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® A major consideration in assessing factorisation and

primality testing algorithms is the ability to judge and
compare possible run times.
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® A major consideration in assessing factorisation and
primality testing algorithms is the ability to judge and
compare possible run times.

® Underpinning this is some knowledge of the growth
patterns of common arithmetic functions and a familiarity
with the basic techniques used to elucidate the way in
which primes are distributed under various constraints.

® |t is convenient to make the following definition.

Definition 1

Let A denote the set of arithmetical functions, that is the
functions defined by

A={f:N— C}.

Of course the range of any particular function might well
be a subset of C, such as R or Z.
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® There are quite a number of important arithmetical

functions. Some examples are
Definition 2 (The divisor function)

The number of positive divisors of n.

d(n)=) 1.
m|n

Definition 3 (The Mobius function)
This is a more peculiar function. It is defined by

if nis a product of k distinct primes,

(1"
pu(n) = . . . ,
0 if there is a prime p such that p“|n.



® |t is also convenient to introduce three very boring
functions.

1(n) =1 for every n.

N(n) = n.
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® Two other functions which have interesting structures but
which we will say less about at this stage are

Definition 7 (The primitive character modulo 4)

We define o

(1) 24n,
0 2|n.

xi(n) =
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® Two other functions which have interesting structures but
which we will say less about at this stage are

Definition 7 (The primitive character modulo 4)

We define o

(1) 24n,
0 2|n.

xi(n) =

® Similar functions we have already met are Euler's function
¢, the Legendre symbol and its generalization the Jacobi

symbol ;
(E)J'
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Introduction We define
(-7 2tn
x1(n) = 7
0 2|n.

® Similar functions we have already met are Euler's function
¢, the Legendre symbol and its generalization the Jacobi

symbol ;
(m)J ’

® Here we think of it as a function of n, keeping m fixed,
but we could also think of it as a function of m keeping n

fixed.



® A function of lesser importance in factorisation routines.

Let r(n) be the number of solutions to x> 4 y? = n.
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® A function of lesser importance in factorisation routines.
Definition 8 (Sums of two squares)

Let r(n) be the number of solutions to x? 4 y2 = n.

® Example. It satisfies 1 = 0% 4 (£1)? = (£1)? + 02, so
r(1) =4, r(3) =r(6) =r(7) =0, r(9) =4,
65 = (£1)% + (£8)? = (£4)? + (£7)? so r(65) = 16.
® Eachof d, ¢, u, e, 1, N, x1, (;)J is multiplicative.
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® A function of lesser importance in factorisation routines.
Definition 8 (Sums of two squares)

Let r(n) be the number of solutions to x? 4 y2 = n.

® Example. It satisfies 1 = 0% 4 (£1)? = (£1)? + 02, so
r(1) =4, r(3) =r(6) =r(7) =0, r(9) =4,
65 = (£1)% + (£8)? = (£4)? + (£7)? so r(65) = 16.
® Eachof d, ¢, u, e, 1, N, x1, (E)J is multiplicative.
® Here is a reminder of the definition.

Definition 9

An arithmetical function f which is not identically 0 is
multiplicative when it satisfies

f(mn) = f(m)f(n) (1.1)

whenever (m, n) = 1. Let M denote the set of multiplicative
functions. If (1.1) holds for all m and n, then we say that f is
totally multiplicative.



® The function r(n) is not multiplicative, since r(65) = 16
but r(5) = r(13) = 8.
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e ® The function r(n) is not multiplicative, since r(65) = 16

A(r:i:;:_:trifal but r(5) = r(13) = 8.
:“':t':f ® Indeed the fact that r(1) # 1 would contradict the next
Vaughan. theorem.

® However it is true that r(n)/4 is multiplicative, but this is
a little trickier to prove.

Theorem 10
Suppose that f € M. Then f(1) = 1.
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a little trickier to prove.
Theorem 10

Suppose that f € M. Then f(1) = 1.

® Proof. Since f is not identically 0 there is an n such that
f(n) #0. Hence f(n) = f(n x 1) = f(n)f(1), and the

conclusion follows.
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Theorem 10

Suppose that f € M. Then f(1) = 1.

® Proof. Since f is not identically 0 there is an n such that
f(n) #0. Hence f(n) = f(n x 1) = f(n)f(1), and the

conclusion follows.

® |t is pretty obvious that e, 1 and N are in M.
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® The function r(n) is not multiplicative, since r(65) = 16
but r(5) = r(13) = 8.

® Indeed the fact that r(1) # 1 would contradict the next
theorem.

® However it is true that r(n)/4 is multiplicative, but this is
a little trickier to prove.
Theorem 10
Suppose that f € M. Then f(1) = 1.

® Proof. Since f is not identically 0 there is an n such that
f(n) #0. Hence f(n) = f(n x 1) = f(n)f(1), and the
conclusion follows.

® |t is pretty obvious that e, 1 and N are in M.

® Euler's function and the Legendre and Jacobi symbols we
already dealt with.
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A(r:i::::tricgal but r(5) = r(13) = 8.
® Indeed the fact that r(1) # 1 would contradict the next
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Introduction ® However it is true that r(n)/4 is multiplicative, but this is
a little trickier to prove.
Theorem 10

Suppose that f € M. Then f(1) = 1.

® Proof. Since f is not identically 0 there is an n such that
f(n) #0. Hence f(n) = f(n x 1) = f(n)f(1), and the
conclusion follows.

® |t is pretty obvious that e, 1 and N are in M.

® Euler's function and the Legendre and Jacobi symbols we
already dealt with.

® That leaves d and p.



® |t is actually quite easy to show

We have € M.
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® |t is actually quite easy to show

We have € M.

® Proof. Suppose that (m,n) = 1.
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® |t is actually quite easy to show

We have € M.

® Proof. Suppose that (m, n) = 1.

e If p2|mn, then p2|m or p?|n, so pu(mn) = 0 = p(m)u(n).
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® Proof. Suppose that (m, n) = 1.
e If p2|mn, then p2|m or p?|n, so pu(mn) = 0 = p(m)u(n).
o If

m=pi...px, n=py...p

with the p,-,pj’- distinct, then

p(mn) = (=1)**" = (=1)"(~=1)" = p(m)u(n).



® The following is very useful.

Suppose the f € M, g € M and h is defined for each n by

h(n) = f(m)g(n/m).

m|n
Then h € M.
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Then h € M.
® Proof. Suppose (n1, ny) = 1.
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Then h € M.
® Proof. Suppose (n1, ny) = 1.

® Then a typical divisor m of nyny is uniquely of the form
mymy with my|n; and my|n;.

® Hence

h(niny) Z Z f(mim2)g(nin2/(mimyz))

m1|n1 ma|n2

Z f(m1)g(ny/m) Z f(my)g(na/my).

m1|n1 m2|”2



® This enables us to establish an interesting property of the
Mobius function.

We have

S u(m) = e(n).

m|n
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® This enables us to establish an interesting property of the
Mobius function.

Theorem 13
We have
S~ u(m) = e(n).
m|n

® Proof. By the definition of 1 the sum here is

> u(m)1(n/m)
m|n

and so by the previous theorem it is in M.



Factorizati . . . .
and Primality ® This enables us to establish an interesting property of the
Testing

Chapter 0 Mobius function.
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Robert C.

Veugien We have

Introduction E lu’(m =
m|n

® Proof. By the definition of 1 the sum here is
> i/

and so by the previous theorem it is in M.
® Moreover if k > 1, then

> u(m) =p(1)+p(p) =1-1=0
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® Theorem 12 suggests a way of defining new functions.

Definition 14

Given two arithmetical functions f and g we define the
Dirichlet convolution f % g to be the function defined by

(fFxg)(n Zf g(n/m).

® Note that this operation is commutative because

fxg(n Zf g(n/m) = Zg(n/m)f(m)
m|n
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® Theorem 12 suggests a way of defining new functions.

Definition 14

Given two arithmetical functions f and g we define the
Dirichlet convolution f % g to be the function defined by

(fFxg)(n Zf g(n/m).

® Note that this operation is commutative because

fxg(n Zf g(n/m) = Zg(n/m)f(m)
m|n

® and the mapping m <> n/m is a bijection.
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® Theorem 12 suggests a way of defining new functions.

Definition 14

Given two arithmetical functions f and g we define the
Dirichlet convolution f % g to be the function defined by

(fFxg)(n Zf g(n/m).

® Note that this operation is commutative because

fxg(n Zf g(n/m) = Zg(n/m)f(m
m|n

® and the mapping m <> n/m is a bijection.
® |t is also quite easy to see that the relation is associative

(Fxg)xh="fx(gxh).
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® To see that Dirichlet convolution is associative
(Fxg)xh="Ffx(gx*h)

write the left hand side as

S D f(he(m/1) | h(n/m)

mln \ Ilm
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write the left hand side as

S D f(he(m/1) | h(n/m)

mln \ Ilm

Dirichlet
Convolution

® and interchange the order of summation and replace m by
kl, so that kl|n, i.e I|n and k|n/I.
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write the left hand side as

S D f(he(m/1) | h(n/m)

mln \ Ilm

Dirichlet
Convolution

® and interchange the order of summation and replace m by
kl, so that kl|n, i.e I|n and k|n/I.

® Thus the above is

Zf S g(k)h((n/1)/K) = = (g % h)(n).

Iln kin/l



® Dirichlet convolution has some interesting properties.
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® Dirichlet convolution has some interesting properties.
o1l fxe=exf=fforany f € A, so e is really acting as

a unit.
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® Dirichlet convolution has some interesting properties.

o1l fxe=exf=fforany f € A, so e is really acting as
a unit.

® 2 uxl=1x%pu=e, so puis the inverse of 1, and vice

Versa.
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Dirichlet convolution has some interesting properties.

1. fxe=exf =1fforany f € A, so e is really acting as
a unit.

2. ux1=1xp =e, so pis the inverse of 1, and vice
versa.

3. Theorem 12 tells us that if f € M and g € M, then
fxge M.
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® 2 uxl=1x%pu=e, so puis the inverse of 1, and vice
y versa.
Dlrlchlet-
Convelution ® 3. Theorem 12 tells us that if f € M and g € M, then
fxge M.
® 4. The formula (Theorem 3.2)

>_o(m)=n
m|n

says that ¢ x 1 = N.
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Dirichlet convolution has some interesting properties.

1. fxe=exf =1fforany f € A, so e is really acting as
a unit.

2. ux1=1xp =e, so pis the inverse of 1, and vice
versa.

3. Theorem 12 tells us that if f € M and g € M, then
frgeM.

4. The formula (Theorem 3.2)
>_o(m)=n
m|n

says that ¢ x 1 = N.
5. d=1x1,sod¢c M. Hence
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Dirichlet
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Dirichlet convolution has some interesting properties.

1. fxe=exf =1fforany f € A, so e is really acting as
a unit.

2. ux1=1xp =e, so pis the inverse of 1, and vice
versa.

3. Theorem 12 tells us that if f € M and g € M, then
frgeM.

4. The formula (Theorem 3.2)
>_o(m)=n
m|n

says that ¢ x 1 = N.
5. d=1x%1, sod e M. Hence
6. d(pX) = k+1and d(p*...pk) = (ki +1)...(k +1).



® The Mobius inversion formula takes on various forms.
Suppose that f € A and g =fx1. Then f = gx* .
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® The Mobius inversion formula takes on various forms.
Suppose that f € A and g =fx1. Then f = gx* .
® Proof. We have

gxpu=(Ff«D)xp=Ffx1xp)=~fxe=".
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® The Mobius inversion formula takes on various forms.
Theorem 15 (Mobius inversion |)
Suppose that f € A and g =fx1. Then f = gx* .
® Proof. We have
gxu=(FxD)xpu=Ffx1xpu)=Ffxe="r.

® Here is another form.
Theorem 16 (Mobius inversion II)

Suppose that g € A and f = g * j, then g = f x 1.
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® The Mobius inversion formula takes on various forms.
Theorem 15 (Mobius inversion |)

Suppose that f € A and g =fx1. Then f = gx* .
® Proof. We have
gxu=(FxD)xpu=Ffx1xpu)=Ffxe="r.
® Here is another form.

Theorem 16 (Mobius inversion II)

Suppose that g € A and f = g * j, then g = f x 1.

® The proof is similar.



® Here is an application

We have ¢ = u* N and ¢ € M. Moreover

qb(n):nZ@:nH

1
(-5)
m|n pln

p
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® Here is an application

Theorem 17
We have ¢ = u* N and ¢ € M. Moreover

¢(n):n%;“(m’”):nﬂ<1—;>

pln

® Proof. We already saw that N = ¢ x 1. Hence
d=Nxpu=pxN.
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® Here is an application

Theorem 17
We have ¢ = u* N and ¢ € M. Moreover

¢(n):n%;“(m’"):nﬂ<1—;>

pln

® Proof. We already saw that N = ¢ x 1. Hence
d=Nxpu=pxN.

® The final part of the theorem follows from the
multiplicative property of u(m)/m.
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We have ¢ = u* N and ¢ € M. Moreover
Dirichlet m 1
Conf/oleution ¢(n) = n Z M = nH 1 — —
m p
mn pln

® Proof. We already saw that N = ¢ x 1. Hence
d=Nxpu=pxN.

® The final part of the theorem follows from the
multiplicative property of u(m)/m.

® |t also follows that ¢ € M, and gives new proofs of
Corollary 3.5 and Theorem 3.7.



® There is a large class of arithmetical functions which has
an interesting structure.

Let D= {f € A:f(1) #0}. Then (D,x) is an abelian group.
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® There is a large class of arithmetical functions which has
an interesting structure.

Theorem 18
Let D= {f € A:f(1) #0}. Then (D,x) is an abelian group.

® Proof. Of course e is the unit, and closure is obvious.
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® There is a large class of arithmetical functions which has
an interesting structure.

Theorem 18
Let D= {f € A:f(1) #0}. Then (D,x) is an abelian group.

® Proof. Of course e is the unit, and closure is obvious.

® \We already checked commutativity and associativity.
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® There is a large class of arithmetical functions which has
an interesting structure.

Theorem 18
Let D= {f € A:f(1) #0}. Then (D,x) is an abelian group.

® Proof. Of course e is the unit, and closure is obvious.
® \We already checked commutativity and associativity.

® |t remains, given f € D, to construct an inverse.
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® There is a large class of arithmetical functions which has
an interesting structure.

Theorem 18
Let D= {f € A:f(1) #0}. Then (D,x) is an abelian group.

Proof. Of course e is the unit, and closure is obvious.

We already checked commutativity and associativity.

® |t remains, given f € D, to construct an inverse.

Define g iteratively by
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® There is a large class of arithmetical functions which has
an interesting structure.

Theorem 18
Let D= {f € A:f(1) #0}. Then (D,x) is an abelian group.

Proof. Of course e is the unit, and closure is obvious.

We already checked commutativity and associativity.

® |t remains, given f € D, to construct an inverse.

Define g iteratively by

It is clear that f x g = e.



® One of the most powerful techniques we have is to take an
average.
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® One of the most powerful techniques we have is to take an
average.

® Example. Suppose we have an arithmetical function f and
we would like to know that is it often non-zero.
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resting average.
Avithmetica ® Example. Suppose we have an arithmetical function f and
Robert C we would like to know that is it often non-zero.
Vaughan ® |f we could show, for example, that for each large X we
have
> f(n)? > G X33
n<X
il and

Functions

1f(n)| < GXY3 (n < X),

where C; and C, are positive constants,
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Functions

® One of the most powerful techniques we have is to take an
average.

® Example. Suppose we have an arithmetical function f and
we would like to know that is it often non-zero.

® |f we could show, for example, that for each large X we

have
> f(n)? > G X33
n<X
and
1£(n)] < GXY3 (n<X),
where C; and C, are positive constants,
® then it follows that

GX*P <3 F(n)? < (GXYP) card{n < X : £(n) # 0}
n<X



Factorization ® One of the most powerful techniques we have is to take an
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resting average.
Avithmetica ® Example. Suppose we have an arithmetical function f and
Robert C we would like to know that is it often non-zero.
Vaughan ® |f we could show, for example, that for each large X we
have
> f(n)? > G X33
n<X
il and

Functions

1f(n)| < GXY3 (n < X),

where C; and C, are positive constants,
® then it follows that

GX*P <3 F(n)? < (GXYP) card{n < X : £(n) # 0}
n<X

® and so

card{n < X : f(n) # 0} > C1 G, 2X.
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® A more sophisticated version of this would be that if one
could show that

Z (f(n) — C3n1/3)2 < C4X4/3,
X<n<2X
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could show that

Z (f(n) — C3n1/3)2 < C4X4/3,
Averages of X<n<2X

Arithmetical
Functions

e then it would follow that for most n the function f(n) is
about n'/3,
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could show that
2
E (f(n) - C3n1/3) < C4X4/3,

Averages of X<n<2X
Arithmetical -

Functions

® then it would follow that for most n the function f(n) is
about n'/3.

® This technique has been used to show that “almost all”
even numbers are the sum of two primes.
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® We need some notation which avoids the continual use of
G, G, . .., etc., to denote unspecified constants.

® Given functions f and g defined on some domain X with
g(x) >0 for all x € X we write

f(x) = O(g(x)) (3.2)
to mean that for some constant C and all x € X
[F(x)| < Cg(x).
® We also use f(x) = o(g(x)) to mean that if there is a

limiting operation, like x — oo, then

f(x)
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We need some notation which avoids the continual use of
G, G, . .., etc., to denote unspecified constants.

Given functions f and g defined on some domain X with
g(x) >0 for all x € X we write

f(x) = O(g(x)) (3.2)
to mean that for some constant C and all x ¢ X
If(x)| < Cg(x).

We also use f(x) = o(g(x)) to mean that if there is a
limiting operation, like x — oo, then

f

fx) —0

g(x)

and f(x) ~ g(x) to mean % — 1.
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We need some notation which avoids the continual use of
G, G, . .., etc., to denote unspecified constants.

Given functions f and g defined on some domain X with
g(x) >0 for all x € X we write

f(x) = O(g(x)) (3.2)

to mean that for some constant C and all x ¢ X

[F(x)] < Cg(x).

We also use f(x) = o(g(x)) to mean that if there is a
limiting operation, like x — oo, then

),

g(x)
and f(x) ~ g(x) to mean g%xg — 1.
The symbol O was introduced by Bachmann in 1894, and
the symbol o by Landau in 1909.
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We need some notation which avoids the continual use of
G, G, . .., etc., to denote unspecified constants.

Given functions f and g defined on some domain X with
g(x) >0 for all x € X we write

f(x) = O(g(x)) (3.2)

to mean that for some constant C and all x ¢ X

[F(x)| < Cg(x).
We also use f(x) = o(g(x)) to mean that if there is a
limiting operation, like x — oo, then

f(x)
20 7 °

and f(x) ~ g(x) to mean g%xg — 1.

The symbol O was introduced by Bachmann in 1894, and
the symbol o by Landau in 1909.

The O-symbol can be a bit clumsy for complicated
expressions and we will often instead use the Vinogradov
symbols, which I. M. Vinogradov introduced about 1934.



® Thus we will use

f<g
to mean f = O(g).

(3.3)
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® Thus we will use
f<g (3.3)

to mean f = O(g).

® This also has the advantage that we can write strings of
inequalities in the form

h<Khghk....
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® Thus we will use

to mean f = O(g).

f<g

(3.3)

® This also has the advantage that we can write strings of
inequalities in the form

® Also if f is also non-negative we may use

to mean (3.3).

h<Khghk....

g>f



® Qur first theorem, due to Gauss, is on averages of r(n).
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® Our first theorem, due to Gauss, is on averages of r(n).

® The proof illustrates a rather general principle.

Theorem 19 (Gauss)

Let X > 1 and G(X) denote the number of lattice points in
the disc centre O of radius \/7( i.e. the number of ordered
pairs of integers x, y with x> + y?> < X. Then

G(X)=>_r(n) and G(X) = nX + O(X*/?).

n<X
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® Our first theorem, due to Gauss, is on averages of r(n).

® The proof illustrates a rather general principle.

Theorem 19 (Gauss)

Let X > 1 and G(X) denote the number of lattice points in

the disc centre O of radius \/7( i.e. the number of ordered
pairs of integers x, y with x> + y> < X. Then

G(X)=>_r(n) and G(X) = nX + O(X*/?).
n<X

° Let E(X) = G(X) —X.
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® Our first theorem, due to Gauss, is on averages of r(n).

® The proof illustrates a rather general principle.
Theorem 19 (Gauss)

Let X > 1 and G(X) denote the number of lattice points in

the disc centre O of radius \/Y i.e. the number of ordered
pairs of integers x, y with x> + y> < X. Then

G(X)=>_r(n) and G(X) = nX + O(X*/?).
n<X

° Let E(X) = G(X) —X.

® The question of the actual size of E(X) is one of the
classic problems of analytic number theory.
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® Theorem 19(Gauss). Let X > 1 and G(X) denote the
number of lattice points in the disc centre O of radius vX.
Then G(X) = X + O(X1/?).
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an;:gi{g;:ty number of lattice points in the disc centre O of radius v/ X.
A;is:?tie;incsal Then G(X) =nX + O(X1/2).
S ® To prove the theorem we associate with each lattice point
Vaughan (x,y) the unit square S(x,y) = [x,x+1) X [y,y + 1) and

this gives a partition of the plane.
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® Theorem 19(Gauss). Let X > 1 and G(X) denote the
number of lattice points in the disc centre 0 of radius v/X.
Then G(X) = X + O(X1/?).

® To prove the theorem we associate with each lattice point
(x,y) the unit square S(x,y) = [x,x+1) X [y,y + 1) and
this gives a partition of the plane.

® The squares with X2 + y2 < X are contained in the disc
centred at 0 of radius VX + /2 (apply Pythagorus's
theorem).
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Theorem 19(Gauss). Let X > 1 and G(X) denote the
number of lattice points in the disc centre 0 of radius v/X.
Then G(X) = X + O(X1/?).

To prove the theorem we associate with each lattice point
(x,y) the unit square S(x,y) = [x,x+1) X [y,y + 1) and
this gives a partition of the plane.

The squares with X2 + y2 < X are contained in the disc
centred at 0 of radius VX + /2 (apply Pythagorus's
theorem).

On the other hand their union contains the disc centered

at 0 of radius VX — /2.
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Theorem 19(Gauss). Let X > 1 and G(X) denote the
number of lattice points in the disc centre 0 of radius v/X.
Then G(X) = X + O(X1/?).

To prove the theorem we associate with each lattice point
(x,y) the unit square S(x,y) = [x,x+1) X [y,y + 1) and
this gives a partition of the plane.

The squares with X2 + y2 < X are contained in the disc
centred at 0 of radius VX + /2 (apply Pythagorus's
theorem).

On the other hand their union contains the disc centered
at 0 of radius VX — /2.

Moreover their area is G(X) and it lies between the areas
of the two discs, so

(VX = V2)? < G(X) < 7(VX + V2)?,
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Theorem 19(Gauss). Let X > 1 and G(X) denote the
number of lattice points in the disc centre 0 of radius v/X.
Then G(X) = X + O(X1/?).

To prove the theorem we associate with each lattice point
(x,y) the unit square S(x,y) = [x,x+1) X [y,y + 1) and
this gives a partition of the plane.

The squares with X2 + y2 < X are contained in the disc
centred at 0 of radius VX + /2 (apply Pythagorus's
theorem).

On the other hand their union contains the disc centered

at 0 of radius VX — /2.

Moreover their area is G(X) and it lies between the areas
of the two discs, so

(VX = V2)? < G(X) < 7(VX + V2)?,

X —m2V2VX 42 < G(X) < 71X + m2vV/2V X 4 2,
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Theorem 19(Gauss). Let X > 1 and G(X) denote the
number of lattice points in the disc centre 0 of radius v/X.
Then G(X) = X + O(X1/?).

To prove the theorem we associate with each lattice point
(x,y) the unit square S(x,y) = [x,x+1) X [y,y + 1) and
this gives a partition of the plane.

The squares with X2 + y2 < X are contained in the disc
centred at 0 of radius VX + /2 (apply Pythagorus's
theorem).

On the other hand their union contains the disc centered

at 0 of radius VX — /2.

Moreover their area is G(X) and it lies between the areas
of the two discs, so

(VX = V2)? < G(X) < 7(VX + V2)?,
X —m2V2VX 42 < G(X) < 71X + m2vV/2V X 4 2,
Hence |G(X) — 7X| < m2v2VX + 31 < VX.
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® Theorem 19(Gauss). Let X > 1 and G(X) denote the
number of lattice points in the disc centre 0 of radius v X.
Then G(X) = X + O(X1/?).
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one has some finite convex region in the plane and one
Averages of expands it homothetically, then the number of lattice
Functions. points in the region is approximately the area of the region

with an error of order the length of the boundary.
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® Theorem 19(Gauss). Let X > 1 and G(X) denote the

number of lattice points in the disc centre 0 of radius v X.
Then G(X) = nX + O(XY/?).

The general principle involved in the above proof is that if
one has some finite convex region in the plane and one
expands it homothetically, then the number of lattice
points in the region is approximately the area of the region
with an error of order the length of the boundary.

Thus in the theorem above the unit disc centered at the
origin has its linear dimensions blown up by a factor of
VX (its radius) and the number of lattice points is
approximately its area, wX with an error of order the
length of the boundary 27v/X.



Factorization
and Primality
Testing
Chapter 9
Arithmetical
Functions

Robert C.
Vaughan

Averages of
Arithmetical
Functions

® Before proceeding to look further at some of the

arithmetical functions we have defined above, consider the

important sum

where X > 1.

S)=3+

n<X

(3.4)
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S(X) = E - (3.4)
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® This crops up in many places.

® We already saw it in Chapter 1 in Euler’s proof of the
infinitude of primes, Theorem 1.3.
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Before proceeding to look further at some of the
arithmetical functions we have defined above, consider the
important sum

sx)=Y" % (3.4)

n<X
where X > 1.

This crops up in many places.

We already saw it in Chapter 1 in Euler's proof of the
infinitude of primes, Theorem 1.3.

We observed that the sum S(X) behaves a bit like the
integral so is a bit like log X which tends to infinity with
X.
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® |n fact there is something more precise which one can say,
which was discovered by Euler.

Theorem 20 (Euler)

When X > 1 S(X) =logX + G+ O

©t— |t , . ,
Tdt is Euler's constant and

1
| x| is defined in Definition 1.5.

where

X
Co=0577...=1—
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When X > 1 S(X) =logX + G+ O

©t— |t , . ,
2 dt is Euler’s constant and

where

X
Co=0577...=1—

Averages of

Arithmetical \.*J IS deflned In Deflnlt’on 15

Functions

® Proof. We have

n<X n
X dt Xt —|t] — | X]
= T 41— _
/1 Tt /1 Mo X
_ <t |t X —1X]
—IogX+Co+/X 2 dt X
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e We follow Dirichlet’s proof method, which has become
known as the method of the parabola.
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e We follow Dirichlet’s proof method, which has become
known as the method of the parabola.

® The divisor function d(n) can be thought of as the number
of ordered pairs of positive integers m, | such that m/ = n.
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e We follow Dirichlet’s proof method, which has become
known as the method of the parabola.

® The divisor function d(n) can be thought of as the number
of ordered pairs of positive integers m, | such that m/ = n.

® Thus when we sum over n < X we are just counting the
number of ordered pairs m, / such that m/ < X.
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Vaughan

® Thus when we sum over n < X we are just counting the
number of ordered pairs m, / such that m/ < X.

® |n other words we are counting the number of /attice
points m, | under the rectangular hyperbola

Averages of
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Functions

xy = X.
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We follow Dirichlet’s proof method, which has become
known as the method of the parabola.

The divisor function d(n) can be thought of as the number
of ordered pairs of positive integers m, | such that m/ = n.

Thus when we sum over n < X we are just counting the
number of ordered pairs m, / such that m/ < X.

In other words we are counting the number of /attice
points m, | under the rectangular hyperbola

xy = X.

We could just crudely count, given m < X, the number of
choices for /, namely

X

m

> §+0(X)

m<X

and obtain

but this gives a much weaker error term.
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® Dirichlet's idea is divide the region under the hyperbola
into two parts using its symmetry in the line y = x.
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Vaughan into two parts using its symmetry in the line y = x.

® That two regions are the part with

X

m<vX,l<—

Averages of m
Arithmetical

Functions

and that with X

® Clearly each region has the same number of lattice points.
However the points m, | with m < v/X and [ < v/X are
counted in both regions.
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2
Sdm=2 Y { J VX
n<X m<vX
Averages of X
Arithmetical 1/2
Functions =2 > — = X+0(X /2y
mS\/)?

= 2X(log(vVX) + C) — X + O(X*/?).

where in the last line we used Euler's estimate for S(x).
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number of primes not exceeding x, is
) X dt
li(x) = —.
5 logt
Elementary

Prime number ® He also carried out some calculations for x < 1000. Today
eory . .
we have much more extensive calculations.
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X 7(x) li(x)

10* 1229 1245

10° 9592 9628

100 78498 78626

107 664579 664917

108 5761455 5762208

10° 50847534 50849233
1010 455052511 455055613
101! 4118054813 4118066399
1012 37607912018 37607950279
1013 346065536839 346065645809
1014 3204941750802 3204942065690
101° 20844570422669 20844571475286
1016 279238341033925 279238344248555
1017 2623557157654233 2623557165610820
1018 24739954287740860 24739954309690413
1019 | 234057667276344607 234057667376222382
1020 | 2220819602560918840 2220819602783663483
1021 | 21127269486018731928 | 21127269486616126182
1022 | 201467286689315906290 | 201467286691248261498




e This table has been extended out to at least 10%7. So is

m(x) < li(x)
always true?

«O> «Fr «=>»

«E)»
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e This table has been extended out to at least 10%27. So is
m(x) < li(x)

always true?
® No! Littlewood in 1914 showed that there are infinitely
many values of x for which

m(x) > li(x)
and now we believe that the first sign change occurs when
x ~ 1.387162 x 103°

well beyond what can be calculated directly.
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Vaughan ® No! Littlewood in 1914 showed that there are infinitely

many values of x for which
m(x) > li(x)
and now we believe that the first sign change occurs when

Elementary x ~ 1.387162 x 10316

Prime number
theory

well beyond what can be calculated directly.
® For many years it was only known that the first sign
change in 7(x) — li(x) occurs for some x satisfying

10964
x < 1010
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e This table has been extended out to at least 10%27. So is

m(x) < li(x)

always true?
No! Littlewood in 1914 showed that there are infinitely
many values of x for which

m(x) > li(x)
and now we believe that the first sign change occurs when
x ~ 1.387162 x 103°

well beyond what can be calculated directly.
For many years it was only known that the first sign
change in 7(x) — li(x) occurs for some x satisfying

10964
x < 10107

This number was computed by Skewes and G. H. Hardy
once wrote that this is probably the largest number which
has ever had any practical (my emphasis) value!
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® The strongest results we know about the distribution of
primes use complex analytic methods.
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® The strongest results we know about the distribution of
primes use complex analytic methods.

® However there are some very useful and basic results that
can be established elementarily.
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Vaughan ® The strongest results we know about the distribution of
primes use complex analytic methods.
® However there are some very useful and basic results that
can be established elementarily.
® Many expositions of the results we are going to describe
Elementary use nothing more than properties of binomial coefficients,
i but it is good to start to get the flavour of more

sophisticated methods even though here they could be
interpreted as just properties of binomial coefficients.
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e We start by introducing The von Mangold function.
This is defined by

k

A = 3 ° if p1p2|n with p1 # po,
B logp if n= p~.

® The interesting thing is that the support of A is on the
prime powers, the higher powers are quite rare, at most
\/x of them not exceeding x.
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Robert C. e We start by introducing The von Mangold function.
Voughan This is defined by
A = 3 ° if p1p2|n with p1 # po,
logp if n=pk.
S ® The interesting thing is that the support of A is on the
ementary

B0 sy prime powers, the higher powers are quite rare, at most
theory .
\/x of them not exceeding x.

® This function is definitely not multiplicative, since
A(1) =0.



® However the von Mangoldt function does satisfy some
interesting relationships.

Let n € N. Then 3., \(m) = log n.

«Or «Fr o«
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Let n € N. Then ), A(m) = log n.

® The proof is a simple counting argument.

Proof.
Elementary Write n = p{q ... pf’ with the p; distinc‘;. Then for a non-zero
ey contribution to the sum we have m = pZ for some s with

1 <s<randjs with 1 <j; < ks. Thus the sum is

r ks
Z Z log ps = log n.

s=1 js=1



® We need to know something about the average of log n.
Suppose that X € R and X > 2. Then
n<X

> logn = X(log X — 1) + O(log X).

40> «Fr « =)

« =
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Proof.
We have
X dt
Z log n = Z log X — -
n<X n<X
Elementary
Prime number
theory IogX

= X(log X — 1) + /X ‘ _tL g + O(log X).
1
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® Now we can say something about averages of the von
Mangoldt function.

Theorem 23
Suppose that X € R and X > 2. Then

> A(m) mJ = X(log X — 1) + O(log X).

m<X
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® Now we can say something about averages of the von
Mangoldt function.

Theorem 23
Suppose that X € R and X > 2. Then

> A(m) mJ = X(log X — 1) + O(log X).

m<X

® This is easy

Proof.

We substitute from the first lemma into the second. Thus

D) A(m) = X(log X — 1) + O(log X).

n<X min

Now we interchange the order in the double sum and count the
number of multiples of m not exceeding X. Ol
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® At this stage it is necessary to introduce some of the
fundamental counting functions of prime number theory.
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® At this stage it is necessary to introduce some of the
fundamental counting functions of prime number theory.

® For X > 0 we define

$(X) = 37 A(n),

n<X

9(X) = logp,

p<X

m(X)=> 1L

p<X
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® The following theorem shows the close relationship
between these three functions.

Theorem 24
Suppose that X > 2. Then

X) = Zﬂ(xl/k),
Z“ XA,

Note that each of these functions are 0 when X < 2, so
the sums are all finite.
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® \We prove

B(X) = 39X MR,
k

k
I(X) /X U(t)
X) = dt
() IogXJr > tlog?t

HX) =m(X)log X — /2X 7T(tt)dt.
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We prove

= Z ﬁ(Xl/k)’
Z“ XY,

7(X) = ﬂ(X) +/X o) g
2

log X tlog? t

I(X) =m(X)log X — /2X 7T(tt)dt.

® By the definition of A we have

Z Z Iogp—Zﬁ(Xl/k.

k  p<Xl/k
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Fi/zli.egrr:ai' Z /.,L Xl/k
29(X ) / X ()
X) = + dt,
X log X > tlog?t
X
t
9(X) = m(X) log X —/ (1) 4.
Elementary 2 t
Prime number
theory

® By the definition of A we have
Z Z Iogp—Zﬂ(Xl/k
k p<X1/k

® Hence we have

Z,Uf(k) Xl/k Z Zﬁ Xl/(k/) )
k
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Vaughan k|
m
® We also have

") = S togp) (1o + / )

px tlog°t
Elt?mentary X
™™ _ o) / o)y
log X 2 tlog t
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Robert C. 2’19 Xl/m ZILL
Vaughan k|m
® We also have
1 X dt
7(X) =) _(logp) ( +/ 5 )
= log X J, tlog”t
St/ X
theory — ﬁ(X) +/ 19(1-)
log X 2 tlog t

® The final identity is similar.

etcetera.
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® Now we come to a series of theorems which are still used
frequently.

Theorem 25 (Chebyshev)

There are positive constants C; and C, such that for each
X € R with X > 2 we have

C1X < ¢(X) < CZX.
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® Now we come to a series of theorems which are still used
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Arithm.etical
Functions Theorem 25 (Chebyshev)
Robert C.
He There are positive constants C; and C, such that for each
X € R with X > 2 we have
C1X < ¢(X) < CZX.
Hmaay ® Proof. For any 0 € R let

Prime number
theory

f(e):wj_zm.

Then f is periodic with period 2 and



Y(X) = Y Nn)f(X/n)
n<X

- ,Z):(/\(n) {%J —2 > A(n) {XT/QJ :

n<X/2
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® Hence
P(X) = Z;/\(n)f(x/n)
:g/\( {J —2n<ZX/2/\ {X/2J

® Here we used the fact that there is no contribution to the
second sum when X/2 < n < X.
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Vaughan

X/2
S|
n<X n<X/2
® Here we used the fact that there is no contribution to the
second sum when X/2 < n < X.

etz ® Now we apply Theorem 23 and obtain for x > 4

Prime number
theory

X(logX — 1) — 25 <Iog)2< — 1)) + O(log X)

= Xlog2 + O(log X).
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Hence

$(X) 2 3 AmF(X/n)

-si] -2 3 w7

Here we used the fact that there is no contribution to the
second sum when X/2 < n < X.

Now we apply Theorem 23 and obtain for x > 4

X(logX — 1) — 25 <Iog)2< — 1)) + O(log X)

= Xlog2 + O(log X).

This establishes the first inequality of the theorem for all
X > C for some positive constant C. Since ¥(X) > log?2
for all X > 2 the conclusion follows if C; is small enough.
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and we have already seen that this is

Xlog 2 + O(log X).
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® Hence for some positive constant C we have, for all X > 0,
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P(X) —9(X/2) < CX.
Hence, for any k > 0,

P(X27K) —p(x27k 1) < cx27k,
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Robert C. w(X) - w(X/2) S E /\(n)f(X/n)
Vaughan n<X

and we have already seen that this is
Xlog 2 + O(log X).

® Hence for some positive constant C we have, for all X > 0,

Elementary
Prime number
theory

Y(X) —(X/2) < CX.
Hence, for any k > 0,
P(X27K) —p(x27k 1) < cx27k,

® Summing over all k gives the desired upper bound.
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Corollary 26 (Chebyshev)
There are positive constants C3, Cy, Cs, Cg such that for every
X > 2 we have
lementar:
Prime number GX <9(X) < G X,

theory

G X

- Ce X
log X m

log X~

(X) <
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There is a constant B such that whenever X > 2 we have

Z /\(nn) = log X + O(1),

n<X

lo
3 5P _log X + O(1),
p<X p

theory

1 1
g zloglogX—i-B—i-O().
p log X
p<X
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Robert C. Theorem 27 (Mertens)

Vaughan

There is a constant B such that whenever X > 2 we have

Z /\(nn) = log X + O(1),

n<X

lo
3 5P _log X + O(1),
p<X p

theory

1 1
g zloglogX+B+O<>.
p log X
p<X

® | don’t want to spend time on the proof, but it is given
below and you can see it in the files if you are interested.



® Proof By Theorem 23 we have

> A(m)
m<X

EJ — X(log X — 1) + O(log X).
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® Proof By Theorem 23 we have

> A(m) KJ = X(log X — 1) + O(log X).
m<X

® The left hand side is

x> A(mm) + O(¥(X)).

m<X
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® Proof By Theorem 23 we have

X
> A(m) {mJ = X(log X — 1) + O(log X).
m<X

® The left hand side is

x> A(mm) + O(¥(X)).

m<X

® Hence by Cheyshev's theorem we have

X A(m”” = X log X + O(X).

m<X
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Proof By Theorem 23 we have
X
> A(m) {J = X(log X — 1) + O(log X).
m<X m
The left hand side is
A(m)

X — :
> 2 4 ou(x))
m<X

Hence by Cheyshev's theorem we have
A(m)
X ——= = Xlog X X).
n;( - og X + O(X)

Dividing by X gives the first result.



® We also have

e Z log p
Alm) _ s
= ko pk<x

<O < Fr <=
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m<X k

® The terms with k > 2 contribute

pk<X

Elementary

i i I ogp _ 3~ B e S

p k>2 n=2

which is convergent, and this gives the second expression.
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® Finally we can see that

DS

log p ( 1

g
p<x P log X J, tlog®t

1 log p /X logp dt
>t T et
log X = p 2 oo P tlog”t
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log p 1 X dt
> R e
= P log X~ J, tlog”t
1

log p /X logp dt
Pl D i
|0gXp§X p 2

p<t P tlog?t’

log p

— log t so that by the second part of

the theorem we have E(t) < 1.

Testing 1
Chapter 9
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Functions
p<X P
Robert C.
Vaughan
. J—
E(t) =2 p<t
Elementary

Prime number
theory
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Ari:h:eticgal E - = E P ( —|—/ —5
p p log X p tlog®t

Functions

p<X p<X
Robert C.
Vaughan 1 Z log p n /XZ logp dt
pu— - 2 .
lOgngx p 2 oo P tlog”t
* E(t) =2 < Iolg)p — log t so that by the second part of
the theorem we have E(t) < 1.
; ® Then the above is
ementary
rime number X
fheory 5 :IogX+E(X) / Iogt—i—E(t)dt
log X 5 tlog? t
o E(t
:IoglogX+1—|og|og2+/ (2) dt
o tlogt

E(X o E(t
B,
log X x tlog°t
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Finally we can see that

1 log p 1 X dt
> o= R T
p p log X p tlog®t

p<X p<X

1 log p /X logp dt
X T L T Tt
log X = p 2 oo P tlog”t

E(t) =>,<: Iolg)p — log t so that by the second part of
the theorem we have E(t) < 1.
Then the above is
_log X + E(X) n /X log t + E(t)
N log X 2 tlog?t

dt

dt

< E
:IoglogX+1—|og|og2+/ (tz)
o tlogt
E(X o E(t
B Y,
log X x tlog°t

The first integral converges and the last two terms are
1
< log X *




—1
1-— ;> =eClog X + 0(1)

® Another theorem which can be deduced is the following.
We have
(-

p<X

«Or «Fr «=>»

« =

DA



Factorization
and Primality

Testing
Chapter 9
Arithmetical
Functions
Robert C.
Ve ® Another theorem which can be deduced is the following.
Theorem 28 (Mertens)
We have
1\ 1
H (1 - ) = eClog X + O(1).
Elementary PSX p

Prime number
theory

® | do not give the proof here. In practice the third estimate
in the previous theorem is usually adequate.
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® There is an interesting application of the above which lead
to some important developments.

® As a companion to the definition of a multiplicative
function we have Definition. An f € A is additive when
it satisfies f(mn) = f(m) + f(n) whenever (m, n) = 1.

® Now we introduce two further functions. Definition. We
define w(n) to be the number of different prime factors of
n and Q(n) to be the total number of prime factors of n.
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Functions ® As a companion to the definition of a multiplicative
VN function we have Definition. An f € A is additive when
it satisfies f(mn) = f(m) + f(n) whenever (m, n) = 1.
® Now we introduce two further functions. Definition. We
define w(n) to be the number of different prime factors of
n and Q(n) to be the total number of prime factors of n.
® Example. We have 360 = 23325 so that w(360) = 3 and
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There is an interesting application of the above which lead
to some important developments.

As a companion to the definition of a multiplicative
function we have Definition. An f € A is additive when
it satisfies f(mn) = f(m) + f(n) whenever (m, n) = 1.
Now we introduce two further functions. Definition. We
define w(n) to be the number of different prime factors of
n and Q(n) to be the total number of prime factors of n.
Example. We have 360 = 23325 so that w(360) = 3 and
2(360) = 6. Generally, if the p; are distinct,

w(plt ... pk) =rand Q(pft...pk) = ki + - k.

One might expect that most of the time €2 is appreciably
bigger than w, but in fact this is not so.
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There is an interesting application of the above which lead
to some important developments.

As a companion to the definition of a multiplicative
function we have Definition. An f € A is additive when
it satisfies f(mn) = f(m) + f(n) whenever (m, n) = 1.
Now we introduce two further functions. Definition. We
define w(n) to be the number of different prime factors of
n and Q(n) to be the total number of prime factors of n.
Example. We have 360 = 23325 so that w(360) = 3 and
2(360) = 6. Generally, if the p; are distinct,

w(plt ... pk) =rand Q(pft...pk) = ki + - k.

One might expect that most of the time €2 is appreciably
bigger than w, but in fact this is not so.

By the way, there is some connection with the divisor
function. It is not hard to show that 2(") < d(n) < 29(n),
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There is an interesting application of the above which lead
to some important developments.

As a companion to the definition of a multiplicative
function we have Definition. An f € A is additive when
it satisfies f(mn) = f(m) + f(n) whenever (m, n) = 1.
Now we introduce two further functions. Definition. We
define w(n) to be the number of different prime factors of
n and Q(n) to be the total number of prime factors of n.
Example. We have 360 = 23325 so that w(360) = 3 and
2(360) = 6. Generally, if the p; are distinct,

w(plt ... pk) =rand Q(pft...pk) = ki + - k.

One might expect that most of the time €2 is appreciably
bigger than w, but in fact this is not so.

By the way, there is some connection with the divisor
function. It is not hard to show that 2(") < d(n) < 29(n),
In fact this is a simple consequence of the chain of
inequalities 2 < k 4+ 1 < 2k,
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Suppose that X > 2. Then

X
Zw(n) = Xloglog X + BX + O (IogX)

n<X

Elementary where B is the constant of Theorem 27, and

Prime number
> Q(n) =

theory
n<X
1 X
Xloglog X + | B + —_— X—i—O( >
( ZP(P—1)> log X

p
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® Here is the proof for w.

Proof.
We have

IFCE M AT

n<X n<X p|n p<X
1
=X ) =+ 0(r(x))
p<X P

and the result follows by combining Corollary 26 and Theorem

27.

The case of Q is similar. O
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e Hardy and Ramanujan made the remarkable discovery that
log log n is not just the average of w(n), but is its normal
order.
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rithmetica

Functions order.

Robert C. < H H

Ve ® Later Turdn found a simple proof of this.

Theorem 30 (Hardy & Ramanujan)
Suppose that X > 2. Then

2
Elerentary S wm - [13 <Xy ;,

Prime number

theory n<X p<X p<X

Z (w(n) — loglog X)? < X loglog X
n<X

and
Z (w(n) — loglog n)? < X loglog X
2<n<X
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® Here is Turdn's proof. It is easily seen that

2

Z Z;—IoglogX) < X

n<X \ p<X

and (generally if Y > 1 we have log Y < 2Y1/?)

2<n<X

> (loglog X — loglogn)* = ) <|Og '0gX>

log n
2<n<X g

log X
oyl
= ogn

zz/nx‘f

n<X

:/f%t

< X.




® Thus it suffices to prove the second statement in the
theorem.

«O> «Fr «=>»

«E)»

DA



Factorization
and Primality
Testing
Chapter 9
Arithmetical
Functions

Robert C.
Vaughan

Elementary
Prime number
theory

® Thus it suffices to prove the second statement in the
theorem.

® \We have
X X
-5 5L

P2#p1
< X(loglog X)? + O(X log log X).
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< X(loglog X)? + O(X log log X).
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® Hence

Z(w(n) — loglog X)? < 2X(loglog X)?

n<X

— 2(loglog X) )~ w(n) + O(X loglog X)

n<X

and this is < X log log X.



® One way of interpreting this theorem is to think of it
probabilistically.
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® One way of interpreting this theorem is to think of it
probabilistically.

® |t is saying that the events p|n are approximately
independent and occur with probability %.
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® One way of interpreting this theorem is to think of it
probabilistically.

® |t is saying that the events p|n are approximately
independent and occur with probability %.

® One might guess that the distribution is normal, and this
indeed is true and was established by Erdés and Kac about
1941.
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One way of interpreting this theorem is to think of it
probabilistically.

It is saying that the events p|n are approximately
independent and occur with probability %.

One might guess that the distribution is normal, and this
indeed is true and was established by Erdés and Kac about
1941.

Let

w(n) — loglog n <
vloglogn

1
d(a, b) = Ii_)m —card{n <x:a<
X—00 X

Then
®(a, b) = l/be_t2/2dt
T V2r Ja ‘
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One way of interpreting this theorem is to think of it
probabilistically.

It is saying that the events p|n are approximately
independent and occur with probability %.

One might guess that the distribution is normal, and this
indeed is true and was established by Erdés and Kac about
1941.

Let

w(n) — loglog n <

vloglogn

1
d(a, b) = Ii_)m —card{n <x:a<
X—00 X

Then
®(a, b) = l/be_t2/2dt
T V2r Ja ‘

The proof uses sieve theory, which we might explore later.



® Multiplicative functions oscillate quite a bit.
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e Multiplicative functions oscillate quite a bit.

® For example d(p) = 2 but if n is the product of the first k
primes n =[], x p, then log n = J(X) so that
X < logn <« X by Chebyshev.
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et €. ® Multiplicative functions oscillate quite a bit.
s ® For example d(p) = 2 but if n is the product of the first k
primes n =[], x p, then log n = J(X) so that
X < logn <« X by Chebyshev.
e Thus log X ~ loglog n, but d(n) = 27X) so that

HX
0g d(n) = (log 2m(X) > (log 2)
rders o log n
:adgnitudfe of ~ (Iog 2)L .
arithmetical |Og |Og n

functions.



® \We have

For every € > Q there are infinitely many n such that

d(n) > exp ((Iog2 —¢)logn

log log n ) '
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® \We have

Theorem 31
For every € > 0 there are infinitely many n such that

(log2 —¢)logn
log log n )

d(n) > exp (

® The function d(n) also arises in comparisons, for example
in deciding the convergence of certain important series.
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® Thus it is useful to have a simple universal upper bound.

Theorem 32
Let € > 0. Then there is a positive number C which depends
at most on ¢ such that for every n € N we have

d(n) < Cn°.
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® Thus it is useful to have a simple universal upper bound.

Theorem 32
Let € > 0. Then there is a positive number C which depends
at most on ¢ such that for every n € N we have

d(n) < Cn°.

® Note, such a statement is often written as
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® Thus it is useful to have a simple universal upper bound.

Theorem 32
Let € > 0. Then there is a positive number C which depends
at most on ¢ such that for every n € N we have

d(n) < Cn°.

® Note, such a statement is often written as
d(n) = O(n°)
or
d(n) < n°.
® |t suffices to prove the theorem when

< 1
€ .
~ log?2
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® Thus it is useful to have a simple universal upper bound.

Theorem 32

Let € > 0. Then there is a positive number C which depends
at most on ¢ such that for every n € N we have

d(n) < Cn°.

® Note, such a statement is often written as
d(n) = O(n°)
or
d(n) < n°.
® |t suffices to prove the theorem when

< 1
€ .
~ log?2

® Write n = pfl . pf’ where the p; are distinct.



® Recall that d(n) = (k1 +1)... (k- +1).

«O> «Fr «=>»

«E)»

DA



® Recall that d(n) = (k1 +1)...(k- +1)
® Thus

d(n) v k+1
ne :H cki
j=1 Pj
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® Recall that d(n) = (k1 +1)...(k- +1).

® Thus
d(n) r kj-i-].
né :H ckj °
j=1 Pj

® Since we are only interested in an upper bound, the terms
for which p; > 2 can be thrown away since 2K > k4 1.
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né ckj °
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® Since we are only interested in an upper bound, the terms
for which p; > 2 can be thrown away since 2K > k4 1.
e However there are only < 21/¢ primes p; for which
pi <2
® Morever for any such prime we have
Orders of B
magnitude o EKj .
aritimtetlijcalf pj / Z 2€kj — eXp(skj |Og 2)

functions.

> 1+ ¢ekjlog2 > (kj + 1)elog 2.
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® Since we are only interested in an upper bound, the terms
for which p; > 2 can be thrown away since 2K > k4 1.
e However there are only < 21/¢ primes p; for which
pi <2
® Morever for any such prime we have
Order§ of K
rtemetcal pf ¥ > 2°Ki = exp(ckjlog2)
functions.
> 1+ ¢ekjlog2 > (kj + 1)elog 2.
® Thus

ol/e
d(n) < 1 .
nf — \elog?2
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e ® The above proof can be refined to give a companion to
Arithmetical

Functions Theorem 31

Robert C.

i Theorem 33

Let € > 0. Then for all n > ng we have

(log2 +¢)log n> .

d(n) < exp ( log log 1

® We follow the proof of the previous theorem until the final

Ordere ot inequality. Then replace the € there with
magnitude of

arithmetical (1 + 8/2) |0g 2

functions.

log log n

which for large n certainly meets the requirement of being
no larger than 1/ log 2.
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* Now

1 21/5
clog2
log log n log log n
= S "o I _loglogn
exp (exp <1 T €/2> og (15 2/2)log2

g(log n) log 2
= o ( 2loglogn

for sufficiently large n. Hence

d(n) < " exp (EloB M) 1082
2loglog n

= exp <(1 + Tc))groggng |0g2>

con{ )
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