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® There have been many factorization algorithms developed
with the intent of finding t, x, y so that
tn = x> — y2,
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® There have been many factorization algorithms developed
with the intent of finding t, x, y so that

tn = x> — y2,
® going back to Fermat in the case t = 1 and Legendre for
general t.
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® going back to Fermat in the case t = 1 and Legendre for
general t.

® One of the lines of attack was through the use of
continued fractions.



Factorization
and Primality
Testing
Chapter 8 The
Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

Prolegomenon

There have been many factorization algorithms developed
with the intent of finding t, x, y so that

tn = x> — y?, (1.1)

going back to Fermat in the case t = 1 and Legendre for
general t.

One of the lines of attack was through the use of
continued fractions.

It seems to have been periodically rediscovered, for
example by Kraitchik and, most notably, by Lehmer and
Powers in 1931 and then developed further by Morrison
and Brillhart in 1975 who showed that the advent of
modern computers made it a practical method.
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® The idea is to consider the continued fraction of v/tn

® This expansion is actually periodic, and truncating the
expansion after k terms produces an approximation

to \/tn.
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® The idea is to consider the continued fraction of v/tn

1
Vtn=ay+ ———7—.
a + At
® This expansion is actually periodic, and truncating the

expansion after k terms produces an approximation

Ak
— 1.2
o (12)
to \/tn.
® |n particular
A2 — tnB? = (—1)* IR, (1.3)

where Ry is relatively small.
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The idea is to consider the continued fraction of \/tn

1
Vitn=a + ———.
a + At
This expansion is actually periodic, and truncating the
expansion after k terms produces an approximation

Ak
— 1.2
o (12)
to \/tn.
In particular
A2 — tnB? = (—1)* IR, (1.3)

where Ry is relatively small.

By the way the approximation (1.2) turns out to be
exactly the approximation that would arise from an
application of Dirichlet’s theorem, Theorem 2.2.
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The idea is to consider the continued fraction of \/tn

1
Vitn=a + ———.
a + At
This expansion is actually periodic, and truncating the
expansion after k terms produces an approximation

Ak
— 1.2
o (12)
to \/tn.
In particular
A2 — tnB? = (—1)* IR, (1.3)

where Ry is relatively small.

By the way the approximation (1.2) turns out to be
exactly the approximation that would arise from an
application of Dirichlet’s theorem, Theorem 2.2.
Thus we have a solution to

A2 = (=1)* R, (mod n).
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Thus we have a solution to
A2 = (—1)* R, (mod n).

Having computed (—1)k"1Ry for k = 0,... K one looks
for a subset K of the k such that the product

H (_1)k71Rk

ke
is a perfect square.
Then for
R? = JJ(~1)* 'R (mod n), A= [] A« (mod n)
kek kek

one has
A%2 = R? (mod n)

and hopefully GCD(A=+ R, n) provides a proper factor of n.
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® Things then developed very rapidly culminating in 1981
with what we now know as the Quadratic Sieve (QS).
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® Things then developed very rapidly culminating in 1981
with what we now know as the Quadratic Sieve (QS).
® The expression in (1.3) on the left

A2 — tnB? = (—1)*"'R,
can be thought of as an indefinite binary quadratic form

x> — tny2.



Factorization ® Things then developed very rapidly culminating in 1981

and Primality

Testing with what we now know as the Quadratic Sieve (QS).
Chapter 8 The . .
Quadratic ® The expression in (1.3) on the left
Sieve
Robert C. Ai — tnB,% = (—1)k_1Rk
Vaughan

can be thought of as an indefinite binary quadratic form

Prolegomenon

x> — tny2.

® Gauss had already studied such forms and had introduced
the idea of “composition” of forms.
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Things then developed very rapidly culminating in 1981
with what we now know as the Quadratic Sieve (QS).
The expression in (1.3) on the left

A2 — tnB? = (—1)*"'R,
can be thought of as an indefinite binary quadratic form
x> — tny2.
Gauss had already studied such forms and had introduced
the idea of “composition” of forms.
This lead Shanks to bring such structural ideas to the

party, and gave arise to an alternative version of the
method usually known as SQUFOF.
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Things then developed very rapidly culminating in 1981
with what we now know as the Quadratic Sieve (QS).
The expression in (1.3) on the left

A2 — tnB? = (—1)*"'R,
can be thought of as an indefinite binary quadratic form
x> — tny2.

Gauss had already studied such forms and had introduced
the idea of “composition” of forms.

This lead Shanks to bring such structural ideas to the
party, and gave arise to an alternative version of the
method usually known as SQUFOF.

This has a worse case runtime proportional to n'/*, so
does not compete in that regard to the other methods
described here.



Factorization
and Primality
Testing
Chapter 8 The
Quadratic
Sieve

Robert C.
Vaughan

Prolegomenon

Things then developed very rapidly culminating in 1981
with what we now know as the Quadratic Sieve (QS).
The expression in (1.3) on the left

A2 — tnB? = (—1)*"'R,
can be thought of as an indefinite binary quadratic form
x> — tny2.

Gauss had already studied such forms and had introduced
the idea of “composition” of forms.

This lead Shanks to bring such structural ideas to the
party, and gave arise to an alternative version of the
method usually known as SQUFOF.

This has a worse case runtime proportional to n'/*, so
does not compete in that regard to the other methods
described here.

However SQUFOF (SQUareFOrmsFactorization) is
sufficiently simple that it can be implemented on a pocket
calculator and the instructor of this course has a version
on his mobile phone.



® Recall that in Lehman’s method the aim is to find x, t so
that

x% — 4tn
is a perfect square.
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The Quadratic Sieve

Recall that in Lehman’s method the aim is to find x, t so
that

x? — 4tn
is a perfect square.
In the discussion above of the continued fraction approach
we saw that an alternative way to achieve this is to find
X1,...,X and y1,..., ¥, such that

yi = x,-2 (mod n)

and
(x1...x)° =y1...y, = 2> (mod n).
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The Quadratic Sieve

Recall that in Lehman’s method the aim is to find x, t so
that

x? — 4tn
is a perfect square.

In the discussion above of the continued fraction approach
we saw that an alternative way to achieve this is to find
X1,...,X and y1,..., ¥, such that

yi = x,-2 (mod n)

and
(x1...x)° =y1...y, = 2> (mod n).

However we want something better than trial and error.



® |dea. Initially we consider

X2

with for a sequence of values of x = x;.
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® |dea. Initially we consider

x*—n=y
with for a sequence of values of x = x;.

® The data we garner from this will ultimately enable us to
find t, x such that x> — tn is a perfect square.
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The Quadratic Sieve

® |dea. Initially we consider
X“—n=y
with for a sequence of values of x = x;.
® The data we garner from this will ultimately enable us to
find t, x such that x> — tn is a perfect square.
® Suppose that each of the y; has only small prime factors,
say we have p < B for every ply;.
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The Quadratic Sieve

Idea. Initially we consider
X“—n=y

with for a sequence of values of x = x;.

The data we garner from this will ultimately enable us to
find t, x such that x> — tn is a perfect square.

Suppose that each of the y; has only small prime factors,
say we have p < B for every ply;.

For example we just look for prime factors p < B =7 and
suppose we found y; = 6,y> = 15,y3 = 21, y4 = 35.
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The Quadratic Sieve

Idea. Initially we consider
X“—n=y

with for a sequence of values of x = x;.

The data we garner from this will ultimately enable us to
find t, x such that x> — tn is a perfect square.

Suppose that each of the y; has only small prime factors,
say we have p < B for every ply;.

For example we just look for prime factors p < B =7 and
suppose we found y; = 6,y> = 15,y3 = 21, y4 = 35.

Then we would have y; = 21315070,

yo = 20315170y, — 20315071 |, _ 90305171
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The Quadratic Sieve

Idea. Initially we consider
X“—n=y

with for a sequence of values of x = x;.

The data we garner from this will ultimately enable us to
find t, x such that x> — tn is a perfect square.

Suppose that each of the y; has only small prime factors,
say we have p < B for every ply;.

For example we just look for prime factors p < B =7 and
suppose we found y; = 6,y> = 15,y3 = 21, y4 = 35.

Then we would have y; = 21315070,

yo = 20315170 o — 20315071\, _ 50305171
so we can associate with these the four vectors
vi = (1,1,0,0),vo = (0,1,1,0),
v3 =(0,1,0,1),v4 = (0,0,1,1).



® We have y; = 21315070,

Vo = 20315170,}/3 — 20315071,}/4 _ 20305171
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® We have y; = 21315070,
Vo = 20315170,}/3 — 20315071,}/4 _ 20305171
® so we can associate with these the four vectors

Vi = <17 17070>7V2 = <0, 17 1)0>7
vi=(0,1,0,1),v4 = (0,0,1,1).
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Quedratic ® We have y; = 21315079,
Wit y2 = 231517, y3 = 20315071,y = 2030517

® 5o we can associate with these the four vectors

'Srir;ieQuadratic V] = <17 170, 0>’V2 = <0, ]., ].,0>7
v3 = (0,1,0,1),v4 = (0,0,1,1).

® Then we want to find integers e; = 0 or 1 so that
e1vi + evo + e3v3 + eava = 0 (mod 2)

where 0 = (0,0,0,0).
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We have y; = 21315070,
o = 20315170’}/3 _ 203150717)/4 — 9030g171
so we can associate with these the four vectors

vi = (1,1,0,0),vo = (0,1,1,0),
V3 = <07 1,0, 1>7V4 = <ana 1, 1>

Then we want to find integers ¢; = 0 or 1 so that
e1vi + evo + e3v3 + eava = 0 (mod 2)

where 0 = (0,0,0,0).
Thus e1 =0, & = e3 = ¢4 = 1 will do and

Yyrysyit = 15.21.35 = (3.5.7)% = (105)°.
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The Quadratic Sieve

We have y; = 21315070,
o = 20315170’}/3 _ 203150717)/4 — 9030g171
so we can associate with these the four vectors

vi = (1,1,0,0),vo = (0,1,1,0),
V3 = <07 1,0, 1>7V4 = <0105 1, 1>

Then we want to find integers ¢; = 0 or 1 so that
e1vi + evo + e3v3 + eava = 0 (mod 2)

where 0 = (0,0,0,0).
Thus e1 =0, & = e3 = ¢4 = 1 will do and

Yyrysyit = 15.21.35 = (3.5.7)% = (105)°.

Thus we can find perfect squares by vector addition. In
other words solving linear equations.
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The Quadratic Sieve

We have y; = 21315070,
yo = 20315170 10 — 20315071 ) 0305171
so we can associate with these the four vectors
vi = (1,1,0,0),vo = (0,1,1,0),
v3 =(0,1,0,1),v4 = (0,0,1,1).
Then we want to find integers ¢; = 0 or 1 so that
e1vi + evo + e3v3 + eava = 0 (mod 2)

where 0 = (0,0,0,0).
Thus e1 =0, & = e3 = ¢4 = 1 will do and
Yyrysyit = 15.21.35 = (3.5.7)% = (105)°.

Thus we can find perfect squares by vector addition. In
other words solving linear equations.
In practice this in turn means Gaussian elimination.



Factorization
and Primality
Testing
Chapter 8 The
Quadratic
Sieve

Robert C.
Vaughan

The Quadratic
Sieve

The Quadratic Sieve

Definition 1

Given a positive real number B we say that an integer z is
B-factorable when every prime factor p of z satisfies p < B.
To emphasise the fact that in our situation only certain primes
(but also —1) may occur we will also use the term P-factorable
where P is a set of primes, probably augmented by —1.

® Note that the term B-smooth is commonly used instead.
The word “smooth” has many better uses in mathematics.
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The Quadratic Sieve (QS)

We are given an odd number n which we know to be
composite and not a perfect power. The objective is to
find a non—trivial factor of n.
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Vaughan

e 1. Initialization.
1.1. Pick a number B as the upper bound for the primes
The Quadratic in the factor base P. Theory says take B = {L(n)l/z]

Sieve
where L(n) = exp(y/log nloglog n), but in practice a B
somewhat smaller works well.
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e 1. Initialization.

1.1. Pick a number B as the upper bound for the primes
The Quadratic in the factor base P. Theory says take B = {L(n)l/z]

Sieve
where L(n) = exp(y/log nloglog n), but in practice a B
somewhat smaller works well.

e Also, adding extra primes suggested by the sieving process
can be useful and if one uses the wrinkle in 5.3 below,
then the prime p is adjoined to the factor base.
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The Quadratic Sieve (QS)

We are given an odd number n which we know to be
composite and not a perfect power. The objective is to
find a non—trivial factor of n.

1. Initialization.
1.1. Pick a number B as the upper bound for the primes
in the factor base P. Theory says take B = {L(n)l/z]

where L(n) = exp(y/log nloglog n), but in practice a B
somewhat smaller works well.

Also, adding extra primes suggested by the sieving process
can be useful and if one uses the wrinkle in 5.3 below,
then the prime p is adjoined to the factor base.

1.2. Set pgp = —1, p1 = 2 and find the odd primes

n
p2<p3<...<pK§Bsuchthat<) =1.
Pk/ |

(LJ) is useful here.
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The Quadratic Sieve (QS)

We are given an odd number n which we know to be
composite and not a perfect power. The objective is to
find a non—trivial factor of n.

1. Initialization.

1.1. Pick a number B as the upper bound for the primes
in the factor base P. Theory says take B = {L(n)l/z]
where L(n) = exp(+/log nloglog n), but in practice a B
somewhat smaller works well.

Also, adding extra primes suggested by the sieving process
can be useful and if one uses the wrinkle in 5.3 below,
then the prime p is adjoined to the factor base.

1.2. Set pgp = —1, p1 = 2 and find the odd primes

pr < p3 <...< pk < B such that (n) =1.
Pk/ |
(L) is useful here.
1.3. For k =2,...,K find the solutions *t,, to x*=n

(mod pk) by using (QC).
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foben of at least K 4 2 B-factorable xJ-2 — n and their
Vaughan factorizations (K + 2 is somewhat arbitrary and in the first

example below is K +1).
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e 2. Sieving.

2.1. Let N = [\/n]. Sieve the sequence x> — n with
x=N+j4,j=0,+1,42,... until one has obtained a list
of at least K 4+ 2 B-factorable xJ-2 — n and their
factorizations (K + 2 is somewhat arbitrary and in the first
example below is K +1).

This could be done by using a matrix, with K + 2 rows so
that the j—th column is a K 4+ 3 dimensional vector in
which the first entry is x;, the second is ij — n, and the

k 4+ 3—rd entry is the exponent of py in xj2 —n.
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e 2. Sieving.

2.1. Let N = [\/n]. Sieve the sequence x> — n with
x=N+j,j=0,41,4+2,... until one has obtained a list
of at least K 4+ 2 B-factorable sz — n and their
factorizations (K + 2 is somewhat arbitrary and in the first
example below is K +1).

This could be done by using a matrix, with K + 2 rows so
that the j—th column is a K 4+ 3 dimensional vector in
which the first entry is x;, the second is ij — n, and the

k + 3-rd entry is the exponent of py in sz —n.

2.2. For each prime py in P divide out all the prime
factors px in each entry x? — n with x; = +t,, (mod px),
recording the exponent in the k + 3-rd entry in the
associated j-th vector. Once the primes start to grow this
speeds things up significantly.
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2. Sieving.

2.1. Let N = [\/n]. Sieve the sequence x> — n with
x=N+j,j=0,41,4+2,... until one has obtained a list
of at least K 4+ 2 B-factorable sz — n and their
factorizations (K + 2 is somewhat arbitrary and in the first
example below is K 4+ 1).

This could be done by using a matrix, with K + 2 rows so
that the j—th column is a K 4+ 3 dimensional vector in

which the first entry is x;, the second is ij — n, and the

k + 3-rd entry is the exponent of py in sz —n.

2.2. For each prime py in P divide out all the prime
factors px in each entry x? — n with x; = +t,, (mod px),
recording the exponent in the k + 3-rd entry in the
associated j-th vector. Once the primes start to grow this
speeds things up significantly.

2.3. If the bottom entry in the j—th vector has reduced to
1, then sz — n is B—factorable. If it has not completely
factored then one can discard that column, or at least put
it aside in case one needs to extend the.factor base.
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itz @necleiie entries reduced modulo 2.

Sieve
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Robert C. 3.1. Form a (K + 1) x (K + 2) matrix M with the
Rareian columns being formed by the 3—rd through K + 3-rd
entries of the column vectors arising in 2.2, but with the
The Quadratic entries reduced modulo 2.

Sieve

® 3.2. Use linear algebra (Gaussian elimination, for
example) to solve

Me=0 (mod 2)

where e is a K + 2 dimensional vector of Os and 1s (not all
0/).
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e 3. Linear Algebra.

3.1. Form a (K + 1) x (K + 2) matrix M with the
columns being formed by the 3—rd through K + 3—-rd
entries of the column vectors arising in 2.2, but with the
entries reduced modulo 2.

3.2. Use linear algebra (Gaussian elimination, for
example) to solve

Me=0 (mod 2)

where e is a K + 2 dimensional vector of Os and 1s (not all
0/).

Note that the solution space may well be of dimension
greater than 1 so then there would be multiple solutions.
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® 4. Factorization.

4.1. Compute x = x;* x5

€2

°K+2 modulo n and

"'XK+2

y =4/

modulo n.

3

— ). (xR, — n)eKs
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® 4. Factorization.
4.1. Compute x = x;'x5° . .. xf('j:; modulo n and

y = /(= n)a(3 —n)= ... (<%, — n)ers2

modulo n.

® The value of x can be computed by using the first entries
in the j—vectors.
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® 4. Factorization.
4.1. Compute x = x;'x5° . .. x;'j:; modulo n and

y = /(= n)a(3 —n)= ... (<%, — n)ers2

modulo n.

® The value of x can be computed by using the first entries
in the j—vectors.

® The square root should NOT be computed directly but by
using the factorisations of each sz — n obtained in 2.2.
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Robert C.
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y = /(= n)a(3 —n)= ... (<%, — n)ers2
The Quadratic
Sieve modulo n.

® The value of x can be computed by using the first entries
in the j—vectors.

® The square root should NOT be computed directly but by
using the factorisations of each sz — n obtained in 2.2.

4.2. Compute m =gcd(x — y, n).
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4. Factorization.
4.1. Compute x = x;'x5° . .. x;'j:; modulo n and

y = /(= n)a(3 —n)= ... (<%, — n)ers2

modulo n.

The value of x can be computed by using the first entries
in the j—vectors.

The square root should NOT be computed directly but by
using the factorisations of each sz — n obtained in 2.2.

4.2. Compute m =gcd(x — y, n).
4.3. Return m.
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e o e 4. Factorization.
i €
Sieve 4.1. Compute x = X" x53° . .. X;¢5 modulo n and
Robert C.
Vaughan

y = /(= n)a(3 —n)= ... (<%, — n)ers2

The Quadratic
Sieve modulo n.

® The value of x can be computed by using the first entries
in the j—vectors.

® The square root should NOT be computed directly but by
using the factorisations of each sz — n obtained in 2.2.

® 4.2. Compute m =gcd(x — y,n).
® 4.3. Return m.

® 4.4, |f necessary repeat for all solutions e until a
non-trivial factor found.
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e 5. Aftermath.

5.1. If no proper factor of n found, try one or more of the
following.
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e 5. Aftermath.
5.1. If no proper factor of n found, try one or more of the

following.
® 5.2. Extend the sieving in 2.1 to obtain more e and pairs

X, Y.
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e 5. Aftermath.
5.1. If no proper factor of n found, try one or more of the
following.

® 5.2. Extend the sieving in 2.1 to obtain more e and pairs
X, y.

® 5.3 As a matter of policy the original sieving probably
should be conducted so as to obtain K’ pairs with K’
somewhat more than K + 2.
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5. Aftermath.

C"g{’;jrftlhe 5.1. If no proper factor of n found, try one or more of the
Sieve following.

Robert C.
Vaughan

5.2. Extend the sieving in 2.1 to obtain more e and pairs
X, y.

5.3 As a matter of policy the original sieving probably
should be conducted so as to obtain K’ pairs with K’
somewhat more than K + 2.

The Quadratic
Sieve

5.3. Use another polynomial in place of x2 — n, or rather,
be a bit more cunning about the choice of the x in 2.1.
Choose a large prime p for which b> — n =0 (mod p) is
soluble, and compute b. Then (px + b)?> — n=0 (mod p)
and x can be chosen so that f(x) = ((px + b)> — n)/p is
comparatively small since p is large, so the sieving
proceeds relatively speedily, there is a better chance of a
complete factorization of f(x), and we only have to
augment the factor base with the prime p.



® The most time consuming part of this algorithm is the
sieving.
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® The most time consuming part of this algorithm is the
sieving.

® Note that just restricting the x to x = *t,, already speeds
it up considerably but this is still usually the slowest part.
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Ff/zbegr;ai- ® The most time consuming part of this algorithm is the

sieving.
e O ® Note that just restricting the x to x = *t,, already speeds
€ uadratic . . . . .
Sieve it up considerably but this is still usually the slowest part.

® The linear algebra can also be speeded up by various

techniques, especially those developed for dealing with
sparse matrices.
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Sieve

The most time consuming part of this algorithm is the
sieving.

Note that just restricting the x to x = £t,, already speeds
it up considerably but this is still usually the slowest part.

The linear algebra can also be speeded up by various
techniques, especially those developed for dealing with
sparse matrices.

Although the numbers in the following example are much
smaller than would occur in a practice the example does
illustrate the complexity of the basic quadratic sieve.



e Example 8.1. Let n = 9487 and B = 30.
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e Example 8.1. Let n = 9487 and B = 30.

® We first need to check which primes p < 30 will occur.
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e Example 8.1. Let n = 9487 and B = 30.
® We first need to check which primes p < 30 will occur.

® Thus for each odd prime p < 30 we need to ascertain
whether nis a QR or a QNR modulo p.

()= () =105 = (5), = (). =1
(59, = () =—LF), = () =1,
(7). = () =105 = (18), = (1) . = 1
(55 = (1) = 10550, = (B) = = (), = -1
(%57), = (35), = L



Factorization
and Primality
Testing
Chapter 8 The
Quadratic
Sieve

Robert C.
Vaughan

The Quadratic
Sieve

Example 8.1. Let n = 9487 and B = 30.
We first need to check which primes p < 30 will occur.
Thus for each odd prime p < 30 we need to ascertain

whether nis a QR or a QNR modulo p.

(9473?7)L:(7) —1( 13)L:( )
(*F7), = (3), =107, = (&) =1
(7). = () =105 L = (%),
(517), = () = L), = (&) =

(%5"), = (35,

Thus P = {-1,2,3,7,11,13,17, 19, 29}.

(3

1.

)L—

L



Factorization e Example 8.1. Let n = 9487 and B = 30.

an rimality

Chapter 8-The ® We first need to check which primes p < 30 will occur.
Quadratic

Siove Thus for each odd prime p < 30 we need to ascertain
Robert C. whether nis a QR or a QNR modulo p.

(%)L: (3) =1 ( 13 )L = (%)L = (%)L: 1,
e Quadratic (9487) (%) =-1,(%% ), = (%) =1,
(@)L:(%)L_l’(%h:( ) (TS))L
(%)L (%)L = 17(93727% = (g)L - (%)L = _17
(%357), = (30), = 1

Thus P = {-1,2,3,7,11,13,17,19, 29}.

ti3 = 5, tiz = 1, t19 = £5, trg = £2.
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Example 8.1. Let n = 9487 and B = 30.
We first need to check which primes p < 30 will occur.

Thus for each odd prime p < 30 we need to ascertain
whether nis a QR or a QNR modulo p.

(¥, =), =15, = ():4§MZL
(@)L (%) = (9411§ )L ( )
) =3 =106 = (), = (%)L =1,
(%)L (%) =1,(%5" 25 )L ( ) _(?)L:_L
(%55"), = (29), =1
Thus P = {-1,2,3,7,11,13,17,19, 29}.
Then by bf (QQC) t3 = +1,t; = £3, t11 = +4,

23
487
29

ti3 = £5, t17 = £1, t1g = 5, tpg = 2.

Now for a range of values of x near \/n & 97 we factorise
f(x) = x® — n. At this stage we throw away the x which
do not completely factor in our factor base.



® Show Class467-08T1.pdf.
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® Show Class467-08T1.pdf.

® |n the table above, in the column below each prime | have
included the exponent of the prime which occurs in the

factorisation and the residual factor after that prime has
been factored out.



Factorization .
and Primality ® | have included one such value, x = 82, below, so that you
Testing

Chapter 8 The can see what happens. If n is proving awkward to
Quadrati . . .
Steve factorise, one might go back and check to see if there are
Robert C. primes outside the factor base which occur in multiple
Vaughan

places and then add them to the factor base. For example,
f(92) and f(94) would completely factorise if we included
s @ee feitte the prime 31 in the factor base.

Sieve
X 82 2] o4
f(x) | —2763 | —1023 | —651
—1[ 27631 | 2763,0 | 651,1
2 | 2763,0 | 1023,1 | 651,0
3| 307,2| 3411|2171
7| 3070 3410 311
11| 3070 310]| 31,0
13| 3070 310]| 31,0
17 | 3070 310/ 31,0
19 | 3070 310]| 31,0
29 | 307,0| 31,0| 31,0




Factorization ® Let v(x) denote the vector of exponents in the

and Primality . .
Testing factorization of f(x), so that
Chapter 8 The

R v(85) = (1,1,1,0,0,1,0,0,1),
Ff/zbuﬁai V(89) = <171737O70a0a0a07 1>7
v(98) = (0,0,2,0,0,1,0,0,0),

The Quadratic
Sieve
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® Let v(x) denote the vector of exponents in the
factorization of f(x), so that
v(85) =(1,1,1,0,0,1,0,0,1),
v(89) = (1,1,3,0,0,0,0,0,1),
v(98) = (0,0,2,0,0,1,0,0,0),

® Then v(85) 4+ v(89) + v(98) = (2,2,6,0,0,2,0,0,2) and
the entries in this are all even.
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The Quadratic
Sieve

® Let v(x) denote the vector of exponents in the
factorization of f(x), so that
v(85) =(1,1,1,0,0,1,0,0,1),
v(89) = (1,1,3,0,0,0,0,0,1),
v(98) = (0,0,2,0,0,1,0,0,0),

® Then v(85) + v(89) + v(98) = (2,2,6,0,0,2,0,0,2) and
the entries in this are all even.
® Thus, modulo 9487,
852 x 892 x 982 = (852 — n)(89% — n)(98% — n)
741370% = (—1 x 2 x 3% x 13 x 29)? = 20358°.
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Let v(x) denote the vector of exponents in the
factorization of f(x), so that

v(85) = (1,1,1,0,0,1,0,0,1),
v(89) = (1,1,3,0,0,0,0,0,1),
v(98) = (0,0,2,0,0,1,0,0,0),

Then v(85) + v(89) +v(98) = (2,2,6,0,0,2,0,0,2) and
the entries in this are all even.
Thus, modulo 9487,

852 x 892 x 982 = (852 — n)(89% — n)(98% — n)
741370% = (—1 x 2 x 3% x 13 x 29)? = 20358°.

Unfortunately

(741370 + 20358, 9487) = 1,
(741370 — 20358, 9487) = 9487.



® \We also have

v(81) + v(95) + v(100) = (2,2,4,2,2,0,0,2,0),
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and Primality

i, @ We also have
ngdratic
v(81) + v(95) + v(100) = (2,2,4,2,2,0,0,2,0),
Vaughan
® 5o that
UL 812%x952x 1002 = (—1x2x3%x7x11x19)? (mod 9487).
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i, @ We also have
ngdratic
e v(81) + v(95) + v(100) = (2,2,4,2,2,0,0,2,0),
Vaughan.
® 5o that
v 812952 x 1002 = (—1x2x32x7x11x19)? (mod 9487).
® This gives

769500% = 263342 (mod 9487)
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o B ® We also have
ngdratic
e v(81) + v(95) + v(100) = (2,2,4,2,2,0,0,2,0),
Vaughan.
® 5o that
v 812952 x 1002 = (—1x2x32x7x11x19)? (mod 9487).
® This gives
769500% = 263342 (mod 9487)
® and

(769500 + 26334, 9487) = 179,
(769500 — 26334, 9487) = 53.



® There is a lot to take away from this.
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Testing ® There is a lot to take away from this.

Chapter 8 The
Quadratic ® 1. We need to use the theory of quadratic residues, via the
et @ Legendre symbol and quadratic reciprocity to see which
Vaughan

primes to include in the factor base.

The Quadratic
Sieve
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Testing ® There is a lot to take away from this.

Chapter 8 The
Quadratic ® 1. We need to use the theory of quadratic residues, via the
et @ Legendre symbol and quadratic reciprocity to see which
Vaughan

primes to include in the factor base.

® 2. We then need to sieve out the x, i.e remove those x for
T (et which f(x) does not completely factor in the factor base,
and then to store the vector of exponents for each x which
survives.
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The Quadratic
Sieve

There is a lot to take away from this.

1. We need to use the theory of quadratic residues, via the
Legendre symbol and quadratic reciprocity to see which
primes to include in the factor base.

2. We then need to sieve out the x, i.e remove those x for
which f(x) does not completely factor in the factor base,
and then to store the vector of exponents for each x which
survives.

This can take a lot of memory.
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The Quadratic
Sieve

There is a lot to take away from this.

1. We need to use the theory of quadratic residues, via the
Legendre symbol and quadratic reciprocity to see which
primes to include in the factor base.

2. We then need to sieve out the x, i.e remove those x for
which f(x) does not completely factor in the factor base,
and then to store the vector of exponents for each x which
survives.

This can take a lot of memory.

3. Whilst not apparent in the simple example above, we
will need to work hard to find linear combinations of the
vectors of exponents in which all the entries are even.
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The Quadratic
Sieve

There is a lot to take away from this.

1. We need to use the theory of quadratic residues, via the
Legendre symbol and quadratic reciprocity to see which
primes to include in the factor base.

2. We then need to sieve out the x, i.e remove those x for
which f(x) does not completely factor in the factor base,
and then to store the vector of exponents for each x which
survives.

This can take a lot of memory.

3. Whilst not apparent in the simple example above, we
will need to work hard to find linear combinations of the
vectors of exponents in which all the entries are even.

This will involve some form of Gaussian elimination. The
complexity is somewhat reduced by the fact that we only
need to do this modulo 2, but it will still also require quite
a lot of memory.



® Going back to the table. Show Class467-08T1.pdf.
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Factorization ® Going back to the table. Show Class467-08T1.pdf.

and Primality

i ® We can extract the exponents of each prime thus
Quadratic
o 1111110000
Vaughan 10111100011
001 3112311
The Quadratic 1 0 0 0 1 O 0 0 1 O
Sl M=1]1 100100011
0110011000
01 00O0O0OO0OO0T171
1 0000O0O0T1O00O
0 01 100O0O0O0CTO
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® Going back to the table. Show Class467-08T1.pdf.

® \We can extract the exponents of each prime thus

<

Il
OH OO MFEFOKF K
OO MHMFEF OOOR
R OORrRrROORRHRKR
H OO OO0 WK K+—
OO OO FHF M= =
O OO OO FHK
OO O, OONOO
O H OO OOWwWOoOOo
OO, O FEFE MO
OO O, OF MO

® Then we wish to find solutions to Me =0 (mod 2) other
than 0.



Factorization ® Going back to the table. Show Class467-08T1.pdf.

and Primality
i ® We can extract the exponents of each prime thus
Quadratic
o 1111110000
Vaughan 10111100011
001 3112311
The Quadratic 1 0 0 0 1 O 0 0 1 O
Sl M=1]1 100100011
0110011000
01 00O0O0OO0OO0T171
1 0000O0O0T1O00O
0 01 100O0O0O0CTO

® Then we wish to find solutions to Me =0 (mod 2) other
than 0.
® |n other words we want the exponents in the prime

factorisation of
f"(Xl)e:l v f(XK)eK

to be even in a non-trivial way.
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® The standard way of doing this is through Gaussian
elimination, and it suffices to perform it modulo 2,
although for the matrices which occur for large n, which
are sparse there are faster methods. For the numbers used
here Gauss' method will suffice.
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Sieve ® The standard way of doing this is through Gaussian
Rv‘;"f;ﬁai' elimination, and it suffices to perform it modulo 2,
although for the matrices which occur for large n, which
he Quadratic are sparse there are faster methods. For the numbers used

Sieve here Gauss’ method will suffice.

® On Class467-08T2.pdf | have listed the successive row
operations, beginning with using the first row to eliminate
the first entries in the other rows, and then using
successive rows to eliminate the entries in the column
corresponding to their leading entry.



Factorization
and Primality
Testing
Chapter 8 The
Quadratic
Sieve

Robert C.
Vaughan

The Quadratic
Sieve

® The standard way of doing this is through Gaussian

elimination, and it suffices to perform it modulo 2,
although for the matrices which occur for large n, which
are sparse there are faster methods. For the numbers used
here Gauss' method will suffice.

On Class467-08T2.pdf | have listed the successive row
operations, beginning with using the first row to eliminate
the first entries in the other rows, and then using
successive rows to eliminate the entries in the column
corresponding to their leading entry.

Here is the final form of the matrix, from which we can
read off the equations for e
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e i 10000007100
Vg 0100000001
Robert C. 00100071000
Voughan 0001001000
0000100100
The Quadrati 0000010001
00000O0O0GOT1O
0000O0O0OGO0GO 0GOSO
00000O0GO0GOT OO

e1+e=0 (mod2), e+ep=0 (mod?2),

es+e=0 (mod2), e+e =0 (mod2),

es+e=0 (mod?2), e +ep=0 (mod?2),
e =0 (mod?2).
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and Primality
Testing
Ch(;?:c;:tlhe €1+ e = 0 (mOd 2)7 €+ ey = 0 (mOd 2)7
Rosblz:tec e3 + e = 0 (mOd 2)7 €4 + e = 0 (mOd 2)7
Vaughan es + eg = 0 (mOd 2)7 € + €10 = 0 (mOd 2),
e =0 (mod2).

The Quadratic
Sieve
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Chsz:;’:ti'léhe €1+ e = 0 (mOd 2)7 €+ ey = 0 (mOd 2)7
RoS[]l:/teCl e3 + e = 0 (mOd 2)7 €4 + er = 0 (mOd 2),
Vaughan €5 + eg = 0 (mOd 2)7 €6 + €10 = 0 (mOd 2),
e =0 (mod2).

The Quadratic
Sieve

® Thus taking e7, eg and ejp as the independent variables we
see that

(f(X3)f(X4)f(X7)) e (f(Xl)f(X5)f(X8)) e X
(f(XQ)f(XG)f(Xlo)) et

is always a perfect square.
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e1+e =0 (mod?2),
es+e =0 (mod?2),
es+eg =0 (mod2),

e+eo=0 (mod2),
es+e =0 (mod?2),
e +e0=0 (mod2),
e =0 (mod2).

® Thus taking e7, eg and ejp as the independent variables we

see that

(f(X3)f(X4)f(X7)) e (f(Xl)f(X5)f(X3)) e X

is always a perfect square.

(f(X2) f(XG)f(Xlo)) et

® The choicese; =1,eg=ejg=0and eg=1,e; =e;0=0
correspond to the solutions used above.
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eg+e =0 (mod2), e+ep=0 (mod?2),

es+e =0 (mod2), ea+e =0 (mod?2),

es+e=0 (mod2), e+ep=0 (mod?2),
e =0 (mod2).

Thus taking e7, eg and ejg as the independent variables we
see that

(f(X3)f(X4)f(X7)) e (f(Xl)f(X5)f(X3)) e X
(f(XQ)f(XG)f(Xlo)) et

is always a perfect square.
The choices e =1,eg =ejg=0and eg=1,e; = e;0=0
correspond to the solutions used above.

The solution ejp = 1,e; = eg = 0 does not give a
factorization.



® Here is another example with a somewhat larger n.
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® Here is another example with a somewhat larger n.

e Example 8.3. Let n = 5479879 and take the sieving limit
B = 50.
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® Here is another example with a somewhat larger n.

e Example 8.3. Let n = 5479879 and take the sieving limit
B = 50.

o We first need to check which primes p < 50 will occur in
the method.
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Here is another example with a somewhat larger n.
Example 8.3. Let n = 5479879 and take the sieving limit
B = 50.

We first need to check which primes p < 50 will occur in
the method.

Thus for each odd prime p < 50 we need to ascertain
whether n is a QR or a QNR modulo p.
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Here is another example with a somewhat larger n.

Example 8.3. Let n = 5479879 and take the sieving limit
B = 50.

We first need to check which primes p < 50 will occur in
the method.

Thus for each odd prime p < 50 we need to ascertain
whether n is a QR or a QNR modulo p.

By (LJ) we obtain a factor base

P ={-1,2,3,5,11,31,47}.
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Here is another example with a somewhat larger n.

Example 8.3. Let n = 5479879 and take the sieving limit
B = 50.

We first need to check which primes p < 50 will occur in
the method.

Thus for each odd prime p < 50 we need to ascertain
whether n is a QR or a QNR modulo p.

By (LJ) we obtain a factor base
P ={-1,2,3,5,11,31,47}.

We have \/n ~ 2340. For larger numbers such as n it is

harder to obtain complete factorisations of f(x) = x> — n.
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The Quadratic
Sieve

Here is another example with a somewhat larger n.

Example 8.3. Let n = 5479879 and take the sieving limit
B = 50.

We first need to check which primes p < 50 will occur in
the method.

Thus for each odd prime p < 50 we need to ascertain
whether n is a QR or a QNR modulo p.

By (LJ) we obtain a factor base
P ={-1,2,3,5,11,31,47}.

We have \/n ~ 2340. For larger numbers such as n it is

harder to obtain complete factorisations of f(x) = x> — n.

Either the range for x has to be increased, or alternatively
extend the factor base P.



® See Class467-08T3.pdf.
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Factorization e See Class467-08T3.pdf.

and Primality

Testing ® Now we extract the parity of the exponents for each prime
Chapter 8 The .
Quadratic and form the matrix
Sieve
Robert C. 1 1 1 0 0 0
Vergien 010111
1 11000
The Quadratic M - 0 0 1 0 ]. 0
s 000000
0 00 O0O0°1
0 00 0O0°1




Factorization e See Class467-08T3.pdf.

" resting ® Now we extract the parity of the exponents for each prime
Chapter 8 The .
Quadraic and form the matrix
Robert C. 111000
Vaughan 010111
111000
The Quadratic M=]0 01 010
oo 000000
0 00 0O0T1
0 00 0O0T1
® We now apply Gaussian elimination and obtain
100100
010110
001010
0 00 O0O0T1
0 00 0O00O0
0 00 0O00D0O
0 00 0O00O0
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The Quadratic
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[ ]
100100
010110
001010
0 00O0O0T1
0 00O0O0OTO
0 00O0OTO
0 00O0O0OTO

® Thus we find that

e1+e =0 (mod2),
e+e+e =0 (mod?2),
es+e =0 (mod 2),

e =0 (mod?2),



® Thus we find that

et +e =0 (mod2),
e+e+e=0 (mod?2),
e3+e =0 (mod 2),
=0 (mod 2),
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Factorization ® Thus we find that

and Primality

Testing
Chcaqz:drrftlhe e1+e =0 (mod?2),
Rosblrc. e+e+e =0 (mod?2),
Yot es+e =0 (mod?2),
e =0 (mod 2),

The Quadratic
Sieve

We can take e4, e5 and eg as the independent variables.



Factorization ® Thus we find that

and Primality

Testing
Ch&iiférftl“e e1+e =0 (mod?2),
RoSbI:teC. e+e+e =0 (mod?2),
Yot es+e =0 (mod?2),
e =0 (mod 2),

The Quadratic
Sieve
® We can take e4, e5 and e as the independent variables.

® Taking e4 and e5 as the independent variables we see that

e =e (mod 2),
e =e+e (mod?2),
e3s=e5 (mod 2),
e =0 (mod 2),



Factorization
and Primality
Testing

Chapter  The ® Taking e4 and e5 as the independent variables we see that
uadratic
Sieve
Robert C. €1 = é4 (mod 2),
Vaughan

e =e+e (mod?2),
es  (mod 2),
0 (mod 2),

€3
The Quadratic

Sieve €5



Factorization

and Primality
Testing . . .

et ® Taking e4 and es as the independent variables we see that
uadratic
Sieve

Robert C. €1 = é4 (mod 2),
Vaughan
e =e+e (mod?2),

The Quadratic €3 = 65 (mod 2),
- e6=0 (mod 2),

® and so each of

is a perfect square.



® FEach of the following are squares.

f(xa)f (x2)f (xa),
f(x2)f(x3)f(xs),
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Factorization ® Each of the following are squares.

and Primality

Chs-;::ji;gj'he f(Xl)f(X2)f(X4)a
uadratic
Sieve f(Xz)f(X3)f(X5),
Robert C.
Vaughan
® We have
Sioga 2 X1 X xo X xa = 2198 x 2225 x 2373 = 11605275150

f(x1)f(x)f(xa) = (—1)% x 2% x 310 x 5% x 11% x 312
= (2 x 3% x 5% x 11% x 31)? = 2278732502



Factorization
and Primality
Testing
Chapter 8 The
Quadratic
Sieve

Robert C.
Vaughan

The Quadratic
Sieve

® Each of the following are squares.
f(x)f () f (),
f(Xz)f(X3)f(X5),

® We have
X1 X Xo X x4 = 2198 x 2225 x 2373 = 11605275150

f(x1)f(x)f(xa) = (—1)% x 2% x 310 x 5% x 11% x 312
= (2 x 3% x 5% x 11% x 31)? = 2278732502
® Thus

(11605275150 — 227873250, n)
= (11377401900, 5479879) = 5431
and

(1105275150 + 227873250, 5479879) = 10009.
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® We can also check the second relationship.

Xo X X3 X X5 = 2225 x 2252 x 2383 = 11940498100

f(x2)f(x3)f(x5) = (—1)% x 22 x 3'2 x 5% x 11* x 472
= (2 x 3% x 52 x 112 x 47)? = 2072911502

Then
11940498100 — 207291150 = 11733206950,
11940498100 + 207291150 = 12147789250,
(11733206950, 5479879) = 1009
and

(12147789250, 5479879) = 5431.



® As part of the quadratic sieve we need to solve systems of
linear congruences of the kind

ajre; + anpe + -+ aymem =0 (mod 2),

axie; + ane + -+ amem =0 (mod 2),

aner +apex+ -+ amem =0 (mod 2).
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o Py Note on Gaussian Elimination

and Primality
Testing
Chapter 8 The
Quadratic
Sieve

Robert C.
Vaughan ® As part of the quadratic sieve we need to solve systems of

linear congruences of the kind

ajer + axer + - - + aimem =0 (mod 2),
Note on arier +aper+ -+ amen =0 (mod 2),

Gaussian
Elimination

aner +aper+ -+ amem =0 (mod 2).

® In our situation the aj can be taken to be 1 or 0 which
simplifies computation.



o Py Note on Gaussian Elimination
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Robert C.
Vaughan ® As part of the quadratic sieve we need to solve systems of

linear congruences of the kind

ajer + axer + - - + aimem =0 (mod 2),
Note on arier +aper+ -+ amen =0 (mod 2),

Gaussian
Elimination

aner +aper+ -+ amem =0 (mod 2).

® In our situation the aj can be taken to be 1 or 0 which
simplifies computation.

® For the numbers we will deal with Gaussian elimination is
adequate, and has the merit of being straightforward.



o Py Note on Gaussian Elimination
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VN aiier + aper + -+ aimem =0 (mod 2),
axie1 + axne + -+ aamem =0 (mod 2),

Note on aner +apex+ -+ amem =0 (mod 2).

Gaussian
Elimination

® \We can write this more succinctly in matrix notation as

Ae=0
where
air a2 - dim €1 0
A a1 ax - am Ce= € 0= 0

an ap - am em 0
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Sieve ar1 ay - aom
Robert C. A =
Vaughan

ajir ar - dim

® The first observation that can be made is that it is
ot on immaterial as to the order in which we write the equations
Eli e so at any state we can interchange them if it is convenient
to do so. Thus we can suppose initially that a left-most
non-zero entry is in the top row. This is sometimes called
a pivot.
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Quadratic 3 a 2
Sieve 21 a2 -t dm
Robert C. A =
Vaughan
air ar - dim
® The first observation that can be made is that it is
ot on immaterial as to the order in which we write the equations
Eli e so at any state we can interchange them if it is convenient

to do so. Thus we can suppose initially that a left-most
non-zero entry is in the top row. This is sometimes called
a pivot.

® Qur second observation is that in our original system of
linear congruences we can take one equation and subtract
it from another. This is equivalent to taking the
corresponding row in the matrix and subtracting it from
the second corresponding row.
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Robert C. -
Vaughan
air ap - dim
® \When Gaussian elimination is applied generally in the real
Note on world one can even take real multiples of one row from
aussian
Elimination another, but in this world we have the much simple

environment of having only zeros and ones. Note that if
subtraction gives —1 this is the same as 1.
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Quadratic
Sieve A dp1 a2 - am
Robert C. -
Vaughan
air ap - dim
® \When Gaussian elimination is applied generally in the real
Note on world one can even take real multiples of one row from
aussian
Elimination another, but in this world we have the much simple

environment of having only zeros and ones. Note that if
subtraction gives —1 this is the same as 1.

® Denote the pivot in the top row by aj;. We now take the
first row and subtract it from every row with aj = 1.
Thus the new matrix will have aj; = 1 and all the entries
to the left and below it are 0.
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Quadratic
Sieve A dp1 a2 - am
Robert C. -
Vaughan
air ap - dim
® \When Gaussian elimination is applied generally in the real
Note on world one can even take real multiples of one row from
aussian
Elimination another, but in this world we have the much simple

environment of having only zeros and ones. Note that if
subtraction gives —1 this is the same as 1.

® Denote the pivot in the top row by aj;. We now take the
first row and subtract it from every row with aj = 1.
Thus the new matrix will have aj; = 1 and all the entries
to the left and below it are 0.

® \We now repeat this process with the submatrix formed
from the rows j 4+ 1 through m.
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Robert C. to echelon form
Vaughan
1 a2 a13 a4 -+ aim
0 1 a3 au -+ am
0 O 0 1 - azm
Note on
Gaussian
Elimination 0 O 0 0
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® \We continue in this way until we have reduced the matrix
to echelon form

1 app a3 aw -+ aim
0 1 ar3 ax -+ am
0 O 0 1 - azm
0 O 0 0

® Note that the matrix might well have zeros on the
diagonal from some point on. If so some of the rows at
the bottom of the matrix are likely to consist of all zeros.
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Sieve ® \We continue in this way until we have reduced the matrix
Robert C. to echelon form
Vaughan
1 a2 a3 auw - am
0 1 a3 au -+ am
0 O 0 1 - azn,
Note on
Gaussian 0 O 0 0

Elimination

® Note that the matrix might well have zeros on the
diagonal from some point on. If so some of the rows at
the bottom of the matrix are likely to consist of all zeros.

® The first 1 in a row is called a pivot.
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Tt 1 a2 a13 aw -+ aim
Chapter 8 Th

Szaec;ratic ° O 1 323 azs e am

Sieve 0 0 0 1 . asm

Robert C.

Vaughan O 0 0 0
Note on ® Starting from the bottom of the matrix we now use these
Gaussian

Elimination pivots to remove any non-zero entry above the pivot.
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Chapter 8 Th

Szaedrratic ° O 1 323 324 Tt 32m

Sieve 0 0 0 1 . azm

Robert C.

Vaughan O 0 0 0
Note on ® Starting from the bottom of the matrix we now use these
Gaussian . .
it ivots to remove any non-zero entry above the pivot.

y M

® Thus the last matrix would take on the shape

1 0 a3 0 aim
0 1 a3 O a2m
0 0 0 1 asm
0 0 0 O



Factorization
and Primality

Testing 1 a2 a13 aw -+ aim
Chapter 8 Th

Szaedrratic ° O 1 323 324 Tt 32m

Sieve 0 0 0 1 . azm

Robert C.

Vaughan O 0 0 0
Note on ® Starting from the bottom of the matrix we now use these
Gaussian . .
it ivots to remove any non-zero entry above the pivot.

y M

® Thus the last matrix would take on the shape

1 0 a3 0 aim
0 1 a3 O a2m
0 0 0 1 asm
0 0 0 O

® This is called reduced echelon form.
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Quadratic

Sieve

Robert C.

Vaughan 1 0 a13 0 dlm
0 1 a3 O aom
00 0 1 asm
00 0 O

Note on
Gaussian
Elimination

® The variables corresponding to pivots are the dependent
variables and the other variables are the independent ones.
The values for the dependent variables are then easily read
off in terms of the independent ones.
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® Thus in Example 8.1 the reduced echelon form is

1 0000O0O0OT1TUO0TP O
01 00O0OO0OOOO0OT1
001 00O0T1O0O0TD0O
00010O01O0O00D0O
00001O0O01O00
000O0O0O1O0O0O0T1
0000O0OO0OO0OOT10
000 0O0OO0OOOODPW
0 000OO0OOOOTODPW

€1, €, €3, e, 65, € and eg are dependent variables and
the e7, eg and ejg can be chosen at random.
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