 and k ̸= 1,

Mk = CGk ⊕ C∆Gk−6 ⊕+ · · ·+⊕C∆jGk−6j

where

j =

{ ⌊k/6⌋ − 1 k ≡ 1 (mod 6),

⌊k/6⌋ k ̸≡ 1 (mod 6).

Recall that ∆ is a linear combination of G3
2 and G2

3. In fact it can be shown that every Gk is polynomial
in G2 and G3, and indeed that every Mk is spanned by the monomials Gu

2G
v
3 where u and v run over the

solutions to 2u+ 3v = k with u ≥ 0, v ≥ 0.
It can also be shown that

G2(ρ) = 0, G3(i) = 0,

either directly or by utilising Theorem 9.6.
The cusp form ∆ has several remarkable properties. One of them is the product formula below.

Theorem 9.8. Let z ∈ H. Then

∆(z) = (2π)12q
∞∏

n=1

(1− qn)24 (q = e2πiz).

Proof. There is no very simple proof. We know that ∆ ∈ M0
6 , dimM0

6 = 1, and the coefficient of q in ∆ is
(2π)12. Thus it suffices to show that

F (z) = q

∞∏
n=1

(1− qn)24

is of weight 12. Since it is immediate that it is periodic with period 1, it suffices to show that

F (−1/z) = z12F (z) (z ∈ H).

Consider the function

G1(z) =
π2

3
− 8π2

∞∑
n=1

σ(n)qn. (18)

We will show that

G1(z) =
2πi

z
+

1

z2
G1(−1/z) (z ∈ H). (19)
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Then, by logarithmic differentiation,

F ′

F
(z) = 2πi

(
1−

∞∑
n=1

24qn

1− qn

)

= 2πi

(
1− 24

∞∑
m=1

σ(m)qm

)

=
2πi.3

π2
G1(z)

=
6i

π
G1(z)

=
6i

π

(
2πi

z
+

1

z2
G1(−1/z)

)
= −12

z
+

d

dz
logF (−1/z).

Thus F satisfies
z12F (z) = Cf(−1/z)

for some C ∈ C. Since F (−1/i) = F (i) and i12 = 1 we have C = 1.
To complete the proof of the theorem it suffices to show that G1, given by (18), satisfies (19). Following

the proof of Theorem 9.5, with some care as the double series is no longer absolutely convergent, we have

G1(z) = 2ζ(2) +

∞∑
m=−∞
m ̸=0

∞∑
n=−∞

1

(mz + n)2
.

Then

G1(−1/z) = 2ζ(2) + z2
∞∑

m=−∞
m ̸=0

∞∑
n=−∞

1

(m+ nz)2

= 2ζ(2) + z22ζ(2) + z2
∞∑

m=−∞
m ̸=0

∞∑
n=−∞
n ̸=0

1

(m+ nz)2
.

= z22ζ(2) + z2
∞∑

m=−∞

∞∑
n=−∞
n ̸=0

1

(m+ nz)2
.

Thus it suffices to show that L(z) and R(z) converge and

L(z) = −2πi

z
+R(z) (20)

where

L(z) =
∞∑

m=−∞

∞∑
n=−∞
n ̸=0

1

(m+ nz)2

and

R(z) =

∞∑
n=−∞
n ̸=0

∞∑
m=−∞

1

(m+ nz)2
.

Note that the sums are different even though they are only interchanged. Let

S(z) =
∞∑

m=−∞

∞∑
n=−∞

(m,n) ̸=(0,0),(1,0)

1

(m− 1 + nz)(m+ nz)
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and

T (z) =
∞∑

n=−∞

∞∑
m=−∞

(m,n) ̸=(0,0),(0,1)

1

(m− 1 + nz)(m+ nz)
.

We will show below that these series converge. Then the convergence of L follows from the relationship

S(z)− L(z) =
∞∑

m=−∞

∞∑
n=−∞
n ̸=0

1

(m− 1 + nz)(m+ nz)2
+
∑

m ̸=0,1

1

m(m− 1)
.

In the last sum the terms with m > 1 sum to 1 and those with m < 0 sum to −1. Hence the above becomes

S(z)− L(z) =

∞∑
m=−∞

∞∑
n=−∞
n ̸=0

1

(m− 1 + nz)(m+ nz)2
.

Similarly the convergence of R follows from

T (z)−R(z) =

∞∑
n=−∞
n ̸=0

∞∑
m=−∞

1

(m− 1 + nz)(m+ nz)2
+
∑

m ̸=0,1

1

m(m− 1)

=
∞∑

n=−∞
n ̸=0

∞∑
m=−∞

1

(m− 1 + nz)(m+ nz)2
.

These series are absolutely convergent and hence can be interchanged. Thus they are identical. Therefore
not only will the convergence of L(z) and R(z) follow from that of S(z) and T (z) but we will have

L(z)−R(z) = S(z)− T (z).

Thus to prove (20) it suffices to show that S(z) and T (z) converge and

S(z)− T (z) = −2πi

z
(21)

The sum over m in T when n ̸= 0 is

∞∑
m=−∞

(
1

m− 1 + nz
− 1

m+ nz

)
.

The part with m ≥ 0 sums to 1
−1+nz and the part with m ≤ −1 sums to − 1

−1+nz Hence when n ̸= 0 the sum
over m in T is 0. When n = 0 the sum over m is

∞∑
m=2

(
1

m− 1
− 1

m

)
+

−1∑
m=−∞

(
1

m− 1
− 1

m

)
= 1 + 1 = 2.

Hence T (z) converges to 2.
The series S(z) is more complicated. We will complete the proof of the theorem by showing that it

converges to 2− 2πi
z . We have

S(z) =

∞∑
m=−∞

∞∑
n=−∞
n ̸=0

(
1

m− 1 + nz
− 1

m+ nz

)
+

∞∑
m=−∞
m ̸=0,1

(
1

m− 1
− 1

m

)

=
1

z

∞∑
m=−∞

(U((m− 1)/z)− U(m/z)) + 2
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where

U(w) =
∞∑

n=−∞
n ̸=0

(
1

w + n
− 1

n

)
.

For m ̸= 0, by (10),

U(w) = π cotπw − 1

w
.

Clearly

S(z) = 2 +
1

z

(
lim

M ′→−∞
U(M ′/z)− lim

M→∞
U(M/z)

)
and the convergence of S(z) stands or falls on the existence of the limits above. Obviously

lim
M→±∞

U(M/z) = lim
M→±∞

π cotπ(M/z).

Now ℜ2πiM/z = ℜ2πiM(x− iy)/|z|2 = 2πMy/|z|2 and as M → ∞, e−2πiM/z → 0. Thus

π cotπM/z = πi
1 + e−2πiM/z

1− e−2πiM/z
→ πi.

On the other hand, as M → −∞
π cotπM/z → −πi.

This establishes the convergence of S(z) and its evaluation, and completes the proof of the theorem.

Exercises 9.2.

1. Let Ek(z) = Gk(z)/(2ζ(2k)), q = e2πiz. Show that

E2(z) = 1 + 240
∞∑

n=1

σ3(n)q
n,

E3(z) = 1− 540

∞∑
n=1

σ5(n)q
n,

E4(z) = 1 + 480

∞∑
n=1

σ7(n)q
n,

E5(z) = 1− 264

∞∑
n=1

σ9(n)q
n,

E6(z) = 1 +
65520

691

∞∑
n=1

σ11(n)q
n,

2. Prove that σ7(n) = σ3(n) + 120
n∑

m=1

σ3(m)σ3(n−m).

3. Prove that 11σ9(n) = 21σ5(n)− 10σ3(n) + 5040

n−1∑
m=1

σ3(m)σ5(n−m).

4. Prove that 756τ(n) = 65σ11(n)+691σ5(n)−691.252
n−1∑
m=1

σ5(m)σ5(n−m). Deduce Ramanujan’s congruence

τ(n) ≡ σ11(n) (mod 691).


