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Pollard rho

• John Pollard, in the 1970s, created a number of different
techniques for factoring large integers.

• The Pollard rho is named for a way of representing the
iterative process which looks like the Greek lower case rho,
ρ.

• Suppose you start from some object P0, and successively
compute P1,P2,P3, . . . and that sooner or later you find
some pair j < k so that Pj = Pk .

• Then Pj+1 = Pk+1 and so on.

• That is the sequence just repeats itself with period k − j .

• We can represent this as a ρ, where P0 is at the base of
the tail, and Pj is where the tail meets the loop.
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• How this works to factorize n in the case of Pollard rho is
that one chooses some polynomial, normally irreducible
over Q, like

f (x) = x2 + 1,

• pick an x0 at random and successively compute

x1 = f (x0) (mod n),

x2 = f (x1) (mod n),

x3 = f (x2) (mod n),

...
...

...

• Since there are only n residue classes, sooner or later there
has to be a repetition. We then check GCD(xi − xj , n) for
each pair i , j and hope to find a non-trivial factor of n.

• There is no guarantee of finding one quickly, but
sometimes one is found.

• The usual procedure is to stop after a certain amount of
time and try a different polynomial f .
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• Suppose d is a proper divisor of n.

• For every i let yi ≡ xi (mod d).

• But yj ≡ xj ≡ f (xj−1) ≡ f (yj−1) (mod d).

• Thus sooner or later yj = yk for some j , k with j ̸= k.

• Then xj ≡ yj ≡ yk ≡ xk (mod d). Probably, and
hopefully, xj ̸= xk so d |GCD(xj − xk , n) and the GCD will
differ from n.
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• Given a prime p with p|n and p <
√
n we are seeking

different numbers in the same residue class modulo p.

• If we have x1, x2, . . . , xs created at random, this is akin to
the birthday paradox with a year that has p days and a
class size of s.

• Thus we can expect that with s not much bigger than√
p < n1/4 we will find a solution.
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Example 1

Let n = 1133 and f (x) = x2 + 1. Of course 11|1133.
Take x0 = 2. Then x1 = 5, x2 = 26, x3 = 677, x4 = 598. Now

(x1 − x0, n) = (3, 1133) = 1,

(x2 − x0, n) = (24, 1133) = 1,

(x3 − x0, n) = (675, 1133) = 1,

(x4 − x0, n) = (596, 1133) = 1,

(x2 − x1, n) = (21, 1133) = 1,

(x3 − x1, n) = (672, 1133) = 1,

(x4 − x1, n) = (593, 1133) = 1,

(x3 − x2, n) = (651, 1133) = 1,

(x4 − x2, n) = (572, 1133) = 11.

Not very efficient, but it illustrates the idea.
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• The method can be speeded up as follows by an idea due
to Floyd.

• We want to know when we have reached the loop.

• Think of this as a race with two runners.

• If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.

• With this in mind, let z0 = x0 and then at the j-th step
compute xj as above and zj+1 ≡ f (f (zj)) (mod n).

• Then zj = x2j , so we are computing xj and x2j
simultaneously.

• If xj and xk with j < k are the smallest pair with xj ≡ xk
(mod d), let l = k − j . Then xi ≡ xi+rl (mod d) for every
i ≥ j and every r ≥ 0.

• Take i = l⌈j/l⌉ so that i ≥ j and r = ⌈j/l⌉.
• Then rl = i and so xi ≡ x2i (mod d). Thus we only need
check GCD(x2i − xi , n) and this really speeds up the
computations. In the previous example.
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• Thus we only need check GCD(x2i − xi , n)s.

• In the previous example.

Example 2

Let n = 1133, f (x) = x2 + 1 and x0 = 2.
Then we compute

x1 = 5, x2 = 26, (x2 − x1, n) = (21, 1133) = 1,

x2 = 26, x4 = 598, (x4 − x2, n) = (572, 1133) = 11.

That is more like it!



Factorization
and Primality

Testing
Chapter 7
Pollard’s
Methods

Robert C.
Vaughan

• Thus we only need check GCD(x2i − xi , n)s.

• In the previous example.

Example 2

Let n = 1133, f (x) = x2 + 1 and x0 = 2.
Then we compute

x1 = 5, x2 = 26, (x2 − x1, n) = (21, 1133) = 1,

x2 = 26, x4 = 598, (x4 − x2, n) = (572, 1133) = 11.

That is more like it!



Factorization
and Primality

Testing
Chapter 7
Pollard’s
Methods

Robert C.
Vaughan

• A less obvious example

Example 3

Let n = 713, f (x) = x2 + 1 and x0 = 2.
Then we compute

x1 = 5, x2 = 26, (x2 − x1, n) = (21, 713) = 1,

x2 = 26, x4 = 584, (x4 − x2, n) = (558, 713) = 31.

• There are a number of more sophisticated variants of this
which are designed to speed the algorithm up.

• Generally there is no rigorous proof but it is believed that
the run time is normally proportional to

√
p where p is the

smallest prime factor of n and so in the worst case, for a
composite number the run time is proportional to n1/4.
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Pollard p-1

• Here we take a fairly large number K and hope that n has
a prime factor p such that none of the prime factors of
p − 1 exceed K .

• To explain the method we will assume a little more,
namely that p − 1|K !

• Obviously we do not want to compute and store K !, which
will be huge.

• Thus for some a coprime with n we define x1 = a and
successively compute

xk ≡ xkk−1 (mod n) & GCD(xk − 1, n) (k = 2, 3, . . . ,K ),

stopping if the GCD reveals a proper factor of n.
• Since n is large we can expect that xk ̸≡ 1 (mod n), but if
p|n and p − 1|k!, so that k! = m(p − 1) for some m, then
we have

xk ≡ ak! = (ap−1)m ≡ 1 (mod p).



Factorization
and Primality

Testing
Chapter 7
Pollard’s
Methods

Robert C.
Vaughan

Pollard p-1

• Here we take a fairly large number K and hope that n has
a prime factor p such that none of the prime factors of
p − 1 exceed K .

• To explain the method we will assume a little more,
namely that p − 1|K !

• Obviously we do not want to compute and store K !, which
will be huge.

• Thus for some a coprime with n we define x1 = a and
successively compute

xk ≡ xkk−1 (mod n) & GCD(xk − 1, n) (k = 2, 3, . . . ,K ),

stopping if the GCD reveals a proper factor of n.
• Since n is large we can expect that xk ̸≡ 1 (mod n), but if
p|n and p − 1|k!, so that k! = m(p − 1) for some m, then
we have

xk ≡ ak! = (ap−1)m ≡ 1 (mod p).



Factorization
and Primality

Testing
Chapter 7
Pollard’s
Methods

Robert C.
Vaughan

Pollard p-1

• Here we take a fairly large number K and hope that n has
a prime factor p such that none of the prime factors of
p − 1 exceed K .

• To explain the method we will assume a little more,
namely that p − 1|K !

• Obviously we do not want to compute and store K !, which
will be huge.

• Thus for some a coprime with n we define x1 = a and
successively compute

xk ≡ xkk−1 (mod n) & GCD(xk − 1, n) (k = 2, 3, . . . ,K ),

stopping if the GCD reveals a proper factor of n.
• Since n is large we can expect that xk ̸≡ 1 (mod n), but if
p|n and p − 1|k!, so that k! = m(p − 1) for some m, then
we have

xk ≡ ak! = (ap−1)m ≡ 1 (mod p).



Factorization
and Primality

Testing
Chapter 7
Pollard’s
Methods

Robert C.
Vaughan

Pollard p-1

• Here we take a fairly large number K and hope that n has
a prime factor p such that none of the prime factors of
p − 1 exceed K .

• To explain the method we will assume a little more,
namely that p − 1|K !

• Obviously we do not want to compute and store K !, which
will be huge.

• Thus for some a coprime with n we define x1 = a and
successively compute

xk ≡ xkk−1 (mod n) & GCD(xk − 1, n) (k = 2, 3, . . . ,K ),

stopping if the GCD reveals a proper factor of n.

• Since n is large we can expect that xk ̸≡ 1 (mod n), but if
p|n and p − 1|k!, so that k! = m(p − 1) for some m, then
we have

xk ≡ ak! = (ap−1)m ≡ 1 (mod p).



Factorization
and Primality

Testing
Chapter 7
Pollard’s
Methods

Robert C.
Vaughan

Pollard p-1

• Here we take a fairly large number K and hope that n has
a prime factor p such that none of the prime factors of
p − 1 exceed K .

• To explain the method we will assume a little more,
namely that p − 1|K !

• Obviously we do not want to compute and store K !, which
will be huge.

• Thus for some a coprime with n we define x1 = a and
successively compute

xk ≡ xkk−1 (mod n) & GCD(xk − 1, n) (k = 2, 3, . . . ,K ),

stopping if the GCD reveals a proper factor of n.
• Since n is large we can expect that xk ̸≡ 1 (mod n), but if
p|n and p − 1|k!, so that k! = m(p − 1) for some m, then
we have

xk ≡ ak! = (ap−1)m ≡ 1 (mod p).



Factorization
and Primality

Testing
Chapter 7
Pollard’s
Methods

Robert C.
Vaughan

• Consider our old friend 1133.

Example 4

Let a = 2. Thus x1 = 2, x2 = 22 = 4, x3 = 43 = 64,

x4 = 644 = 16777216 ≡ 719 (mod 1133), (718, 1133) = 1,

x5 = 7195 = 192, 151, 797, 699, 599 ≡ 1101 (mod 1133),

(1100, 1133) = 11.

• Now look at the less obvious example we considered above

Example 5

Let n = 713, & a = 2. Thus x1 = 2, x2 = 22 = 4, x3 = 43 = 64,

x4 = 644 = 16777216 ≡ 326 (mod 713), (325, 713) = 1, x5 =

3265 = 3, 682, 035, 745, 376 ≡ 311 (mod 713), (310, 713) = 31
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• In practice for large numbers the elliptic curve method is
faster and the Pollard p − 1 has largely disappeared.

• It uses the group structure of the powers of a modulo n.

• The elliptic curve method is based on a similar basic idea
but takes advantage of the richer underlying group
structure of elliptic curves.
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