MATH 504 ANALYSIS IN EUCLIDEAN SPACES, SPRING TERM 2009, PROBLEMS 3

Return by Monday 2nd Febraury

1. Let the polynomials $B_{p}(x)$ for $k \in \mathbb{N}$ be defined on \mathbb{R} by $B_{1}(x)=x-\frac{1}{2}, B_{p+1}(x)=$ $\int_{0}^{x} B_{p}(y) d y-\int_{0}^{1}(1-y) B_{p}(y) d y$ and let $\hat{B}_{p}(k)$ denote the Fourier coefficient (relative to the family $e(k x)$ on $\left.L^{2}\left(S_{1}\right)\right)$.
(i) Prove that for $p>1$ we have $B_{p}(1)=B_{p}(0)$ and deduce that B_{p} restricted to \mathbb{R} / \mathbb{Z} is continuous.
(ii) Prove that $\hat{B}_{P}(0)=0$ and $\hat{B}_{p}(k)=-(2 \pi i k)^{-p}$ when $k \in \mathbb{Z} \backslash\{0\}$
(iii) Prove that when p is even, then $\sum_{k=1}^{\infty} k^{-p}=2^{p-1} \pi^{P}(-1)^{p / 2-1} B_{p}(0)$.
(iv) Prove that $B_{2}(x)=\frac{1}{2} x^{2}-\frac{1}{2} x+\frac{1}{12}, B_{4}(x)=\frac{1}{24} x^{4}-\frac{1}{12} x^{3}+\frac{1}{24} x^{2}-\frac{1}{720}$ and that generally B_{p} is a polynomial of degree p with rational coefficients.
(v) Prove that $\zeta(2)=\frac{\pi^{2}}{6}$ and that $\zeta(4)=\frac{\pi^{4}}{90}$.
2.In the notation of the previous question, B_{1} is the most interesting of the functions since it is not continuous on \mathbb{R} / \mathbb{Z}. It has a jump discontinuity at 0 . Apart from the redefinition at 0 it coincides on $[0,1)$ with the sawtooth function $s(x)$ defined by $s(0)=0, s(x)=x-\frac{1}{2}$ when $0<x<1$ and otherwise by periodicity with period 1 . Let $E_{K}(x)=s(x)+\sum_{0<|k| \leq K} \frac{e(k x)}{2 \pi i k}$.
(i) Prove that $E_{k}(x)$ is an odd function of x.
(ii) Prove that if $x \notin \mathbb{Z}$, then $E_{K}^{\prime}(x)=1+D_{K}(x)$ (the Dirichlet kernel).
(iii) Prove that if $0<x<1$, then $E_{k}(x)=E_{k}(x)-E_{k}\left(\frac{1}{2}\right)=\int_{\frac{1}{2}}^{x} D_{K}(y) d y$.
(iv) Prove that

$$
\int_{\frac{1}{2}}^{x} D_{K}(y) d y=\left[\frac{1-\cos (\pi(2 K+1) y)}{(2 K+1) \pi \sin \pi y}\right]_{1 / 2}^{x}+\int_{1 / 2}^{x} \frac{1-\cos (\pi(2 K+1) y)}{(2 K+1) \sin ^{2} \pi y} \cos \pi y d y
$$

(v) Prove that if $0<x<1$, then $\left|E_{k}(x)\right| \leq \frac{2}{(2 K+1) \pi \sin \pi x}$.
(vi) Prove that for all $x,\left|E_{k}(x)\right| \leq \frac{1}{2}$. The facts that E_{k} is odd and that when $0<x \leq \frac{1}{2}$ we have $2 x \leq \sin \pi x \leq \pi x$ are useful here.
(vii) Prove that $-\sum_{0<|k| \leq K} \frac{e(k x)}{2 \pi i k}$ converges to $s(x)$.
(viii) Prove that $\left\|E_{K}\right\|_{2}=O\left(K^{-1 / 2}\right)$ (relative to $L^{2}(\mathbb{R} / \mathbb{Z})$).

