MATH 504 ANALYSIS IN EUCLIDEAN SPACES, SPRING TERM 2009, PROBLEMS 4

Return by Monday 9th Febraury

1. §1.5 Exercise 1. Show that there are α, β in $L^{1}\left(S^{1}\right)$ such that $\|\alpha+\beta\|_{1}^{2}+\| \alpha-$ $\beta\left\|_{1}^{2} \neq 2\right\| \alpha\left\|_{1}^{2}+2\right\| \beta \|_{1}^{2}$.
2. §1.5 Exercise 8. Prove that if $f \in L^{1}\left(S^{1}\right)$ and if for each fixed $x \in S^{1}$ the function $g_{x}(y)=y^{-1}(f(x+y)-f(x))$ is also in $L^{1}\left(S^{1}\right)$, then $S_{n}(x)=\sum_{|k| \leq n} \hat{f}(k) e_{k}(x)$ converges to f. Hint: Use the Dirichlet kernel and the Riemann-Lebesgue lemma.
3. $\S 1.5$ Exercise 12. Prove that the operation of convolution on $L^{1}\left(S^{1}\right)$ does not have an identity element. Hint: The Riemann-Lebesgue Lemma is useful here.
