MATH 504 ANALYSIS IN EUCLIDEAN SPACES, SPRING TERM 2009, PROBLEMS 2

Return by Monday 26th January

These exercises are essentially the same as in the text, so I have included a cross reference.

1. §1.4. Exercise 5. Prove that if $\left\{z_{n}\right\}$ is a sequence of complex numbers such that $\lim _{n \rightarrow \infty} z_{n}=z$, then $\lim _{n \rightarrow \infty} \frac{1}{n}\left(z_{1}+\cdots+z_{n}\right)=z$. Give an example in which the second limit exists but the first does not.
2. §1.4. Exercise 8. Suppose that $f \in \mathcal{C}\left(S^{1}\right)$ and $0 \leq r<1$. Prove that

$$
\sum_{n} \hat{f}(n) r^{|n|} e(n x)=\int_{0}^{1} \frac{1-r^{2}}{1-2 r \cos (2 \pi(x-y))+r^{2}} f(y) d y
$$

3. §1.5. Exercises 4 and 5. Find a function f in $L^{1}[0,1]$ which is not in $L^{2}[0,1]$, and a function g in $L^{2}(\mathbb{R})$ which is not in $L^{1}(\mathbb{R})$.
