

Factorization
and Primality
Testing
Chapter 9
Arithmetical
Functions

Robert C.
Vaughan

Introduction

Dirichlet
Convolution

Averages of
Arithmetical
Functions

Elementary
Prime number
theory

Orders of
magnitude of
arithmetical
functions.

Factorization and Primality Testing Chapter 9

Arithmetical Functions

Robert C. Vaughan

November 29, 2025

- A major consideration in assessing factorisation and primality testing algorithms is the ability to judge and compare possible run times.

- A major consideration in assessing factorisation and primality testing algorithms is the ability to judge and compare possible run times.
- Underpinning this is some knowledge of the growth patterns of common arithmetic functions and a familiarity with the basic techniques used to elucidate the way in which primes are distributed under various constraints.

- A major consideration in assessing factorisation and primality testing algorithms is the ability to judge and compare possible run times.
- Underpinning this is some knowledge of the growth patterns of common arithmetic functions and a familiarity with the basic techniques used to elucidate the way in which primes are distributed under various constraints.
- It is convenient to make the following definition.

Definition 1

Let \mathcal{A} denote the set of arithmetical functions, that is the functions defined by

$$\mathcal{A} = \{f : \mathbb{N} \rightarrow \mathbb{C}\}.$$

Of course the range of any particular function might well be a subset of \mathbb{C} , such as \mathbb{R} or \mathbb{Z} .

- There are quite a number of important arithmetical functions. Some examples are

Definition 2 (The divisor function)

The number of positive divisors of n .

$$d(n) = \sum_{m|n} 1.$$

Definition 3 (The Möbius function)

This is a more peculiar function. It is defined by

$$\mu(n) = \begin{cases} (-1)^k & \text{if } n \text{ is a product of } k \text{ distinct primes,} \\ 0 & \text{if there is a prime } p \text{ such that } p^2|n. \end{cases}$$

- It is also convenient to introduce three very boring functions.

Definition 4 (The Unit)

$$e(n) = \begin{cases} 1 & (n = 1), \\ 0 & (n > 1). \end{cases}$$

Definition 5 (The One)

$$\mathbf{1}(n) = 1 \text{ for every } n.$$

Definition 6 (The Identity)

$$N(n) = n.$$

- Two other functions which have interesting structures but which we will say less about at this stage are

Definition 7 (The primitive character modulo 4)

We define

$$\chi_1(n) = \begin{cases} (-1)^{\frac{n-1}{2}} & 2 \nmid n, \\ 0 & 2|n. \end{cases}$$

- Two other functions which have interesting structures but which we will say less about at this stage are

Definition 7 (The primitive character modulo 4)

We define

$$\chi_1(n) = \begin{cases} (-1)^{\frac{n-1}{2}} & 2 \nmid n, \\ 0 & 2|n. \end{cases}$$

- Similar functions we have already met are Euler's function ϕ , the Legendre symbol and its generalization the Jacobi symbol

$$\left(\frac{n}{m}\right)_J.$$

- Two other functions which have interesting structures but which we will say less about at this stage are

Definition 7 (The primitive character modulo 4)

We define

$$\chi_1(n) = \begin{cases} (-1)^{\frac{n-1}{2}} & 2 \nmid n, \\ 0 & 2|n. \end{cases}$$

- Similar functions we have already met are Euler's function ϕ , the Legendre symbol and its generalization the Jacobi symbol

$$\left(\frac{n}{m}\right)_J.$$

- Here we think of it as a function of n , keeping m fixed, but we could also think of it as a function of m keeping n fixed.

- A function of lesser importance in factorisation routines.

Definition 8 (Sums of two squares)

Let $r(n)$ be the number of solutions to $x^2 + y^2 = n$.

Introduction

Dirichlet
Convolution

Averages of
Arithmetical
Functions

Elementary
Prime number
theory

Orders of
magnitude of
arithmetical
functions.

- A function of lesser importance in factorisation routines.

Definition 8 (Sums of two squares)

Let $r(n)$ be the number of solutions to $x^2 + y^2 = n$.

- *Example. It satisfies $1 = 0^2 + (\pm 1)^2 = (\pm 1)^2 + 0^2$, so $r(1) = 4$, $r(3) = r(6) = r(7) = 0$, $r(9) = 4$, $65 = (\pm 1)^2 + (\pm 8)^2 = (\pm 4)^2 + (\pm 7)^2$ so $r(65) = 16$.*
- Each of d , ϕ , μ , e , $\mathbf{1}$, N , χ_1 , $(\frac{\cdot}{m})_J$ is multiplicative.

- A function of lesser importance in factorisation routines.

Definition 8 (Sums of two squares)

Let $r(n)$ be the number of solutions to $x^2 + y^2 = n$.

- *Example. It satisfies $1 = 0^2 + (\pm 1)^2 = (\pm 1)^2 + 0^2$, so $r(1) = 4$, $r(3) = r(6) = r(7) = 0$, $r(9) = 4$, $65 = (\pm 1)^2 + (\pm 8)^2 = (\pm 4)^2 + (\pm 7)^2$ so $r(65) = 16$.*
- Each of d , ϕ , μ , e , $\mathbf{1}$, N , χ_1 , $(\frac{\cdot}{m})_J$ is multiplicative.
- Here is a reminder of the definition.

Definition 9

An arithmetical function f which is not identically 0 is **multiplicative** when it satisfies

$$f(mn) = f(m)f(n) \tag{1.1}$$

whenever $(m, n) = 1$. Let \mathcal{M} denote the set of multiplicative functions. If (1.1) holds for **all** m and n , then we say that f is **totally multiplicative**.

- The function $r(n)$ is not multiplicative, since $r(65) = 16$ but $r(5) = r(13) = 8$.

- The function $r(n)$ is not multiplicative, since $r(65) = 16$ but $r(5) = r(13) = 8$.
- Indeed the fact that $r(1) \neq 1$ would contradict the next theorem.

Introduction

Dirichlet
Convolution

Averages of
Arithmetical
Functions

Elementary
Prime number
theory

Orders of
magnitude of
arithmetical
functions.

- The function $r(n)$ is not multiplicative, since $r(65) = 16$ but $r(5) = r(13) = 8$.
- Indeed the fact that $r(1) \neq 1$ would contradict the next theorem.
- However it is true that $r(n)/4$ is multiplicative, but this is a little trickier to prove.

Theorem 10

Suppose that $f \in \mathcal{M}$. Then $f(1) = 1$.

- The function $r(n)$ is not multiplicative, since $r(65) = 16$ but $r(5) = r(13) = 8$.
- Indeed the fact that $r(1) \neq 1$ would contradict the next theorem.
- However it is true that $r(n)/4$ is multiplicative, but this is a little trickier to prove.

Theorem 10

Suppose that $f \in \mathcal{M}$. Then $f(1) = 1$.

- *Proof.* Since f is not identically 0 there is an n such that $f(n) \neq 0$. Hence $f(n) = f(n \times 1) = f(n)f(1)$, and the conclusion follows.

- The function $r(n)$ is not multiplicative, since $r(65) = 16$ but $r(5) = r(13) = 8$.
- Indeed the fact that $r(1) \neq 1$ would contradict the next theorem.
- However it is true that $r(n)/4$ is multiplicative, but this is a little trickier to prove.

Theorem 10

Suppose that $f \in \mathcal{M}$. Then $f(1) = 1$.

- *Proof.* Since f is not identically 0 there is an n such that $f(n) \neq 0$. Hence $f(n) = f(n \times 1) = f(n)f(1)$, and the conclusion follows.
- It is pretty obvious that e , $\mathbf{1}$ and N are in \mathcal{M} .

- The function $r(n)$ is not multiplicative, since $r(65) = 16$ but $r(5) = r(13) = 8$.
- Indeed the fact that $r(1) \neq 1$ would contradict the next theorem.
- However it is true that $r(n)/4$ is multiplicative, but this is a little trickier to prove.

Theorem 10

Suppose that $f \in \mathcal{M}$. Then $f(1) = 1$.

- *Proof.* Since f is not identically 0 there is an n such that $f(n) \neq 0$. Hence $f(n) = f(n \times 1) = f(n)f(1)$, and the conclusion follows.
- It is pretty obvious that e , $\mathbf{1}$ and N are in \mathcal{M} .
- Euler's function and the Legendre and Jacobi symbols we already dealt with.

- The function $r(n)$ is not multiplicative, since $r(65) = 16$ but $r(5) = r(13) = 8$.
- Indeed the fact that $r(1) \neq 1$ would contradict the next theorem.
- However it is true that $r(n)/4$ is multiplicative, but this is a little trickier to prove.

Theorem 10

Suppose that $f \in \mathcal{M}$. Then $f(1) = 1$.

- *Proof.* Since f is not identically 0 there is an n such that $f(n) \neq 0$. Hence $f(n) = f(n \times 1) = f(n)f(1)$, and the conclusion follows.
- It is pretty obvious that e , $\mathbf{1}$ and N are in \mathcal{M} .
- Euler's function and the Legendre and Jacobi symbols we already dealt with.
- That leaves d and μ .

- It is actually quite easy to show

Theorem 11

We have $\mu \in \mathcal{M}$.

- It is actually quite easy to show

Theorem 11

We have $\mu \in \mathcal{M}$.

- *Proof.* Suppose that $(m, n) = 1$.

- It is actually quite easy to show

Theorem 11

We have $\mu \in \mathcal{M}$.

- *Proof.* Suppose that $(m, n) = 1$.
- If $p^2 | mn$, then $p^2 | m$ or $p^2 | n$, so $\mu(mn) = 0 = \mu(m)\mu(n)$.

- It is actually quite easy to show

Theorem 11

We have $\mu \in \mathcal{M}$.

- *Proof.* Suppose that $(m, n) = 1$.
- If $p^2 | mn$, then $p^2 | m$ or $p^2 | n$, so $\mu(mn) = 0 = \mu(m)\mu(n)$.
- If

$$m = p_1 \dots p_k, \quad n = p'_1 \dots p'_l$$

with the p_i, p'_j distinct, then

$$\mu(mn) = (-1)^{k+l} = (-1)^k(-1)^l = \mu(m)\mu(n).$$

- The following is very useful.

Theorem 12

Suppose the $f \in \mathcal{M}$, $g \in \mathcal{M}$ and h is defined for each n by

$$h(n) = \sum_{m|n} f(m)g(n/m).$$

Then $h \in \mathcal{M}$.

- The following is very useful.

Theorem 12

Suppose the $f \in \mathcal{M}$, $g \in \mathcal{M}$ and h is defined for each n by

$$h(n) = \sum_{m|n} f(m)g(n/m).$$

Then $h \in \mathcal{M}$.

- *Proof.* Suppose $(n_1, n_2) = 1$.

- The following is very useful.

Theorem 12

Suppose the $f \in \mathcal{M}$, $g \in \mathcal{M}$ and h is defined for each n by

$$h(n) = \sum_{m|n} f(m)g(n/m).$$

Then $h \in \mathcal{M}$.

- *Proof.* Suppose $(n_1, n_2) = 1$.
- Then a typical divisor m of $n_1 n_2$ is uniquely of the form $m_1 m_2$ with $m_1|n_1$ and $m_2|n_2$.
- Hence

$$\begin{aligned} h(n_1 n_2) &= \sum_{m_1|n_1} \sum_{m_2|n_2} f(m_1 m_2)g(n_1 n_2 / (m_1 m_2)) \\ &= \sum_{m_1|n_1} f(m_1)g(n_1/m_1) \sum_{m_2|n_2} f(m_2)g(n_2/m_2). \end{aligned}$$

- This enables us to establish an interesting property of the Möbius function.

Theorem 13

We have

$$\sum_{m|n} \mu(m) = e(n).$$

- This enables us to establish an interesting property of the Möbius function.

Theorem 13

We have

$$\sum_{m|n} \mu(m) = e(n).$$

- *Proof.* By the definition of $\mathbf{1}$ the sum here is

$$\sum_{m|n} \mu(m) \mathbf{1}(n/m)$$

and so by the previous theorem it is in \mathcal{M} .

- This enables us to establish an interesting property of the Möbius function.

Theorem 13

We have

$$\sum_{m|n} \mu(m) = e(n).$$

- *Proof.* By the definition of $\mathbf{1}$ the sum here is

$$\sum_{m|n} \mu(m) \mathbf{1}(n/m)$$

and so by the previous theorem it is in \mathcal{M} .

- Moreover if $k \geq 1$, then

$$\sum_{m|p^k} \mu(m) = \mu(1) + \mu(p) = 1 - 1 = 0$$

- Theorem 12 suggests a way of defining new functions.

Definition 14

Given two arithmetical functions f and g we define the **Dirichlet convolution** $f * g$ to be the function defined by

$$(f * g)(n) = \sum_{m|n} f(m)g(n/m).$$

- Theorem 12 suggests a way of defining new functions.

Definition 14

Given two arithmetical functions f and g we define the **Dirichlet convolution** $f * g$ to be the function defined by

$$(f * g)(n) = \sum_{m|n} f(m)g(n/m).$$

- Note that this operation is commutative because

$$f * g(n) = \sum_{m|n} f(m)g(n/m) = \sum_{m|n} g(n/m)f(m)$$

- Theorem 12 suggests a way of defining new functions.

Definition 14

Given two arithmetical functions f and g we define the **Dirichlet convolution** $f * g$ to be the function defined by

$$(f * g)(n) = \sum_{m|n} f(m)g(n/m).$$

- Note that this operation is commutative because

$$f * g(n) = \sum_{m|n} f(m)g(n/m) = \sum_{m|n} g(n/m)f(m)$$

- and the mapping $m \leftrightarrow n/m$ is a bijection.

- Theorem 12 suggests a way of defining new functions.

Definition 14

Given two arithmetical functions f and g we define the **Dirichlet convolution** $f * g$ to be the function defined by

$$(f * g)(n) = \sum_{m|n} f(m)g(n/m).$$

- Note that this operation is commutative because

$$f * g(n) = \sum_{m|n} f(m)g(n/m) = \sum_{m|n} g(n/m)f(m)$$

- and the mapping $m \leftrightarrow n/m$ is a bijection.
- It is also quite easy to see that the relation is associative

$$(f * g) * h = f * (g * h).$$

- To see that Dirichlet convolution is associative

$$(f * g) * h = f * (g * h)$$

write the left hand side as

$$\sum_{m|n} \left(\sum_{l|m} f(l)g(m/l) \right) h(n/m)$$

- To see that Dirichlet convolution is associative

$$(f * g) * h = f * (g * h)$$

write the left hand side as

$$\sum_{m|n} \left(\sum_{l|m} f(l)g(m/l) \right) h(n/m)$$

- and interchange the order of summation and replace m by kl , so that $kl|n$, i.e $l|n$ and $k|n/l$.

- To see that Dirichlet convolution is associative

$$(f * g) * h = f * (g * h)$$

write the left hand side as

$$\sum_{m|n} \left(\sum_{l|m} f(l)g(m/l) \right) h(n/m)$$

- and interchange the order of summation and replace m by kl , so that $kl|n$, i.e $l|n$ and $k|n/l$.
- Thus the above is

$$\sum_{l|n} f(l) \sum_{k|n/l} g(k)h((n/l)/k) = f * (g * h)(n).$$

- Dirichlet convolution has some interesting properties.

- Dirichlet convolution has some interesting properties.
- 1. $f * e = e * f = f$ for any $f \in \mathcal{A}$, so e is really acting as a unit.

- Dirichlet convolution has some interesting properties.
- 1. $f * e = e * f = f$ for any $f \in \mathcal{A}$, so e is really acting as a unit.
- 2. $\mu * \mathbf{1} = \mathbf{1} * \mu = e$, so μ is the inverse of $\mathbf{1}$, and *vice versa*.

- Dirichlet convolution has some interesting properties.
- 1. $f * e = e * f = f$ for any $f \in \mathcal{A}$, so e is really acting as a unit.
- 2. $\mu * \mathbf{1} = \mathbf{1} * \mu = e$, so μ is the inverse of $\mathbf{1}$, and *vice versa*.
- 3. Theorem 12 tells us that if $f \in \mathcal{M}$ and $g \in \mathcal{M}$, then $f * g \in \mathcal{M}$.

- Dirichlet convolution has some interesting properties.
- 1. $f * e = e * f = f$ for any $f \in \mathcal{A}$, so e is really acting as a unit.
- 2. $\mu * \mathbf{1} = \mathbf{1} * \mu = e$, so μ is the inverse of $\mathbf{1}$, and *vice versa*.
- 3. Theorem 12 tells us that if $f \in \mathcal{M}$ and $g \in \mathcal{M}$, then $f * g \in \mathcal{M}$.
- 4. The formula (Theorem 3.2)

$$\sum_{m|n} \phi(m) = n$$

says that $\phi * \mathbf{1} = N$.

- Dirichlet convolution has some interesting properties.
- 1. $f * e = e * f = f$ for any $f \in \mathcal{A}$, so e is really acting as a unit.
- 2. $\mu * \mathbf{1} = \mathbf{1} * \mu = e$, so μ is the inverse of $\mathbf{1}$, and *vice versa*.
- 3. Theorem 12 tells us that if $f \in \mathcal{M}$ and $g \in \mathcal{M}$, then $f * g \in \mathcal{M}$.
- 4. The formula (Theorem 3.2)

$$\sum_{m|n} \phi(m) = n$$

says that $\phi * \mathbf{1} = N$.

- 5. $d = \mathbf{1} * \mathbf{1}$, so $d \in \mathcal{M}$. Hence

- Dirichlet convolution has some interesting properties.
- 1. $f * e = e * f = f$ for any $f \in \mathcal{A}$, so e is really acting as a unit.
- 2. $\mu * \mathbf{1} = \mathbf{1} * \mu = e$, so μ is the inverse of $\mathbf{1}$, and *vice versa*.
- 3. Theorem 12 tells us that if $f \in \mathcal{M}$ and $g \in \mathcal{M}$, then $f * g \in \mathcal{M}$.
- 4. The formula (Theorem 3.2)

$$\sum_{m|n} \phi(m) = n$$

says that $\phi * \mathbf{1} = N$.

- 5. $d = \mathbf{1} * \mathbf{1}$, so $d \in \mathcal{M}$. Hence
- 6. $d(p^k) = k + 1$ and $d(p_1^{k_1} \dots p_r^{k_r}) = (k_1 + 1) \dots (k_r + 1)$.

- The Möbius inversion formula takes on various forms.

Theorem 15 (Möbius inversion I)

Suppose that $f \in \mathcal{A}$ and $g = f * \mathbf{1}$. Then $f = g * \mu$.

- The Möbius inversion formula takes on various forms.

Theorem 15 (Möbius inversion I)

Suppose that $f \in \mathcal{A}$ and $g = f * \mathbf{1}$. Then $f = g * \mu$.

- *Proof.* We have

$$g * \mu = (f * \mathbf{1}) * \mu = f * (\mathbf{1} * \mu) = f * e = f.$$

- The Möbius inversion formula takes on various forms.

Theorem 15 (Möbius inversion I)

Suppose that $f \in \mathcal{A}$ and $g = f * \mathbf{1}$. Then $f = g * \mu$.

- *Proof.* We have

$$g * \mu = (f * \mathbf{1}) * \mu = f * (\mathbf{1} * \mu) = f * e = f.$$

- Here is another form.

Theorem 16 (Möbius inversion II)

Suppose that $g \in \mathcal{A}$ and $f = g * \mu$, then $g = f * \mathbf{1}$.

- The Möbius inversion formula takes on various forms.

Theorem 15 (Möbius inversion I)

Suppose that $f \in \mathcal{A}$ and $g = f * \mathbf{1}$. Then $f = g * \mu$.

- *Proof.* We have

$$g * \mu = (f * \mathbf{1}) * \mu = f * (\mathbf{1} * \mu) = f * e = f.$$

- Here is another form.

Theorem 16 (Möbius inversion II)

Suppose that $g \in \mathcal{A}$ and $f = g * \mu$, then $g = f * \mathbf{1}$.

- The proof is similar.

- Here is an application

Theorem 17

We have $\phi = \mu * N$ and $\phi \in \mathcal{M}$. Moreover

$$\phi(n) = n \sum_{m|n} \frac{\mu(m)}{m} = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

- Here is an application

Theorem 17

We have $\phi = \mu * N$ and $\phi \in \mathcal{M}$. Moreover

$$\phi(n) = n \sum_{m|n} \frac{\mu(m)}{m} = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

- *Proof.* We already saw that $N = \phi * \mathbf{1}$. Hence
 $\phi = N * \mu = \mu * N$.

- Here is an application

Theorem 17

We have $\phi = \mu * N$ and $\phi \in \mathcal{M}$. Moreover

$$\phi(n) = n \sum_{m|n} \frac{\mu(m)}{m} = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

- *Proof.* We already saw that $N = \phi * \mathbf{1}$. Hence $\phi = N * \mu = \mu * N$.
- The final part of the theorem follows from the multiplicative property of $\mu(m)/m$.

- Here is an application

Theorem 17

We have $\phi = \mu * N$ and $\phi \in \mathcal{M}$. Moreover

$$\phi(n) = n \sum_{m|n} \frac{\mu(m)}{m} = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$$

- *Proof.* We already saw that $N = \phi * \mathbf{1}$. Hence $\phi = N * \mu = \mu * N$.
- The final part of the theorem follows from the multiplicative property of $\mu(m)/m$.
- It also follows that $\phi \in \mathcal{M}$, and gives new proofs of Corollary 3.5 and Theorem 3.7.

- There is a large class of arithmetical functions which has an interesting structure.

Theorem 18

Let $\mathcal{D} = \{f \in \mathcal{A} : f(1) \neq 0\}$. Then $\langle \mathcal{D}, * \rangle$ is an abelian group.

- There is a large class of arithmetical functions which has an interesting structure.

Theorem 18

Let $\mathcal{D} = \{f \in \mathcal{A} : f(1) \neq 0\}$. Then $\langle \mathcal{D}, * \rangle$ is an abelian group.

- Proof. Of course e is the unit, and closure is obvious.

- There is a large class of arithmetical functions which has an interesting structure.

Theorem 18

Let $\mathcal{D} = \{f \in \mathcal{A} : f(1) \neq 0\}$. Then $\langle \mathcal{D}, * \rangle$ is an abelian group.

- Proof. Of course e is the unit, and closure is obvious.
- We already checked commutativity and associativity.

- There is a large class of arithmetical functions which has an interesting structure.

Theorem 18

Let $\mathcal{D} = \{f \in \mathcal{A} : f(1) \neq 0\}$. Then $\langle \mathcal{D}, * \rangle$ is an abelian group.

- Proof. Of course e is the unit, and closure is obvious.
- We already checked commutativity and associativity.
- It remains, given $f \in \mathcal{D}$, to construct an inverse.

- There is a large class of arithmetical functions which has an interesting structure.

Theorem 18

Let $\mathcal{D} = \{f \in \mathcal{A} : f(1) \neq 0\}$. Then $\langle \mathcal{D}, * \rangle$ is an abelian group.

- Proof. Of course e is the unit, and closure is obvious.
- We already checked commutativity and associativity.
- It remains, given $f \in \mathcal{D}$, to construct an inverse.
- Define g iteratively by

$$g(1) = 1/f(1)$$

$$g(n) = - \sum_{\substack{m|n \\ m>1}} f(m)g(n/m)/f(1)$$

- There is a large class of arithmetical functions which has an interesting structure.

Theorem 18

Let $\mathcal{D} = \{f \in \mathcal{A} : f(1) \neq 0\}$. Then $\langle \mathcal{D}, * \rangle$ is an abelian group.

- Proof. Of course e is the unit, and closure is obvious.
- We already checked commutativity and associativity.
- It remains, given $f \in \mathcal{D}$, to construct an inverse.
- Define g iteratively by

$$g(1) = 1/f(1)$$

$$g(n) = - \sum_{\substack{m|n \\ m>1}} f(m)g(n/m)/f(1)$$

- It is clear that $f * g = e$.

Factorization
and Primality

Testing
Chapter 9

Arithmetical
Functions

Robert C.
Vaughan

Introduction

Dirichlet
Convolution

Averages of
Arithmetical
Functions

Elementary
Prime number
theory

Orders of
magnitude of
arithmetical
functions.

- One of the most powerful techniques we have is to take an average.

- One of the most powerful techniques we have is to take an average.
- *Example. Suppose we have an arithmetical function f and we would like to know that is it often non-zero.*

- One of the most powerful techniques we have is to take an average.
- *Example. Suppose we have an arithmetical function f and we would like to know that is it often non-zero.*
- *If we could show, for example, that for each large X we have*

$$\sum_{n \leq X} f(n)^2 > C_1 X^{5/3}$$

and

$$|f(n)| < C_2 X^{1/3} \quad (n \leq X),$$

where C_1 and C_2 are positive constants,

- One of the most powerful techniques we have is to take an average.
- *Example. Suppose we have an arithmetical function f and we would like to know that is it often non-zero.*
- *If we could show, for example, that for each large X we have*

$$\sum_{n \leq X} f(n)^2 > C_1 X^{5/3}$$

and

$$|f(n)| < C_2 X^{1/3} \quad (n \leq X),$$

where C_1 and C_2 are positive constants,

- *then it follows that*

$$C_1 X^{5/3} < \sum_{n \leq X} f(n)^2 \leq (C_2 X^{1/3})^2 \operatorname{card}\{n \leq X : f(n) \neq 0\}$$

- One of the most powerful techniques we have is to take an average.
- *Example. Suppose we have an arithmetical function f and we would like to know that is it often non-zero.*
- *If we could show, for example, that for each large X we have*

$$\sum_{n \leq X} f(n)^2 > C_1 X^{5/3}$$

and

$$|f(n)| < C_2 X^{1/3} \quad (n \leq X),$$

where C_1 and C_2 are positive constants,

- *then it follows that*

$$C_1 X^{5/3} < \sum_{n \leq X} f(n)^2 \leq (C_2 X^{1/3})^2 \operatorname{card}\{n \leq X : f(n) \neq 0\}$$

- *and so*

$$\operatorname{card}\{n \leq X : f(n) \neq 0\} > C_1 C_2^{-2} X.$$

- *A more sophisticated version of this would be that if one could show that*

$$\sum_{X < n \leq 2X} (f(n) - C_3 n^{1/3})^2 < C_4 X^{4/3},$$

- *A more sophisticated version of this would be that if one could show that*

$$\sum_{X < n \leq 2X} (f(n) - C_3 n^{1/3})^2 < C_4 X^{4/3},$$

- *then it would follow that for most n the function $f(n)$ is about $n^{1/3}$.*

- *A more sophisticated version of this would be that if one could show that*

$$\sum_{X < n \leq 2X} (f(n) - C_3 n^{1/3})^2 < C_4 X^{4/3},$$

- *then it would follow that for most n the function $f(n)$ is about $n^{1/3}$.*
- This technique has been used to show that “almost all” even numbers are the sum of two primes.

- We need some notation which avoids the continual use of C_1, C_2, \dots , etc., to denote unspecified constants.

- We need some notation which avoids the continual use of C_1, C_2, \dots , etc., to denote unspecified constants.
- Given functions f and g defined on some domain \mathcal{X} with $g(x) \geq 0$ for all $x \in \mathcal{X}$ we write

$$f(x) = O(g(x)) \quad (3.2)$$

to mean that for some constant C and all $x \in \mathcal{X}$

$$|f(x)| \leq Cg(x).$$

- We need some notation which avoids the continual use of C_1, C_2, \dots , etc., to denote unspecified constants.
- Given functions f and g defined on some domain \mathcal{X} with $g(x) \geq 0$ for all $x \in \mathcal{X}$ we write

$$f(x) = O(g(x)) \quad (3.2)$$

to mean that for some constant C and all $x \in \mathcal{X}$

$$|f(x)| \leq Cg(x).$$

- We also use $f(x) = o(g(x))$ to mean that if there is a limiting operation, like $x \rightarrow \infty$, then

$$\frac{f(x)}{g(x)} \rightarrow 0$$

- We need some notation which avoids the continual use of C_1, C_2, \dots , etc., to denote unspecified constants.
- Given functions f and g defined on some domain \mathcal{X} with $g(x) \geq 0$ for all $x \in \mathcal{X}$ we write

$$f(x) = O(g(x)) \quad (3.2)$$

to mean that for some constant C and all $x \in \mathcal{X}$

$$|f(x)| \leq Cg(x).$$

- We also use $f(x) = o(g(x))$ to mean that if there is a limiting operation, like $x \rightarrow \infty$, then

$$\frac{f(x)}{g(x)} \rightarrow 0$$

- and $f(x) \sim g(x)$ to mean $\frac{f(x)}{g(x)} \rightarrow 1$.

- We need some notation which avoids the continual use of C_1, C_2, \dots , etc., to denote unspecified constants.
- Given functions f and g defined on some domain \mathcal{X} with $g(x) \geq 0$ for all $x \in \mathcal{X}$ we write

$$f(x) = O(g(x)) \quad (3.2)$$

to mean that for some constant C and all $x \in \mathcal{X}$

$$|f(x)| \leq Cg(x).$$

- We also use $f(x) = o(g(x))$ to mean that if there is a limiting operation, like $x \rightarrow \infty$, then

$$\frac{f(x)}{g(x)} \rightarrow 0$$

- and $f(x) \sim g(x)$ to mean $\frac{f(x)}{g(x)} \rightarrow 1$.
- The symbol O was introduced by Bachmann in 1894, and the symbol o by Landau in 1909.

- We need some notation which avoids the continual use of C_1, C_2, \dots , etc., to denote unspecified constants.
- Given functions f and g defined on some domain \mathcal{X} with $g(x) \geq 0$ for all $x \in \mathcal{X}$ we write

$$f(x) = O(g(x)) \quad (3.2)$$

to mean that for some constant C and all $x \in \mathcal{X}$

$$|f(x)| \leq Cg(x).$$

- We also use $f(x) = o(g(x))$ to mean that if there is a limiting operation, like $x \rightarrow \infty$, then

$$\frac{f(x)}{g(x)} \rightarrow 0$$

- and $f(x) \sim g(x)$ to mean $\frac{f(x)}{g(x)} \rightarrow 1$.
- The symbol O was introduced by Bachmann in 1894, and the symbol o by Landau in 1909.
- The O -symbol can be a bit clumsy for complicated expressions and we will often instead use the Vinogradov symbols, which I. M. Vinogradov introduced about 1934.

- Thus we will use

$$f \ll g \quad (3.3)$$

to mean $f = O(g)$.

- Thus we will use

$$f \ll g \quad (3.3)$$

to mean $f = O(g)$.

- This also has the advantage that we can write strings of inequalities in the form

$$f_1 \ll f_2 \ll f_3 \ll \dots$$

- Thus we will use

$$f \ll g \quad (3.3)$$

to mean $f = O(g)$.

- This also has the advantage that we can write strings of inequalities in the form

$$f_1 \ll f_2 \ll f_3 \ll \dots$$

- Also if f is also non-negative we may use

$$g \gg f$$

to mean (3.3).

- Our first theorem, due to Gauss, is on averages of $r(n)$.

- Our first theorem, due to Gauss, is on averages of $r(n)$.
- The proof illustrates a rather general principle.

Theorem 19 (Gauss)

Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} , i.e. the number of ordered pairs of integers x, y with $x^2 + y^2 \leq X$. Then

$$G(X) = \sum_{n \leq X} r(n) \text{ and } G(X) = \pi X + O(X^{1/2}).$$

- Our first theorem, due to Gauss, is on averages of $r(n)$.
- The proof illustrates a rather general principle.

Theorem 19 (Gauss)

Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} , i.e. the number of ordered pairs of integers x, y with $x^2 + y^2 \leq X$. Then

$$G(X) = \sum_{n \leq X} r(n) \text{ and } G(X) = \pi X + O(X^{1/2}).$$

- Let $E(X) = G(X) - \pi X$.

- Our first theorem, due to Gauss, is on averages of $r(n)$.
- The proof illustrates a rather general principle.

Theorem 19 (Gauss)

Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} , i.e. the number of ordered pairs of integers x, y with $x^2 + y^2 \leq X$. Then

$$G(X) = \sum_{n \leq X} r(n) \text{ and } G(X) = \pi X + O(X^{1/2}).$$

- Let $E(X) = G(X) - \pi X$.
- The question of the actual size of $E(X)$ is one of the classic problems of analytic number theory.

- **Theorem 19(Gauss).** *Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} . Then $G(X) = \pi X + O(X^{1/2})$.*

- **Theorem 19(Gauss).** Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} . Then $G(X) = \pi X + O(X^{1/2})$.
- To prove the theorem we associate with each lattice point (x, y) the unit square $S(x, y) = [x, x + 1) \times [y, y + 1)$ and this gives a partition of the plane.

- **Theorem 19(Gauss).** Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} . Then $G(X) = \pi X + O(X^{1/2})$.
- To prove the theorem we associate with each lattice point (x, y) the unit square $S(x, y) = [x, x + 1) \times [y, y + 1)$ and this gives a partition of the plane.
- The squares with $x^2 + y^2 \leq X$ are contained in the disc centred at 0 of radius $\sqrt{X} + \sqrt{2}$ (apply Pythagorus's theorem).

- **Theorem 19(Gauss).** Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} . Then $G(X) = \pi X + O(X^{1/2})$.
- To prove the theorem we associate with each lattice point (x, y) the unit square $S(x, y) = [x, x + 1) \times [y, y + 1)$ and this gives a partition of the plane.
- The squares with $x^2 + y^2 \leq X$ are contained in the disc centred at 0 of radius $\sqrt{X} + \sqrt{2}$ (apply Pythagorus's theorem).
- On the other hand their union contains the disc centered at 0 of radius $\sqrt{X} - \sqrt{2}$.

- **Theorem 19(Gauss).** Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} . Then $G(X) = \pi X + O(X^{1/2})$.
- To prove the theorem we associate with each lattice point (x, y) the unit square $S(x, y) = [x, x + 1) \times [y, y + 1)$ and this gives a partition of the plane.
- The squares with $x^2 + y^2 \leq X$ are contained in the disc centred at 0 of radius $\sqrt{X} + \sqrt{2}$ (apply Pythagorus's theorem).
- On the other hand their union contains the disc centered at 0 of radius $\sqrt{X} - \sqrt{2}$.
- Moreover their area is $G(X)$ and it lies between the areas of the two discs, so

$$\pi(\sqrt{X} - \sqrt{2})^2 \leq G(X) \leq \pi(\sqrt{X} + \sqrt{2})^2,$$

- **Theorem 19(Gauss).** Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} . Then $G(X) = \pi X + O(X^{1/2})$.
- To prove the theorem we associate with each lattice point (x, y) the unit square $S(x, y) = [x, x + 1) \times [y, y + 1)$ and this gives a partition of the plane.
- The squares with $x^2 + y^2 \leq X$ are contained in the disc centred at 0 of radius $\sqrt{X} + \sqrt{2}$ (apply Pythagorus's theorem).
- On the other hand their union contains the disc centered at 0 of radius $\sqrt{X} - \sqrt{2}$.
- Moreover their area is $G(X)$ and it lies between the areas of the two discs, so

$$\pi(\sqrt{X} - \sqrt{2})^2 \leq G(X) \leq \pi(\sqrt{X} + \sqrt{2})^2,$$

- i.e.

$$\pi X - \pi 2\sqrt{2}\sqrt{X} + 2 < G(X) \leq \pi X + \pi 2\sqrt{2}\sqrt{X} + 2\pi,$$

- **Theorem 19(Gauss).** Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} . Then $G(X) = \pi X + O(X^{1/2})$.
- To prove the theorem we associate with each lattice point (x, y) the unit square $S(x, y) = [x, x + 1) \times [y, y + 1)$ and this gives a partition of the plane.
- The squares with $x^2 + y^2 \leq X$ are contained in the disc centred at 0 of radius $\sqrt{X} + \sqrt{2}$ (apply Pythagorus's theorem).
- On the other hand their union contains the disc centered at 0 of radius $\sqrt{X} - \sqrt{2}$.
- Moreover their area is $G(X)$ and it lies between the areas of the two discs, so

$$\pi(\sqrt{X} - \sqrt{2})^2 \leq G(X) \leq \pi(\sqrt{X} + \sqrt{2})^2,$$

- i.e.

$$\pi X - \pi 2\sqrt{2}\sqrt{X} + 2 < G(X) \leq \pi X + \pi 2\sqrt{2}\sqrt{X} + 2\pi,$$

- Hence $|G(X) - \pi X| \leq \pi 2\sqrt{2}\sqrt{X} + 3\pi \ll \sqrt{X}$.

- **Theorem 19(Gauss).** Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} . Then $G(X) = \pi X + O(X^{1/2})$.

- **Theorem 19(Gauss).** Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} . Then $G(X) = \pi X + O(X^{1/2})$.
- The general principle involved in the above proof is that if one has some finite convex region in the plane and one expands it homothetically, then the number of lattice points in the region is approximately the area of the region with an error of order the length of the boundary.

- **Theorem 19(Gauss).** Let $X \geq 1$ and $G(X)$ denote the number of lattice points in the disc centre 0 of radius \sqrt{X} . Then $G(X) = \pi X + O(X^{1/2})$.
- The general principle involved in the above proof is that if one has some finite convex region in the plane and one expands it homothetically, then the number of lattice points in the region is approximately the area of the region with an error of order the length of the boundary.
- Thus in the theorem above the unit disc centered at the origin has its linear dimensions blown up by a factor of \sqrt{X} (its radius) and the number of lattice points is approximately its area, πX with an error of order the length of the boundary $2\pi\sqrt{X}$.

- Before proceeding to look further at some of the arithmetical functions we have defined above, consider the important sum

$$S(X) = \sum_{n \leq X} \frac{1}{n} \quad (3.4)$$

where $X \geq 1$.

- Before proceeding to look further at some of the arithmetical functions we have defined above, consider the important sum

$$S(X) = \sum_{n \leq X} \frac{1}{n} \quad (3.4)$$

where $X \geq 1$.

- This crops up in many places.

- Before proceeding to look further at some of the arithmetical functions we have defined above, consider the important sum

$$S(X) = \sum_{n \leq X} \frac{1}{n} \quad (3.4)$$

where $X \geq 1$.

- This crops up in many places.
- We already saw it in Chapter 1 in Euler's proof of the infinitude of primes, Theorem 1.3.

- Before proceeding to look further at some of the arithmetical functions we have defined above, consider the important sum

$$S(X) = \sum_{n \leq X} \frac{1}{n} \quad (3.4)$$

where $X \geq 1$.

- This crops up in many places.
- We already saw it in Chapter 1 in Euler's proof of the infinitude of primes, Theorem 1.3.
- We observed that the sum $S(X)$ behaves a bit like the integral so is a bit like $\log X$ which tends to infinity with X .

- In fact there is something more precise which one can say, which was discovered by Euler.

Theorem 20 (Euler)

When $X \geq 1$ $S(X) = \log X + C_0 + O\left(\frac{1}{X}\right)$ where

$C_0 = 0.577\dots = 1 - \int_1^\infty \frac{t - \lfloor t \rfloor}{t^2} dt$ is Euler's constant and
 $\lfloor *\rfloor$ is defined in Definition 1.5.

- In fact there is something more precise which one can say, which was discovered by Euler.

Theorem 20 (Euler)

When $X \geq 1$ $S(X) = \log X + C_0 + O\left(\frac{1}{X}\right)$ where

$C_0 = 0.577\dots = 1 - \int_1^\infty \frac{t - \lfloor t \rfloor}{t^2} dt$ is Euler's constant and
 $\lfloor \cdot \rfloor$ is defined in Definition 1.5.

- *Proof.* We have

$$\begin{aligned} S(X) &= \sum_{n \leq X} \left(\frac{1}{X} + \int_n^X \frac{dt}{t^2} \right) = \frac{\lfloor X \rfloor}{X} + \int_1^X \frac{\lfloor t \rfloor}{t^2} dt \\ &= \int_1^X \frac{dt}{t} + 1 - \int_1^X \frac{t - \lfloor t \rfloor}{t^2} dt - \frac{X - \lfloor X \rfloor}{X} \\ &= \log X + C_0 + \int_X^\infty \frac{t - \lfloor t \rfloor}{t^2} dt - \frac{X - \lfloor X \rfloor}{X}. \end{aligned}$$

- We follow Dirichlet's proof method, which has become known as the *method of the parabola*.

- We follow Dirichlet's proof method, which has become known as the *method of the parabola*.
- The divisor function $d(n)$ can be thought of as the number of ordered pairs of positive integers m, l such that $ml = n$.

- We follow Dirichlet's proof method, which has become known as the *method of the parabola*.
- The divisor function $d(n)$ can be thought of as the number of ordered pairs of positive integers m, l such that $ml = n$.
- Thus when we sum over $n \leq X$ we are just counting the number of ordered pairs m, l such that $ml \leq X$.

- We follow Dirichlet's proof method, which has become known as the *method of the parabola*.
- The divisor function $d(n)$ can be thought of as the number of ordered pairs of positive integers m, l such that $ml = n$.
- Thus when we sum over $n \leq X$ we are just counting the number of ordered pairs m, l such that $ml \leq X$.
- In other words we are counting the number of *lattice points* m, l under the rectangular hyperbola

$$xy = X.$$

- We follow Dirichlet's proof method, which has become known as the *method of the parabola*.
- The divisor function $d(n)$ can be thought of as the number of ordered pairs of positive integers m, l such that $ml = n$.
- Thus when we sum over $n \leq X$ we are just counting the number of ordered pairs m, l such that $ml \leq X$.
- In other words we are counting the number of *lattice points* m, l under the rectangular hyperbola

$$xy = X.$$

- We could just crudely count, given $m \leq X$, the number of choices for l , namely

$$\left\lfloor \frac{X}{m} \right\rfloor$$

and obtain

$$\sum_{m \leq X} \frac{X}{m} + O(X)$$

but this gives a much weaker error term.

- Dirichlet's idea is divide the region under the hyperbola into two parts using its symmetry in the line $y = x$.

- Dirichlet's idea is divide the region under the hyperbola into two parts using its symmetry in the line $y = x$.
- That two regions are the part with

$$m \leq \sqrt{X}, \quad l \leq \frac{X}{m}$$

and that with

$$l \leq \sqrt{X}, \quad m \leq \frac{X}{l}.$$

- Dirichlet's idea is divide the region under the hyperbola into two parts using its symmetry in the line $y = x$.
- That two regions are the part with

$$m \leq \sqrt{X}, \quad l \leq \frac{X}{m}$$

and that with

$$l \leq \sqrt{X}, \quad m \leq \frac{X}{l}.$$

- Clearly each region has the same number of lattice points. However the points m, l with $m \leq \sqrt{X}$ and $l \leq \sqrt{X}$ are counted in both regions.

- Thus we obtain

$$\begin{aligned}\sum_{n \leq X} d(n) &= 2 \sum_{m \leq \sqrt{X}} \left\lfloor \frac{X}{m} \right\rfloor - \lfloor \sqrt{X} \rfloor^2 \\ &= 2 \sum_{m \leq \sqrt{X}} \frac{X}{m} - X + O(X^{1/2}) \\ &= 2X(\log(\sqrt{X}) + C) - X + O(X^{1/2}).\end{aligned}$$

where in the last line we used Euler's estimate for $S(x)$.

- Gauss suggested that a good approximation to $\pi(x)$, the number of primes not exceeding x , is

$$\text{li}(x) = \int_2^x \frac{dt}{\log t}.$$

- Gauss suggested that a good approximation to $\pi(x)$, the number of primes not exceeding x , is

$$\text{li}(x) = \int_2^x \frac{dt}{\log t}.$$

- He also carried out some calculations for $x \leq 1000$. Today we have much more extensive calculations.

	x	$\pi(x)$	$li(x)$
Factorization and Primality Testing Chapter 9 Arithmetical Functions	10^4	1229	1245
Robert C. Vaughan	10^5	9592	9628
Introduction	10^6	78498	78626
Dirichlet Convolution	10^7	664579	664917
Averages of Arithmetical Functions	10^8	5761455	5762208
Elementary Prime number theory	10^9	50847534	50849233
Orders of magnitude of arithmetical functions.	10^{10}	455052511	455055613
	10^{11}	4118054813	4118066399
	10^{12}	37607912018	37607950279
	10^{13}	346065536839	346065645809
	10^{14}	3204941750802	3204942065690
	10^{15}	29844570422669	29844571475286
	10^{16}	279238341033925	279238344248555
	10^{17}	2623557157654233	2623557165610820
	10^{18}	24739954287740860	24739954309690413
	10^{19}	234057667276344607	234057667376222382
	10^{20}	2220819602560918840	2220819602783663483
	10^{21}	21127269486018731928	21127269486616126182
	10^{22}	201467286689315906290	201467286691248261498

- This table has been extended out to at least 10^{27} . So is

$$\pi(x) < \text{li}(x)$$

always true?

Introduction

Dirichlet
Convolution

Averages of
Arithmetical
Functions

Elementary
Prime number
theory

Orders of
magnitude of
arithmetical
functions.

- This table has been extended out to at least 10^{27} . So is

$$\pi(x) < \text{li}(x)$$

always true?

- No! Littlewood in 1914 showed that there are infinitely many values of x for which

$$\pi(x) > \text{li}(x)$$

and now we believe that the first sign change occurs when

$$x \approx 1.387162 \times 10^{316}$$

well beyond what can be calculated directly.

- This table has been extended out to at least 10^{27} . So is

$$\pi(x) < \text{li}(x)$$

always true?

- No! Littlewood in 1914 showed that there are infinitely many values of x for which

$$\pi(x) > \text{li}(x)$$

and now we believe that the first sign change occurs when

$$x \approx 1.387162 \times 10^{316}$$

well beyond what can be calculated directly.

- For many years it was only known that the first sign change in $\pi(x) - \text{li}(x)$ occurs for *some* x satisfying

$$x < 10^{10^{10^{964}}}.$$

- This table has been extended out to at least 10^{27} . So is

$$\pi(x) < \text{li}(x)$$

always true?

- No! Littlewood in 1914 showed that there are infinitely many values of x for which

$$\pi(x) > \text{li}(x)$$

and now we believe that the first sign change occurs when

$$x \approx 1.387162 \times 10^{316}$$

well beyond what can be calculated directly.

- For many years it was only known that the first sign change in $\pi(x) - \text{li}(x)$ occurs for *some* x satisfying

$$x < 10^{10^{10^{964}}}.$$

- This number was computed by Skewes and G. H. Hardy once wrote that this is probably the largest number which has ever had any *practical* (my emphasis) value!

Factorization
and Primality

Testing
Chapter 9

Arithmetical
Functions

Robert C.
Vaughan

Introduction

Dirichlet
Convolution

Averages of
Arithmetical
Functions

Elementary
Prime number
theory

Orders of
magnitude of
arithmetical
functions.

- The strongest results we know about the distribution of primes use complex analytic methods.

Factorization
and Primality

Testing
Chapter 9

Arithmetical
Functions

Robert C.
Vaughan

Introduction

Dirichlet
Convolution

Averages of
Arithmetical
Functions

Elementary
Prime number
theory

Orders of
magnitude of
arithmetical
functions.

- The strongest results we know about the distribution of primes use complex analytic methods.
- However there are some very useful and basic results that can be established elementarily.

- The strongest results we know about the distribution of primes use complex analytic methods.
- However there are some very useful and basic results that can be established elementarily.
- Many expositions of the results we are going to describe use nothing more than properties of binomial coefficients, but it is good to start to get the flavour of more sophisticated methods even though here they could be interpreted as just properties of binomial coefficients.

- We start by introducing **The von Mangold function.**
This is defined by

$$\Lambda(n) = \begin{cases} 0 & \text{if } p_1 p_2 | n \text{ with } p_1 \neq p_2, \\ \log p & \text{if } n = p^k. \end{cases}$$

- We start by introducing **The von Mangold function**.
This is defined by

$$\Lambda(n) = \begin{cases} 0 & \text{if } p_1 p_2 | n \text{ with } p_1 \neq p_2, \\ \log p & \text{if } n = p^k. \end{cases}$$

- The interesting thing is that the support of Λ is on the prime powers, the higher powers are quite rare, at most \sqrt{x} of them not exceeding x .

- We start by introducing **The von Mangoldt function**. This is defined by

$$\Lambda(n) = \begin{cases} 0 & \text{if } p_1 p_2 | n \text{ with } p_1 \neq p_2, \\ \log p & \text{if } n = p^k. \end{cases}$$

- The interesting thing is that the support of Λ is on the prime powers, the higher powers are quite rare, at most \sqrt{x} of them not exceeding x .
- This function is definitely not multiplicative, since $\Lambda(1) = 0$.

- However the von Mangoldt function does satisfy some interesting relationships.

Lemma 21

Let $n \in \mathbb{N}$. Then $\sum_{m|n} \Lambda(m) = \log n$.

- However the von Mangoldt function does satisfy some interesting relationships.

Lemma 21

Let $n \in \mathbb{N}$. Then $\sum_{m|n} \Lambda(m) = \log n$.

- The proof is a simple counting argument.

Proof.

Write $n = p_1^{k_1} \dots p_r^{k_r}$ with the p_j distinct. Then for a non-zero contribution to the sum we have $m = p_s^{j_s}$ for some s with $1 \leq s \leq r$ and j_s with $1 \leq j_s \leq k_s$. Thus the sum is

$$\sum_{s=1}^r \sum_{j_s=1}^{k_s} \log p_s = \log n.$$

- We need to know something about the average of $\log n$.

Lemma 22 (Stirling)

Suppose that $X \in \mathbb{R}$ and $X \geq 2$. Then

$$\sum_{n \leq X} \log n = X(\log X - 1) + O(\log X).$$

- This can be thought of as the logarithm of Stirling's formula for $\lfloor X \rfloor!$.

Proof.

We have

$$\begin{aligned}\sum_{n \leq X} \log n &= \sum_{n \leq X} \left(\log X - \int_n^X \frac{dt}{t} \right) \\ &= \lfloor X \rfloor \log X - \int_1^X \frac{\lfloor t \rfloor}{t} dt \\ &= X(\log X - 1) + \int_1^X \frac{t - \lfloor t \rfloor}{t} dt + O(\log X).\end{aligned}$$

- Now we can say something about averages of the von Mangoldt function.

Theorem 23

Suppose that $X \in \mathbb{R}$ and $X \geq 2$. Then

$$\sum_{m \leq X} \Lambda(m) \left\lfloor \frac{X}{m} \right\rfloor = X(\log X - 1) + O(\log X).$$

- Now we can say something about averages of the von Mangoldt function.

Theorem 23

Suppose that $X \in \mathbb{R}$ and $X \geq 2$. Then

$$\sum_{m \leq X} \Lambda(m) \left\lfloor \frac{X}{m} \right\rfloor = X(\log X - 1) + O(\log X).$$

- This is easy

Proof.

We substitute from the first lemma into the second. Thus

$$\sum_{n \leq X} \sum_{m|n} \Lambda(m) = X(\log X - 1) + O(\log X).$$

Now we interchange the order in the double sum and count the number of multiples of m not exceeding X . □

Factorization and Primality

Testing Chapter 9 Arithmetical Functions

Robert C.
Vaughan

Introduction

Dirichlet
Convolution

Averages of
Arithmetical
Functions

Elementary
Prime number
theory

Orders of
magnitude of
arithmetical
functions.

Factorization
and Primality

Testing
Chapter 9

Arithmetical
Functions

Robert C.
Vaughan

Introduction

Dirichlet
Convolution

Averages of
Arithmetical
Functions

Elementary
Prime number
theory

Orders of
magnitude of
arithmetical
functions.

- At this stage it is necessary to introduce some of the fundamental counting functions of prime number theory.

- At this stage it is necessary to introduce some of the fundamental counting functions of prime number theory.
- For $X \geq 0$ we define

$$\psi(X) = \sum_{n \leq X} \Lambda(n),$$

$$\vartheta(X) = \sum_{p \leq X} \log p,$$

$$\pi(X) = \sum_{p \leq X} 1.$$

- The following theorem shows the close relationship between these three functions.

Theorem 24

Suppose that $X \geq 2$. Then

$$\psi(X) = \sum_k \vartheta(X^{1/k}),$$

$$\vartheta(X) = \sum_k \mu(k) \psi(X^{1/k}),$$

$$\pi(X) = \frac{\vartheta(X)}{\log X} + \int_2^X \frac{\vartheta(t)}{t \log^2 t} dt,$$

$$\vartheta(X) = \pi(X) \log X - \int_2^X \frac{\pi(t)}{t} dt.$$

Note that each of these functions are 0 when $X < 2$, so the sums are all finite.

• We prove

$$\psi(X) = \sum_k \vartheta(X^{1/k}),$$

$$\vartheta(X) = \sum_k \mu(k) \psi(X^{1/k}),$$

$$\pi(X) = \frac{\vartheta(X)}{\log X} + \int_2^X \frac{\vartheta(t)}{t \log^2 t} dt,$$

$$\vartheta(X) = \pi(X) \log X - \int_2^X \frac{\pi(t)}{t} dt.$$

- We prove

$$\psi(X) = \sum_k \vartheta(X^{1/k}),$$

$$\vartheta(X) = \sum_k \mu(k) \psi(X^{1/k}),$$

$$\pi(X) = \frac{\vartheta(X)}{\log X} + \int_2^X \frac{\vartheta(t)}{t \log^2 t} dt,$$

$$\vartheta(X) = \pi(X) \log X - \int_2^X \frac{\pi(t)}{t} dt.$$

- By the definition of Λ we have

$$\psi(X) = \sum_k \sum_{p \leq X^{1/k}} \log p = \sum_k \vartheta(X^{1/k}).$$

- We prove

$$\psi(X) = \sum_k \vartheta(X^{1/k}),$$

$$\vartheta(X) = \sum_k \mu(k) \psi(X^{1/k}),$$

$$\pi(X) = \frac{\vartheta(X)}{\log X} + \int_2^X \frac{\vartheta(t)}{t \log^2 t} dt,$$

$$\vartheta(X) = \pi(X) \log X - \int_2^X \frac{\pi(t)}{t} dt.$$

- By the definition of Λ we have

$$\psi(X) = \sum_k \sum_{p \leq X^{1/k}} \log p = \sum_k \vartheta(X^{1/k}).$$

- Hence we have

$$\sum_k \mu(k) \psi(X^{1/k}) = \sum_k \mu(k) \sum_l \vartheta(X^{1/(kl)}).$$

- Collecting together the terms for which $kl = m$ for a given m this becomes

$$\sum_m \vartheta(X^{1/m}) \sum_{k|m} \mu(k) = \vartheta(X).$$

- Collecting together the terms for which $kl = m$ for a given m this becomes

$$\sum_m \vartheta(X^{1/m}) \sum_{k|m} \mu(k) = \vartheta(X).$$

- We also have

$$\begin{aligned} \pi(X) &= \sum_{p \leq X} (\log p) \left(\frac{1}{\log X} + \int_p^X \frac{dt}{t \log^2 t} \right) \\ &= \frac{\vartheta(X)}{\log X} + \int_2^X \frac{\vartheta(t)}{t \log^2 t} dt. \end{aligned}$$

- Collecting together the terms for which $kl = m$ for a given m this becomes

$$\sum_m \vartheta(X^{1/m}) \sum_{k|m} \mu(k) = \vartheta(X).$$

- We also have

$$\begin{aligned} \pi(X) &= \sum_{p \leq X} (\log p) \left(\frac{1}{\log X} + \int_p^X \frac{dt}{t \log^2 t} \right) \\ &= \frac{\vartheta(X)}{\log X} + \int_2^X \frac{\vartheta(t)}{t \log^2 t} dt. \end{aligned}$$

- The final identity is similar.

$$\vartheta(X) = \sum_{p \leq X} \log X - \sum_{p \leq X} \int_p^X \frac{dt}{t}$$

etcetera.

- Now we come to a series of theorems which are still used frequently.

Theorem 25 (Chebyshev)

There are positive constants C_1 and C_2 such that for each $X \in \mathbb{R}$ with $X \geq 2$ we have

$$C_1 X < \psi(X) < C_2 X.$$

- Now we come to a series of theorems which are still used frequently.

Theorem 25 (Chebyshev)

There are positive constants C_1 and C_2 such that for each $X \in \mathbb{R}$ with $X \geq 2$ we have

$$C_1 X < \psi(X) < C_2 X.$$

- Proof. For any $\theta \in \mathbb{R}$ let

$$f(\theta) = \lfloor \theta \rfloor - 2 \left\lfloor \frac{\theta}{2} \right\rfloor.$$

Then f is periodic with period 2 and

$$f(\theta) = \begin{cases} 0 & (0 \leq \theta < 1), \\ 1 & (1 \leq \theta < 2). \end{cases}$$

• Hence

$$\begin{aligned}\psi(X) &\geq \sum_{n \leq X} \Lambda(n) f(X/n) \\ &= \sum_{n \leq X} \Lambda(n) \left\lfloor \frac{X}{n} \right\rfloor - 2 \sum_{n \leq X/2} \Lambda(n) \left\lfloor \frac{X/2}{n} \right\rfloor.\end{aligned}$$

- Hence

$$\begin{aligned}\psi(X) &\geq \sum_{n \leq X} \Lambda(n) f(X/n) \\ &= \sum_{n \leq X} \Lambda(n) \left\lfloor \frac{X}{n} \right\rfloor - 2 \sum_{n \leq X/2} \Lambda(n) \left\lfloor \frac{X/2}{n} \right\rfloor.\end{aligned}$$

- Here we used the fact that there is no contribution to the second sum when $X/2 < n \leq X$.

• Hence

$$\begin{aligned}\psi(X) &\geq \sum_{n \leq X} \Lambda(n) f(X/n) \\ &= \sum_{n \leq X} \Lambda(n) \left\lfloor \frac{X}{n} \right\rfloor - 2 \sum_{n \leq X/2} \Lambda(n) \left\lfloor \frac{X/2}{n} \right\rfloor.\end{aligned}$$

- Here we used the fact that there is no contribution to the second sum when $X/2 < n \leq X$.
- Now we apply Theorem 23 and obtain for $x \geq 4$

$$\begin{aligned}X(\log X - 1) - 2 \frac{X}{2} \left(\log \frac{X}{2} - 1 \right) + O(\log X) \\ = X \log 2 + O(\log X).\end{aligned}$$

- Hence

$$\begin{aligned}\psi(X) &\geq \sum_{n \leq X} \Lambda(n) f(X/n) \\ &= \sum_{n \leq X} \Lambda(n) \left\lfloor \frac{X}{n} \right\rfloor - 2 \sum_{n \leq X/2} \Lambda(n) \left\lfloor \frac{X/2}{n} \right\rfloor.\end{aligned}$$

- Here we used the fact that there is no contribution to the second sum when $X/2 < n \leq X$.
- Now we apply Theorem 23 and obtain for $x \geq 4$

$$\begin{aligned}X(\log X - 1) - 2 \frac{X}{2} \left(\log \frac{X}{2} - 1 \right) + O(\log X) \\ = X \log 2 + O(\log X).\end{aligned}$$

- This establishes the first inequality of the theorem for all $X > C$ for some positive constant C . Since $\psi(X) \geq \log 2$ for all $X \geq 2$ the conclusion follows if C_1 is small enough.

- We also have, for $X \geq 4$,

$$\psi(X) - \psi(X/2) \leq \sum_{n \leq X} \Lambda(n) f(X/n)$$

and we have already seen that this is

$$X \log 2 + O(\log X).$$

- We also have, for $X \geq 4$,

$$\psi(X) - \psi(X/2) \leq \sum_{n \leq X} \Lambda(n) f(X/n)$$

and we have already seen that this is

$$X \log 2 + O(\log X).$$

- Hence for some positive constant C we have, for all $X > 0$,

$$\psi(X) - \psi(X/2) \leq CX.$$

Hence, for any $k \geq 0$,

$$\psi(X2^{-k}) - \psi(X2^{-k-1}) < CX2^{-k}.$$

- We also have, for $X \geq 4$,

$$\psi(X) - \psi(X/2) \leq \sum_{n \leq X} \Lambda(n) f(X/n)$$

and we have already seen that this is

$$X \log 2 + O(\log X).$$

- Hence for some positive constant C we have, for all $X > 0$,

$$\psi(X) - \psi(X/2) \leq CX.$$

Hence, for any $k \geq 0$,

$$\psi(X2^{-k}) - \psi(X2^{-k-1}) < CX2^{-k}.$$

- Summing over all k gives the desired upper bound.

- The following now follow easily from the last couple of theorems.

Corollary 26 (Chebyshev)

There are positive constants C_3, C_4, C_5, C_6 such that for every $X \geq 2$ we have

$$C_3X < \vartheta(X) < C_4X,$$
$$\frac{C_5X}{\log X} < \pi(X) < \frac{C_6X}{\log X}.$$

- It is also possible to establish a more precise version of Euler's result on the primes.

Theorem 27 (Mertens)

There is a constant B such that whenever $X \geq 2$ we have

$$\sum_{n \leq X} \frac{\Lambda(n)}{n} = \log X + O(1),$$

$$\sum_{p \leq X} \frac{\log p}{p} = \log X + O(1),$$

$$\sum_{p \leq X} \frac{1}{p} = \log \log X + B + O\left(\frac{1}{\log X}\right).$$

- It is also possible to establish a more precise version of Euler's result on the primes.

Theorem 27 (Mertens)

There is a constant B such that whenever $X \geq 2$ we have

$$\sum_{n \leq X} \frac{\Lambda(n)}{n} = \log X + O(1),$$

$$\sum_{p \leq X} \frac{\log p}{p} = \log X + O(1),$$

$$\sum_{p \leq X} \frac{1}{p} = \log \log X + B + O\left(\frac{1}{\log X}\right).$$

- I don't want to spend time on the proof, but it is given below and you can see it in the files if you are interested.

- Proof By Theorem 23 we have

$$\sum_{m \leq X} \Lambda(m) \left\lfloor \frac{X}{m} \right\rfloor = X(\log X - 1) + O(\log X).$$

- Proof By Theorem 23 we have

$$\sum_{m \leq X} \Lambda(m) \left\lfloor \frac{X}{m} \right\rfloor = X(\log X - 1) + O(\log X).$$

- The left hand side is

$$X \sum_{m \leq X} \frac{\Lambda(m)}{m} + O(\psi(X)).$$

- Proof By Theorem 23 we have

$$\sum_{m \leq X} \Lambda(m) \left\lfloor \frac{X}{m} \right\rfloor = X(\log X - 1) + O(\log X).$$

- The left hand side is

$$X \sum_{m \leq X} \frac{\Lambda(m)}{m} + O(\psi(X)).$$

- Hence by Cheyshev's theorem we have

$$X \sum_{m \leq X} \frac{\Lambda(m)}{m} = X \log X + O(X).$$

- Proof By Theorem 23 we have

$$\sum_{m \leq X} \Lambda(m) \left\lfloor \frac{X}{m} \right\rfloor = X(\log X - 1) + O(\log X).$$

- The left hand side is

$$X \sum_{m \leq X} \frac{\Lambda(m)}{m} + O(\psi(X)).$$

- Hence by Cheyshev's theorem we have

$$X \sum_{m \leq X} \frac{\Lambda(m)}{m} = X \log X + O(X).$$

- Dividing by X gives the first result.

- We also have

$$\sum_{m \leq X} \frac{\Lambda(m)}{m} = \sum_k \sum_{p^k \leq X} \frac{\log p}{p^k}.$$

- We also have

$$\sum_{m \leq X} \frac{\Lambda(m)}{m} = \sum_k \sum_{p^k \leq X} \frac{\log p}{p^k}.$$

- The terms with $k \geq 2$ contribute

$$\leq \sum_p \sum_{k \geq 2} \frac{\log p}{p^k} \leq \sum_{n=2}^{\infty} \frac{\log n}{n(n-1)}$$

which is convergent, and this gives the second expression.

- Finally we can see that

$$\begin{aligned}\sum_{p \leq X} \frac{1}{p} &= \sum_{p \leq X} \frac{\log p}{p} \left(\frac{1}{\log X} + \int_p^X \frac{dt}{t \log^2 t} \right) \\ &= \frac{1}{\log X} \sum_{p \leq X} \frac{\log p}{p} + \int_2^X \sum_{p \leq t} \frac{\log p}{p} \frac{dt}{t \log^2 t}.\end{aligned}$$

- Finally we can see that

$$\begin{aligned}\sum_{p \leq X} \frac{1}{p} &= \sum_{p \leq X} \frac{\log p}{p} \left(\frac{1}{\log X} + \int_p^X \frac{dt}{t \log^2 t} \right) \\ &= \frac{1}{\log X} \sum_{p \leq X} \frac{\log p}{p} + \int_2^X \sum_{p \leq t} \frac{\log p}{p} \frac{dt}{t \log^2 t}.\end{aligned}$$

- $E(t) = \sum_{p \leq t} \frac{\log p}{p} - \log t$ so that by the second part of the theorem we have $E(t) \ll 1$.

- Finally we can see that

$$\begin{aligned} \sum_{p \leq X} \frac{1}{p} &= \sum_{p \leq X} \frac{\log p}{p} \left(\frac{1}{\log X} + \int_p^X \frac{dt}{t \log^2 t} \right) \\ &= \frac{1}{\log X} \sum_{p \leq X} \frac{\log p}{p} + \int_2^X \sum_{p \leq t} \frac{\log p}{p} \frac{dt}{t \log^2 t}. \end{aligned}$$

- $E(t) = \sum_{p \leq t} \frac{\log p}{p} - \log t$ so that by the second part of the theorem we have $E(t) \ll 1$.
- Then the above is

$$\begin{aligned} &= \frac{\log X + E(X)}{\log X} + \int_2^X \frac{\log t + E(t)}{t \log^2 t} dt \\ &= \log \log X + 1 - \log \log 2 + \int_2^\infty \frac{E(t)}{t \log^2 t} dt \\ &\quad + \frac{E(X)}{\log X} - \int_X^\infty \frac{E(t)}{t \log^2 t} dt. \end{aligned}$$

- Finally we can see that

$$\begin{aligned} \sum_{p \leq X} \frac{1}{p} &= \sum_{p \leq X} \frac{\log p}{p} \left(\frac{1}{\log X} + \int_p^X \frac{dt}{t \log^2 t} \right) \\ &= \frac{1}{\log X} \sum_{p \leq X} \frac{\log p}{p} + \int_2^X \sum_{p \leq t} \frac{\log p}{p} \frac{dt}{t \log^2 t}. \end{aligned}$$

- $E(t) = \sum_{p \leq t} \frac{\log p}{p} - \log t$ so that by the second part of the theorem we have $E(t) \ll 1$.
- Then the above is

$$\begin{aligned} &= \frac{\log X + E(X)}{\log X} + \int_2^X \frac{\log t + E(t)}{t \log^2 t} dt \\ &= \log \log X + 1 - \log \log 2 + \int_2^\infty \frac{E(t)}{t \log^2 t} dt \\ &\quad + \frac{E(X)}{\log X} - \int_X^\infty \frac{E(t)}{t \log^2 t} dt. \end{aligned}$$

- The first integral converges and the last two terms are $\ll \frac{1}{\log X}$.

- Another theorem which can be deduced is the following.

Theorem 28 (Mertens)

We have

$$\prod_{p \leq X} \left(1 - \frac{1}{p}\right)^{-1} = e^C \log X + O(1).$$

- Another theorem which can be deduced is the following.

Theorem 28 (Mertens)

We have

$$\prod_{p \leq X} \left(1 - \frac{1}{p}\right)^{-1} = e^C \log X + O(1).$$

- I do not give the proof here. In practice the third estimate in the previous theorem is usually adequate.

- There is an interesting application of the above which lead to some important developments.

- There is an interesting application of the above which lead to some important developments.
- As a companion to the definition of a multiplicative function we have **Definition**. An $f \in \mathcal{A}$ is **additive** when it satisfies $f(mn) = f(m) + f(n)$ whenever $(m, n) = 1$.
- Now we introduce two further functions. **Definition**. We define $\omega(n)$ to be the number of different prime factors of n and $\Omega(n)$ to be the total number of prime factors of n .

- There is an interesting application of the above which lead to some important developments.
- As a companion to the definition of a multiplicative function we have **Definition**. An $f \in \mathcal{A}$ is **additive** when it satisfies $f(mn) = f(m) + f(n)$ whenever $(m, n) = 1$.
- Now we introduce two further functions. **Definition**. We define $\omega(n)$ to be the number of different prime factors of n and $\Omega(n)$ to be the total number of prime factors of n .
- **Example.** We have $360 = 2^3 3^2 5$ so that $\omega(360) = 3$ and $\Omega(360) = 6$. Generally, if the p_j are distinct, $\omega(p_1^{k_1} \dots p_r^{k_r}) = r$ and $\Omega(p_1^{k_1} \dots p_r^{k_r}) = k_1 + \dots + k_r$.

- There is an interesting application of the above which lead to some important developments.
- As a companion to the definition of a multiplicative function we have **Definition**. An $f \in \mathcal{A}$ is **additive** when it satisfies $f(mn) = f(m) + f(n)$ whenever $(m, n) = 1$.
- Now we introduce two further functions. **Definition**. We define $\omega(n)$ to be the number of different prime factors of n and $\Omega(n)$ to be the total number of prime factors of n .
- **Example.** We have $360 = 2^3 3^2 5$ so that $\omega(360) = 3$ and $\Omega(360) = 6$. Generally, if the p_j are distinct, $\omega(p_1^{k_1} \dots p_r^{k_r}) = r$ and $\Omega(p_1^{k_1} \dots p_r^{k_r}) = k_1 + \dots + k_r$.
- One might expect that most of the time Ω is appreciably bigger than ω , but in fact this is not so.

- There is an interesting application of the above which lead to some important developments.
- As a companion to the definition of a multiplicative function we have **Definition**. An $f \in \mathcal{A}$ is **additive** when it satisfies $f(mn) = f(m) + f(n)$ whenever $(m, n) = 1$.
- Now we introduce two further functions. **Definition**. We define $\omega(n)$ to be the number of different prime factors of n and $\Omega(n)$ to be the total number of prime factors of n .
- **Example.** We have $360 = 2^3 3^2 5$ so that $\omega(360) = 3$ and $\Omega(360) = 6$. Generally, if the p_j are distinct, $\omega(p_1^{k_1} \dots p_r^{k_r}) = r$ and $\Omega(p_1^{k_1} \dots p_r^{k_r}) = k_1 + \dots + k_r$.
- One might expect that most of the time Ω is appreciably bigger than ω , but in fact this is not so.
- By the way, there is some connection with the divisor function. It is not hard to show that $2^{\omega(n)} \leq d(n) \leq 2^{\Omega(n)}$.

- There is an interesting application of the above which lead to some important developments.
- As a companion to the definition of a multiplicative function we have **Definition**. An $f \in \mathcal{A}$ is **additive** when it satisfies $f(mn) = f(m) + f(n)$ whenever $(m, n) = 1$.
- Now we introduce two further functions. **Definition**. We define $\omega(n)$ to be the number of different prime factors of n and $\Omega(n)$ to be the total number of prime factors of n .
- **Example.** We have $360 = 2^3 3^2 5$ so that $\omega(360) = 3$ and $\Omega(360) = 6$. Generally, if the p_j are distinct, $\omega(p_1^{k_1} \dots p_r^{k_r}) = r$ and $\Omega(p_1^{k_1} \dots p_r^{k_r}) = k_1 + \dots + k_r$.
- One might expect that most of the time Ω is appreciably bigger than ω , but in fact this is not so.
- By the way, there is some connection with the divisor function. It is not hard to show that $2^{\omega(n)} \leq d(n) \leq 2^{\Omega(n)}$.
- In fact this is a simple consequence of the chain of inequalities $2 \leq k + 1 \leq 2^k$.

- We can now establish that the average number of prime divisors of a number n is $\log \log n$.

Theorem 29

Suppose that $X \geq 2$. Then

$$\sum_{n \leq X} \omega(n) = X \log \log X + BX + O\left(\frac{X}{\log X}\right)$$

where B is the constant of Theorem 27, and

$$\sum_{n \leq X} \Omega(n) =$$

$$X \log \log X + \left(B + \sum_p \frac{1}{p(p-1)} \right) X + O\left(\frac{X}{\log X}\right).$$

- Here is the proof for ω .

Proof.

We have

$$\begin{aligned}\sum_{n \leq X} \omega(n) &= \sum_{n \leq X} \sum_{p|n} 1 = \sum_{p \leq X} \left\lfloor \frac{X}{p} \right\rfloor \\ &= X \sum_{p \leq X} \frac{1}{p} + O(\pi(x))\end{aligned}$$

and the result follows by combining Corollary 26 and Theorem 27.

The case of Ω is similar. □

- Hardy and Ramanujan made the remarkable discovery that $\log \log n$ is not just the average of $\omega(n)$, but is its normal order.

- Hardy and Ramanujan made the remarkable discovery that $\log \log n$ is not just the average of $\omega(n)$, but is its normal order.
- Later Turán found a simple proof of this.

Theorem 30 (Hardy & Ramanujan)

Suppose that $X \geq 2$. Then

$$\sum_{n \leq X} \left(\omega(n) - \sum_{p \leq X} \frac{1}{p} \right)^2 \ll X \sum_{p \leq X} \frac{1}{p},$$

$$\sum_{n \leq X} (\omega(n) - \log \log X)^2 \ll X \log \log X$$

and

$$\sum_{2 \leq n \leq X} (\omega(n) - \log \log n)^2 \ll X \log \log X$$

- Here is Turán's proof. It is easily seen that

$$\sum_{n \leq X} \left(\sum_{p \leq X} \frac{1}{p} - \log \log X \right)^2 \ll X$$

and (generally if $Y \geq 1$ we have $\log Y \leq 2Y^{1/2}$)

$$\begin{aligned} \sum_{2 \leq n \leq X} (\log \log X - \log \log n)^2 &= \sum_{2 \leq n \leq X} \left(\log \frac{\log X}{\log n} \right)^2 \\ &\ll \sum_{n \leq X} \frac{\log X}{\log n} \\ &= \sum_{n \leq X} \int_n^X \frac{dt}{t} \\ &= \int_1^X \frac{\lfloor t \rfloor}{t} dt \\ &\leq X. \end{aligned}$$

- Thus it suffices to prove the second statement in the theorem.

- Thus it suffices to prove the second statement in the theorem.
- We have

$$\begin{aligned}\sum_{n \leq X} \omega(n)^2 &= \sum_{p_1 \leq X} \sum_{\substack{p_2 \leq X \\ p_2 \neq p_1}} \left\lfloor \frac{X}{p_1 p_2} \right\rfloor + \sum_{p \leq X} \left\lfloor \frac{X}{p} \right\rfloor \\ &\leq X(\log \log X)^2 + O(X \log \log X).\end{aligned}$$

- Thus it suffices to prove the second statement in the theorem.
- We have

$$\begin{aligned}\sum_{n \leq X} \omega(n)^2 &= \sum_{p_1 \leq X} \sum_{\substack{p_2 \leq X \\ p_2 \neq p_1}} \left\lfloor \frac{X}{p_1 p_2} \right\rfloor + \sum_{p \leq X} \left\lfloor \frac{X}{p} \right\rfloor \\ &\leq X(\log \log X)^2 + O(X \log \log X).\end{aligned}$$

- Hence

$$\begin{aligned}\sum_{n \leq X} (\omega(n) - \log \log X)^2 &\leq 2X(\log \log X)^2 \\ &\quad - 2(\log \log X) \sum_{n \leq X} \omega(n) + O(X \log \log X)\end{aligned}$$

and this is $\ll X \log \log X$.

- One way of interpreting this theorem is to think of it probabilistically.

- One way of interpreting this theorem is to think of it probabilistically.
- It is saying that the events $p|n$ are approximately independent and occur with probability $\frac{1}{p}$.

- One way of interpreting this theorem is to think of it probabilistically.
- It is saying that the events $p|n$ are approximately independent and occur with probability $\frac{1}{p}$.
- One might guess that the distribution is normal, and this indeed is true and was established by Erdős and Kac about 1941.

- One way of interpreting this theorem is to think of it probabilistically.
- It is saying that the events $p|n$ are approximately independent and occur with probability $\frac{1}{p}$.
- One might guess that the distribution is normal, and this indeed is true and was established by Erdős and Kac about 1941.
- Let

$$\Phi(a, b) = \lim_{x \rightarrow \infty} \frac{1}{x} \text{card}\{n \leq x : a < \frac{\omega(n) - \log \log n}{\sqrt{\log \log n}} \leq b\}.$$

Then

$$\Phi(a, b) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-t^2/2} dt.$$

- One way of interpreting this theorem is to think of it probabilistically.
- It is saying that the events $p|n$ are approximately independent and occur with probability $\frac{1}{p}$.
- One might guess that the distribution is normal, and this indeed is true and was established by Erdős and Kac about 1941.
- Let

$$\Phi(a, b) = \lim_{x \rightarrow \infty} \frac{1}{x} \text{card}\{n \leq x : a < \frac{\omega(n) - \log \log n}{\sqrt{\log \log n}} \leq b\}.$$

Then

$$\Phi(a, b) = \frac{1}{\sqrt{2\pi}} \int_a^b e^{-t^2/2} dt.$$

- The proof uses sieve theory, which we might explore later.

- Multiplicative functions oscillate quite a bit.

- Multiplicative functions oscillate quite a bit.
- For example $d(p) = 2$ but if n is the product of the first k primes $n = \prod_{p \leq X} p$, then $\log n = \vartheta(X)$ so that $X \ll \log n \ll X$ by Chebyshev.

- Multiplicative functions oscillate quite a bit.
- For example $d(p) = 2$ but if n is the product of the first k primes $n = \prod_{p \leq X} p$, then $\log n = \vartheta(X)$ so that $X \ll \log n \ll X$ by Chebyshev.
- Thus $\log X \sim \log \log n$, but $d(n) = 2^{\pi(X)}$ so that

$$\begin{aligned}\log d(n) &= (\log 2)\pi(X) \geq (\log 2) \frac{\vartheta(X)}{\log X} \\ &\sim (\log 2) \frac{\log n}{\log \log n}.\end{aligned}$$

- We have

Theorem 31

For every $\varepsilon > 0$ there are infinitely many n such that

$$d(n) > \exp\left(\frac{(\log 2 - \varepsilon) \log n}{\log \log n}\right).$$

- We have

Theorem 31

For every $\varepsilon > 0$ there are infinitely many n such that

$$d(n) > \exp\left(\frac{(\log 2 - \varepsilon) \log n}{\log \log n}\right).$$

- The function $d(n)$ also arises in comparisons, for example in deciding the convergence of certain important series.

- Thus it is useful to have a simple universal upper bound.

Theorem 32

Let $\varepsilon > 0$. Then there is a positive number C which depends at most on ε such that for every $n \in \mathbb{N}$ we have

$$d(n) < Cn^\varepsilon.$$

- Thus it is useful to have a simple universal upper bound.

Theorem 32

Let $\varepsilon > 0$. Then there is a positive number C which depends at most on ε such that for every $n \in \mathbb{N}$ we have

$$d(n) < Cn^\varepsilon.$$

- Note, such a statement is often written as

$$d(n) = O_\varepsilon(n^\varepsilon)$$

or

$$d(n) \ll_\varepsilon n^\varepsilon.$$

- Thus it is useful to have a simple universal upper bound.

Theorem 32

Let $\varepsilon > 0$. Then there is a positive number C which depends at most on ε such that for every $n \in \mathbb{N}$ we have

$$d(n) < Cn^\varepsilon.$$

- Note, such a statement is often written as

$$d(n) = O_\varepsilon(n^\varepsilon)$$

or

$$d(n) \ll_\varepsilon n^\varepsilon.$$

- It suffices to prove the theorem when

$$\varepsilon \leq \frac{1}{\log 2}.$$

- Thus it is useful to have a simple universal upper bound.

Theorem 32

Let $\varepsilon > 0$. Then there is a positive number C which depends at most on ε such that for every $n \in \mathbb{N}$ we have

$$d(n) < Cn^\varepsilon.$$

- Note, such a statement is often written as

$$d(n) = O_\varepsilon(n^\varepsilon)$$

or

$$d(n) \ll_\varepsilon n^\varepsilon.$$

- It suffices to prove the theorem when

$$\varepsilon \leq \frac{1}{\log 2}.$$

- Write $n = p_1^{k_1} \dots p_r^{k_r}$ where the p_j are distinct.

- Recall that $d(n) = (k_1 + 1) \dots (k_r + 1)$.

- Recall that $d(n) = (k_1 + 1) \dots (k_r + 1)$.
- Thus

$$\frac{d(n)}{n^\varepsilon} = \prod_{j=1}^r \frac{k_j + 1}{p_j^{\varepsilon k_j}}.$$

Introduction

Dirichlet
Convolution

Averages of
Arithmetical
Functions

Elementary
Prime number
theory

Orders of
magnitude of
arithmetical
functions.

- Recall that $d(n) = (k_1 + 1) \dots (k_r + 1)$.
- Thus

$$\frac{d(n)}{n^\varepsilon} = \prod_{j=1}^r \frac{k_j + 1}{p_j^{\varepsilon k_j}}.$$

- Since we are only interested in an upper bound, the terms for which $p_j^\varepsilon > 2$ can be thrown away since $2^k \geq k + 1$.

- Recall that $d(n) = (k_1 + 1) \dots (k_r + 1)$.
- Thus

$$\frac{d(n)}{n^\varepsilon} = \prod_{j=1}^r \frac{k_j + 1}{p_j^{\varepsilon k_j}}.$$

- Since we are only interested in an upper bound, the terms for which $p_j^\varepsilon > 2$ can be thrown away since $2^k \geq k + 1$.
- However there are only $\leq 2^{1/\varepsilon}$ primes p_j for which

$$p_j^\varepsilon \leq 2.$$

- Recall that $d(n) = (k_1 + 1) \dots (k_r + 1)$.
- Thus

$$\frac{d(n)}{n^\varepsilon} = \prod_{j=1}^r \frac{k_j + 1}{p_j^{\varepsilon k_j}}.$$

- Since we are only interested in an upper bound, the terms for which $p_j^\varepsilon > 2$ can be thrown away since $2^k \geq k + 1$.
- However there are only $\leq 2^{1/\varepsilon}$ primes p_j for which

$$p_j^\varepsilon \leq 2.$$

- Moreover for any such prime we have

$$\begin{aligned} p_j^{\varepsilon k_j} &\geq 2^{\varepsilon k_j} = \exp(\varepsilon k_j \log 2) \\ &\geq 1 + \varepsilon k_j \log 2 \geq (k_j + 1) \varepsilon \log 2. \end{aligned}$$

- Recall that $d(n) = (k_1 + 1) \dots (k_r + 1)$.
- Thus

$$\frac{d(n)}{n^\varepsilon} = \prod_{j=1}^r \frac{k_j + 1}{p_j^{\varepsilon k_j}}.$$

- Since we are only interested in an upper bound, the terms for which $p_j^\varepsilon > 2$ can be thrown away since $2^k \geq k + 1$.
- However there are only $\leq 2^{1/\varepsilon}$ primes p_j for which

$$p_j^\varepsilon \leq 2.$$

- Moreover for any such prime we have

$$\begin{aligned} p_j^{\varepsilon k_j} &\geq 2^{\varepsilon k_j} = \exp(\varepsilon k_j \log 2) \\ &\geq 1 + \varepsilon k_j \log 2 \geq (k_j + 1) \varepsilon \log 2. \end{aligned}$$

- Thus

$$\frac{d(n)}{n^\varepsilon} \leq \left(\frac{1}{\varepsilon \log 2} \right)^{2^{1/\varepsilon}}.$$

- The above proof can be refined to give a companion to Theorem 31

Theorem 33

Let $\varepsilon > 0$. Then for all $n > n_0$ we have

$$d(n) < \exp\left(\frac{(\log 2 + \varepsilon) \log n}{\log \log n}\right).$$

- The above proof can be refined to give a companion to Theorem 31

Theorem 33

Let $\varepsilon > 0$. Then for all $n > n_0$ we have

$$d(n) < \exp\left(\frac{(\log 2 + \varepsilon) \log n}{\log \log n}\right).$$

- We follow the proof of the previous theorem until the final inequality. Then replace the ε there with

$$\frac{(1 + \varepsilon/2) \log 2}{\log \log n}$$

which for large n certainly meets the requirement of being no larger than $1/\log 2$.

- Now

$$\begin{aligned} & \left(\frac{1}{\varepsilon \log 2} \right)^{2^{1/\varepsilon}} \\ &= \exp \left(\exp \left(\frac{\log \log n}{1 + \varepsilon/2} \right) \log \frac{\log \log n}{(1 + \varepsilon/2) \log 2} \right) \\ &< \exp \left(\frac{\varepsilon(\log n) \log 2}{2 \log \log n} \right) \end{aligned}$$

for sufficiently large n . Hence

$$\begin{aligned} d(n) &< n^{\frac{(1+\varepsilon/2) \log 2}{\log \log n}} \exp \left(\frac{\varepsilon(\log n) \log 2}{2 \log \log n} \right) \\ &= \exp \left(\frac{(1 + \varepsilon)(\log n) \log 2}{\log \log n} \right) \\ &< \exp \left(\frac{(\log 2 + \varepsilon)(\log n)}{\log \log n} \right). \end{aligned}$$