MATH 504 ANALYSIS IN EUCLIDEAN SPACES, SPRING TERM 2009, PROBLEMS 9

Return by Monday 30th March

1. (Exercise 2.6.5) Prove that if $\hat{f} \in L^{1}(\mathbb{R})$ then

$$
\lim _{u \rightarrow 0+}\left(\exp \left(-2 \pi^{2} t^{2} u\right) \hat{f}(t)\right)^{r}=f(x)
$$

pointwise.
2. (Exercise 2.6.6) Prove that if $u>0$ and

$$
k_{u}(x)=\frac{u}{\pi\left(u^{2}+x^{2}\right)},
$$

then

$$
\hat{h}_{u}(t)=\exp (-2 \pi u|t|) .
$$

Hint: The inverse transform is an elementary integral.
3. (Exercise 2.6.7) Use the previous exercise to prove that

$$
\lim _{u \rightarrow 0+}\left\|\left(\exp \left(-2 \pi^{2} u|t|\right) \hat{f}(t)\right)^{\zeta}-f(x)\right\|_{1}=0
$$

