MATH 504 ANALYSIS IN EUCLIDEAN SPACES, SPRING TERM 2009, PROBLEMS 10

Return by Monday 6th April

1. This is based on the material in $\S 2.7 .1$. Suppose that $f \in S \cap L^{1}(\mathbb{R})$ is given and $u \in C^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ satisfies $u^{\prime \prime}-u=-f$.
(i) Show that $\lim _{|x| \infty} u(x)=\lim _{|x| \infty} u^{\prime}(x)=0$. Hint; the summability of u and f are useful here.
(ii) Show that $\widehat{\left(u^{\prime \prime}\right)}$ exists and equals $-4 \pi^{2} t^{2} \hat{u}$. Hint; consider integration by parts.
(iii) Show that $\left(1+4 \pi^{2} t^{2}\right) \hat{u}=\hat{f}$.
(iv) Deduce that $\left.u=\left(\left(1+4 \pi^{2} t^{2}\right)^{-1} \hat{f}\right)\right)^{-}=\frac{1}{2} e^{-|x|} \circ f=\frac{1}{2} \int_{\mathbb{R}} e^{-|x-y|} f(y) d x$. Hint; homework 9 , question 2 is useful here.
