MATH 504 ANALYSIS IN EUCLIDEAN SPACES, SPRING TERM 2009, PROBLEMS 3

Return by Monday 2nd Febraury

1. Let the polynomials $B_p(x)$ for $k \in \mathbb{N}$ be defined on \mathbb{R} by $B_1(x) = x - \frac{1}{2}, B_{p+1}(x) =$ $\int_0^x B_p(y) dy - \int_0^1 (1-y) B_p(y) dy$ and let $\hat{B}_p(k)$ denote the Fourier coefficient (relative to the family e(kx) on $L^2(S_1)$).

(i) Prove that for p > 1 we have $B_p(1) = B_p(0)$ and deduce that B_p restricted to \mathbb{R}/\mathbb{Z} is continuous.

(ii) Prove that $\hat{B}_P(0) = 0$ and $\hat{B}_p(k) = -(2\pi i k)^{-p}$ when $k \in \mathbb{Z} \setminus \{0\}$ (iii) Prove that when p is even, then $\sum_{k=1}^{\infty} k^{-p} = 2^{p-1} \pi^P (-1)^{p/2-1} B_p(0)$. (iv) Prove that $B_2(x) = \frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{12}$, $B_4(x) = \frac{1}{24}x^4 - \frac{1}{12}x^3 + \frac{1}{24}x^2 - \frac{1}{720}$ and that generally B_p is a polynomial of degree p with rational coefficients. (v) Prove that $\zeta(2) = \frac{\pi^2}{6}$ and that $\zeta(4) = \frac{\pi^4}{90}$.

2. In the notation of the previous question, B_1 is the most interesting of the functions since it is not continuous on \mathbb{R}/\mathbb{Z} . It has a jump discontinuity at 0. Apart from the redefinition at 0 it coincides on [0, 1) with the sawtooth function s(x) defined by s(0) = 0, $s(x) = x - \frac{1}{2}$ when 0 < x < 1 and otherwise by periodicity with period 1. Let $E_K(x) = s(x) + \sum_{0 < |k| \le K} \frac{e(kx)}{2\pi i k}$.

(i) Prove that $E_k(x)$ is an odd function of x.

(ii) Prove that if $x \notin \mathbb{Z}$, then $E'_K(x) = 1 + D_K(x)$ (the Dirichlet kernel).

(iii) Prove that if 0 < x < 1, then $E_k(x) = E_k(x) - E_k(\frac{1}{2}) = \int_{\frac{1}{2}}^x D_K(y) dy$.

(iv) Prove that

$$\int_{\frac{1}{2}}^{x} D_{K}(y) dy = \left[\frac{1 - \cos(\pi(2K+1)y)}{(2K+1)\pi\sin\pi y}\right]_{1/2}^{x} + \int_{1/2}^{x} \frac{1 - \cos(\pi(2K+1)y)}{(2K+1)\sin^{2}\pi y}\cos\pi y dy.$$

(v) Prove that if 0 < x < 1, then $|E_k(x)| \le \frac{2}{(2K+1)\pi \sin \pi x}$.

(vi) Prove that for all x, $|E_k(x)| \leq \frac{1}{2}$. The facts that E_k is odd and that when $0 < x \leq \frac{1}{2}$ we have $2x \leq \sin \pi x \leq \pi x$ are useful here.

(vii) Prove that $-\sum_{0 < |k| \le K} \frac{e(kx)}{2\pi i k}$ converges to s(x). (viii) Prove that $||E_K||_2 = O(K^{-1/2})$ (relative to $L^2(\mathbb{R}/\mathbb{Z})$).