MATH 504 ANALYSIS IN EUCLIDEAN SPACES, SPRING TERM 2009, PROBLEMS 6

Return by Monday 23rd February

1. Suppose that $\left\{u_{n}\right\}$ is uniformly distributed $(\bmod 1)$, and let c be a real number. Put $v_{n}=u_{n}+c$. Show that $\left\{v_{n}\right\}$ is uniformly distributed.
2. Let $\alpha_{n}=\log n-\lfloor\log n\rfloor$
(a) Show that

$$
\limsup _{N \rightarrow \infty} \frac{1}{N} \operatorname{card}\left\{n: 1 \leq n \leq N, \alpha_{n} \in[0,1 / 2]\right\}=\frac{e-e^{1 / 2}}{e-1}
$$

(b) Show that

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \operatorname{card}\left\{n: 1 \leq n \leq N, \alpha_{n} \in[0,1 / 2]\right\}=\frac{e^{1 / 2}-1}{e-1}
$$

(c) Show that

$$
\frac{1}{N} \sum_{n=1}^{N} e(k \log n)=\frac{N^{2 \pi i k}}{2 \pi i k+1}+O\left(|k| \frac{1+\log N}{N}\right)
$$

Hint: Try comparing the sum on the left with the corresponding integral.
(d) Show that the sequence $\left\{\alpha_{n}\right\}$ is not uniformly distributed $(\bmod 1)$.
3. Suppose that the sequence α_{n} satisfies $\lim _{n \rightarrow \infty}\left(\alpha_{n+1}-\alpha_{n}\right)=\beta$. Prove that if $\beta \in$ $\mathbb{R} \backslash \mathbb{Q}$ then α_{n} is uniformly distributed modulo 1 . Hint: Consider $\sum_{m=1}^{n} e\left(h \alpha_{m+1}\right)$.

