Robert C. Vaughan

October 1, 2025

(o B =

«E>»

Q>

® John Pollard, in the 1970s, created a number of different
techniques for factoring large integers.

«O> «Fr «=>»

«E)»

DA

® John Pollard, in the 1970s, created a number of different

techniques for factoring large integers.

® The Pollard rho is named for a way of representing the
p.

iterative process which looks like the Greek lower case rho,

«Or «Fr «=>»

« =

DA

Factorization Pol I a rd rh O

and Primality
Testing
Chapter 7
Pollard's
Methods

Vavghan e John Pollard, in the 1970s, created a number of different
techniques for factoring large integers.

® The Pollard rho is named for a way of representing the
iterative process which looks like the Greek lower case rho,

p.
® Suppose you start from some object Py, and successively
compute P, Py, Ps,... and that sooner or later you find

some pair j < k so that P; = Py.

Factorization Pol I a rd rh O

and Primality
Testing
Chapter 7
Pollard's
Methods

e e John Pollard, in the 1970s, created a number of different

techniques for factoring large integers.

® The Pollard rho is named for a way of representing the
iterative process which looks like the Greek lower case rho,

p.
® Suppose you start from some object Py, and successively
compute P, Py, Ps,... and that sooner or later you find

some pair j < k so that P; = Py.
® Then Pj+1 = Pk+1 and so on.

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

Pollard rho

John Pollard, in the 1970s, created a number of different
techniques for factoring large integers.

The Pollard rho is named for a way of representing the
iterative process which looks like the Greek lower case rho,
p.

Suppose you start from some object Py, and successively
compute P, Py, Ps,... and that sooner or later you find
some pair j < k so that P; = Py.

Then Pj+1 = Pk+1 and so on.

That is the sequence just repeats itself with period k — j.

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

Pollard rho

John Pollard, in the 1970s, created a number of different
techniques for factoring large integers.

The Pollard rho is named for a way of representing the
iterative process which looks like the Greek lower case rho,
p.

Suppose you start from some object Py, and successively
compute P, Py, Ps,... and that sooner or later you find
some pair j < k so that P; = Py.

Then Pj+1 = Pk+1 and so on.

That is the sequence just repeats itself with period k — j.

We can represent this as a p, where Py is at the base of
the tail, and P; is where the tail meets the loop.

Factorization ® How this works to factorize n in the case of Pollard rho is

and Primality i i i
= that one chooses some polynomial, normally irreducible
apter H
Pollard’s over Qr Ilke
Methods 2
f(X) = X"+ 17

Robert C.
Vaughan

Factorization ® How this works to factorize n in the case of Pollard rho is

and Primality)))
Testing that one chooses some polynomial, normally irreducible

Chapter 7)
Pollard’s over Q, like

Methods
2
Robert C. f(X) =X + 17
Vaughan . .
® pick an xp at random and successively compute

x1 = f(xp) (mod n),
xp = f(x1) (mod n),
x3 = f(x2) (mod n),

Factorization ® How this works to factorize n in the case of Pollard rho is

and Primality

cpesting_ that one chooses some polynomial, normally irreducible
apter)
Pollard's over Q, ||ke

Methods
2
Robert C. f(X) =Xx"+ 1’

Vaughan . .
® pick an xp at random and successively compute

x1 = f(xp) (mod n),
xp = f(x1) (mod n),
x3 = f(x2) (mod n),

® Since there are only n residue classes, sooner or later there
has to be a repetition. We then check GCD(x; — x;, n) for
each pair /,j and hope to find a non-trivial factor of n.

Factorization ® How this works to factorize n in the case of Pollard rho is
an rimality . . .
cpesting_ that one chooses some polynomial, normally irreducible
apter)
Pollard's over Q, ||ke

Methods
2
Robert C. f(X) =Xx"+ 1’

Vaughan . .
® pick an xp at random and successively compute

x1 = f(xp) (mod n),
xp = f(x1) (mod n),
x3 = f(x2) (mod n),

® Since there are only n residue classes, sooner or later there
has to be a repetition. We then check GCD(x; — x;, n) for
each pair 7, and hope to find a non-trivial factor of n.

® There is no guarantee of finding one quickly, but
sometimes one is found.

Factorization ® How this works to factorize n in the case of Pollard rho is

and Primality

i that one chooses some polynomial, normally irreducible
apter)

Pollard's over Q, ||ke

Methods f 2 1

Robert C. (X) =X +)

Vaughan

® pick an xp at random and successively compute

x1 = f(xp) (mod n),
xp = f(x1) (mod n),
x3 = f(x2) (mod n),

® Since there are only n residue classes, sooner or later there
has to be a repetition. We then check GCD(x; — x;, n) for
each pair /,j and hope to find a non-trivial factor of n.

® There is no guarantee of finding one quickly, but
sometimes one is found.

® The usual procedure is to stop after a certain amount of
time and try a different polynomial f.

® \What is the theOry?

A= N =

Q>

® \What is the theory?

® Suppose d is a proper divisor of n.

«Or «Fr o«

DA

® \What is the theory?

® Suppose d is a proper divisor of n

® For every i let y; = x; (mod d).

«O> «Fr «=>»

«E)»

DA

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

What is the theory?

Suppose d is a proper divisor of n.

® For every i let y; = x; (mod d).
But y; = x;j = f(xj—1) = f(yj-1) (mod d).

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

What is the theory?

Suppose d is a proper divisor of n.

® For every i let y; = x; (mod d).
But yj = xj = f(xj—1) = f(yj—1) (mod d).
Thus sooner or later y; = y for some j, k with j # k.

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

What is the theory?

Suppose d is a proper divisor of n.

For every i let y; = x; (mod d).

But yj = xj = f(xj—1) = f(yj—1) (mod d).

Thus sooner or later y; = y for some j, k with j # k.

Then x; = yj = yx = xx (mod d). Probably, and
hopefully, x; # xx so d|GCD(x; — xk, n) and the GCD will
differ from n.

® How far should we expect to go before finding a solution?

«Or «Fr o«

it
.
it
v
[y

DA

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
® How far should we expect to go before finding a solution?

Vaughan
® Given a prime p with p|n and p < y/n we are seeking
different numbers in the same residue class modulo p.

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan ® How far should we expect to go before finding a solution?

® Given a prime p with p|n and p < y/n we are seeking
different numbers in the same residue class modulo p.

® |f we have xq,x2, ..., Xs created at random, this is akin to
the birthday paradox with a year that has p days and a
class size of s.

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

How far should we expect to go before finding a solution?
Given a prime p with p|n and p < v/n we are seeking
different numbers in the same residue class modulo p.

If we have x1, xo,...,xs created at random, this is akin to
the birthday paradox with a year that has p days and a
class size of s.

Thus we can expect that with s not much bigger than
VP < n'/4 we will find a solution.

Factorization

Testing

Chapter,7

Methods Let n = 1133 and f(x) = x2 4 1. Of course 11|1133.

Robert C. Take xg = 2. Then x; =5, xo = 26, x3 = 677, x4 = 598. Now

Vaughan

(x1 — x0,n) = (3,1133) =1,
(x2 — x0, 1) = (24,1133) = 1,
(x3 — xp, n) = (675,1133) =1,
(xa — x0, n) = (596,1133) =1,
(x2 — x1,n) =(21,1133) =1,
(x3 — x1,n) = (672,1133) =1,

(xa — x1,n) = (593,1133) =1,

(x3 — x2,n) = (651,1133) =1,
(xa — xo, 1) = (572,1133) = 11.

Not very efficient, but it illustrates the idea.

® The method can be speeded up as follows by an idea due
to Floyd.

«O> «Fr «=>»

«E)»

DA

Factorization ® The method can be speeded up as follows by an idea due
nd Primality
Testing to Floyd.
Chapter 7
s ® \We want to know when we have reached the loop.

Robert C.
Vaughan

e ® The method can be speeded up as follows by an idea due

and Primality

Testing to Floyd.
Chapter 7
s ® \We want to know when we have reached the loop.

Robert C. ® Think of this as a race with two runners.

Vaughan

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.
Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.
Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.
With this in mind, let zy = xp and then at the j-th step
compute x; as above and zj;1 = f(f(z)) (mod n).

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.
Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.
With this in mind, let zy = xp and then at the j-th step
compute x; as above and zj;1 = f(f(z)) (mod n).

Then z; = xpj, so we are computing x; and xp;
simultaneously.

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.

Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.
With this in mind, let zy = xp and then at the j-th step
compute x; as above and zj;1 = f(f(z)) (mod n).

Then z; = xpj, so we are computing x; and xp;
simultaneously.

If x; and xj with j < k are the smallest pair with x; = xi
(mod d), let | = k —j. Then x; = x;+y (mod d) for every
i > j and every r > 0.

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.

Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.
With this in mind, let zy = xp and then at the j-th step
compute x; as above and zj;1 = f(f(z)) (mod n).

Then z; = xpj, so we are computing x; and xp;
simultaneously.

If x; and xj with j < k are the smallest pair with x; = xi
(mod d), let | = k —j. Then x; = x;+y (mod d) for every
i > j and every r > 0.

Take i = 1[j/I] so that i > j and r = [j/I].

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.

Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.
With this in mind, let zy = xp and then at the j-th step
compute x; as above and zj;1 = f(f(z)) (mod n).

Then z; = xpj, so we are computing x; and xp;
simultaneously.

If x; and xj with j < k are the smallest pair with x; = xi
(mod d), let | = k —j. Then x; = x;+y (mod d) for every
i > j and every r > 0.

Take i = 1[j/I] so that i > j and r = [j/I].

Then rl =i and so x; = x2; (mod d). Thus we only need
check GCD(xp; — x;, n) and this really speeds up the
computations. In the previous example.

® Thus we only need check GCD(xp; — xj, n)s.

«Or «Fr o«

ae

Factorization
and Primality
Testing
Chapter 7
Pollard’s
Methods
Robert C.
Vaughan

® Thus we only need check GCD(x2; — x;, n)s
® |n the previous example.

Let n = 1133, f(x) = x>+ 1 and x = 2.
Then we compute

x1 =5,x =26, (xo — x1,n) = (21,1133) =1,
xp = 26,x4 = 598, (x4 — x2, n) = (572,1133) = 11.
That is more like it!

Factorization
and Primality
Testing

Chapter 7 ® A less obvious example
Pollard’s

Methods

Robert C. _

Vaughan Let n = 713' f(X) = X2 +1 and Xp = 2.
Then we compute

x1 =5,x20 =26, (x2 — x1,n) = (21,713) = 1,
X2 = 26, x4 = 584, (x4 — x2, n) = (558,713) = 31.

u}
8]
I

i
it
N)
pe)
?)

Factorization
and Primality
Testing
Chapter 7
Pollard’s
Methods

® A less obvious example
Robert C.

Vaughan Let n = 713’ f(X) = X2 +1 and Xp = 2.
Then we compute

x1 =5,x20 =26, (x2 — x1,n) = (21,713) = 1,
X2 = 26, x4 = 584, (x4 — x2, n) = (558,713) = 31.

® There are a number of more sophisticated variants of this
which are designed to speed the algorithm up.

Factorization

and Primality
Testing .
Chapter 7 ® A less obvious example
Pollard’s

Methods
P et n=713, f(x) = x2+1 and xo = 2.
Then we compute

x1 =5,x20 =26, (x2 — x1,n) = (21,713) = 1,
xp = 26, x4 = 584, (xa — x2, n) = (558,713) = 31.

® There are a number of more sophisticated variants of this
which are designed to speed the algorithm up.

® Generally there is no rigorous proof but it is believed that
the run time is normally proportional to /p where p is the
smallest prime factor of n and so in the worst case, for a
composite number the run time is proportional to n/4.

u}
8]
I
i
it

p — 1 exceed K.

® Here we take a fairly large number K and hope that n has
a prime factor p such that none of the prime factors of

«O> «Fr «=>»

«E)»

DA

® Here we take a fairly large number K and hope that n has
a prime factor p such that none of the prime factors of
p — 1 exceed K.

® To explain the method we will assume a little more,
namely that p — 1|K!

«O> «Fr «Er =)

DA

Factorization POI | a rd p— 1

and Primality
Testing
Chapter 7 .
ffellifdz ® Here we take a fairly large number K and hope that n has
o a prime factor p such that none of the prime factors of
Vaughan p— 1 exceed K.

® To explain the method we will assume a little more,

namely that p — 1|K!
® Obviously we do not want to compute and store K!, which

will be huge.

Factorization POI | a rd p— 1

and Primality
Testing
Chapter 7 H
K’A‘;'Lii,"di ® Here we take a fairly large number K and hope that n has
b a prime factor p such that none of the prime factors of
Vaughan p— 1 exceed K.

® To explain the method we will assume a little more,
namely that p — 1|K!
® Obviously we do not want to compute and store K!, which

will be huge.
® Thus for some a coprime with n we define x; = a and

successively compute
xk = xK_; (mod n) & GCD(x, —1,n) (k=2,3,...,K),
stopping if the GCD reveals a proper factor of n.

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

Pollard p-1

Here we take a fairly large number K and hope that n has
a prime factor p such that none of the prime factors of

p — 1 exceed K.

To explain the method we will assume a little more,
namely that p — 1|K!

Obviously we do not want to compute and store K!, which
will be huge.

Thus for some a coprime with n we define x; = a and
successively compute

xk = xK_; (mod n) & GCD(x, —1,n) (k=2,3,...,K),

stopping if the GCD reveals a proper factor of n.

Since n is large we can expect that xx Z1 (mod n), but if
p|n and p — 1|k!, so that k! = m(p — 1) for some m, then
we have

x¢=a" = (2P 1)" =1 (mod p).

Factorization
and Primality
Testing
Chapter 7
Pollard’s

® Consider our old friend 1133.
Methods

Robert C. Let a=2. Thus x; = 2,x0 = 22 = 4, x3 = 43 = 64,
Vaughan

x4 = 64* = 16777216 = 719 (mod 1133), (718,1133) = 1,

x5 = 719° = 192,151,797, 699,599 = 1101 (mod 1133),
(1100,1133) = 11.

Factorization
and Primality
Testing
Chapter 7
Pollard’s

® Consider our old friend 1133.
Methods

Robert C. Let a=2. Thus x; = 2,x0 = 22 = 4, x3 = 43 = 64,
Vaughan

x4 = 64* = 16777216 = 719 (mod 1133), (718,1133) = 1,

x5 = 719° = 192,151,797, 699,599 = 1101 (mod 1133),
(1100,1133) = 11.

® Now look at the less obvious example we considered above
Let n =713, & a=2. Thus x; =2,x0 = 2° = 4,x3 = 43 = 64,
xq = 64* = 16777216 = 326 (mod 713), (325,713) =1, x5 =

326° = 3,682,035, 745,376 = 311 (mod 713), (310, 713) = 31

[m]

=

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

® |n practice for large numbers the elliptic curve method is
faster and the Pollard p — 1 has largely disappeared.

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

® |n practice for large numbers the elliptic curve method is
faster and the Pollard p — 1 has largely disappeared.

® |t uses the group structure of the powers of a modulo n.

Factorization
and Primality
Testing
Chapter 7
Pollard's
Methods

Robert C.
Vaughan

® |n practice for large numbers the elliptic curve method is
faster and the Pollard p — 1 has largely disappeared.

® |t uses the group structure of the powers of a modulo n.

® The elliptic curve method is based on a similar basic idea

but takes advantage of the richer underlying group
structure of elliptic curves.

