MATH 504 ANALYSIS IN EUCLIDEAN SPACES, SPRING TERM 2009, PROBLEMS 8

Return by Monday 23rd March

1. (Exercise 2.6.3) Let $L^{1}\left(\mathbb{R}^{+}, x^{-1} d x\right)$ denote the set of functions f defined on the positive real numbers \mathbb{R}^{+}such that

$$
\int_{0}^{\infty}|f(x)| x^{-1} d x<\infty
$$

(i) Show that the convolution product

$$
(f \circ g)(x)=\int_{0}^{\infty} f(x / y) g(y) y^{-1} d y
$$

induces an algebra on $L^{1}\left(\mathbb{R}^{+}, x^{-1} d x\right)$.
(ii) Define the "Mellin transform" formally by

$$
f^{\sharp}(t)=\int_{0}^{\infty} f(x) x^{-2 \pi i t} x^{-1} d x .
$$

Prove that the map

$$
T: f(\cdot) \rightarrow f\left(e^{\cdot}\right)
$$

establishes a $1: 1$, linear, product-preserving transformation from $L^{1}\left(\mathbb{R}^{+}, x^{-1} d x\right)$ onto the convolution algebra on $L^{1}(\mathbb{R})$ and that

$$
f^{\sharp}=\widehat{(T f)} .
$$

2. (Exercise 2.6.8) Let $f \in L^{1}(\mathbb{R})$ and $x \in \mathbb{R}$.
(i) Prove that

$$
\int_{a}^{b} \hat{f}(t) e(x t) d t=(f \circ D)(x)
$$

where

$$
D(u)=\frac{e(b x)-e(a x)}{2 \pi i x}
$$

(ii) Prove that if

$$
\int_{-1}^{1}|f(x+y)-f(y)| \frac{d y}{|y|}<\infty
$$

then

$$
f(x)=\lim _{a \rightarrow-\infty} \int_{a}^{0} \hat{f}(t) e(x t) d t+\lim _{b \rightarrow \infty} \int_{0}^{b} \hat{f}(t) e(x t) d t
$$

