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® John Pollard, in the 1970s, created a number of different
techniques for factoring large integers.
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® Suppose you start from some object Py, and successively
compute P, Py, Ps,... and that sooner or later you find

some pair j < k so that P; = Py.
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compute P, Py, Ps,... and that sooner or later you find

some pair j < k so that P; = Py.
® Then Pj+1 = Pk+1 and so on.
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Pollard rho

John Pollard, in the 1970s, created a number of different
techniques for factoring large integers.

The Pollard rho is named for a way of representing the
iterative process which looks like the Greek lower case rho,
p.

Suppose you start from some object Py, and successively
compute P, Py, Ps,... and that sooner or later you find
some pair j < k so that P; = Py.

Then Pj+1 = Pk+1 and so on.

That is the sequence just repeats itself with period k — j.
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Pollard rho

John Pollard, in the 1970s, created a number of different
techniques for factoring large integers.

The Pollard rho is named for a way of representing the
iterative process which looks like the Greek lower case rho,
p.

Suppose you start from some object Py, and successively
compute P, Py, Ps,... and that sooner or later you find
some pair j < k so that P; = Py.

Then Pj+1 = Pk+1 and so on.

That is the sequence just repeats itself with period k — j.

We can represent this as a p, where Py is at the base of
the tail, and P; is where the tail meets the loop.
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® pick an xp at random and successively compute

x1 = f(xp) (mod n),
xp = f(x1) (mod n),
x3 = f(x2) (mod n),
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x1 = f(xp) (mod n),
xp = f(x1) (mod n),
x3 = f(x2) (mod n),

® Since there are only n residue classes, sooner or later there
has to be a repetition. We then check GCD(x; — x;, n) for
each pair /,j and hope to find a non-trivial factor of n.
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® pick an xp at random and successively compute

x1 = f(xp) (mod n),
xp = f(x1) (mod n),
x3 = f(x2) (mod n),

® Since there are only n residue classes, sooner or later there
has to be a repetition. We then check GCD(x; — x;, n) for
each pair /,j and hope to find a non-trivial factor of n.

® There is no guarantee of finding one quickly, but
sometimes one is found.

® The usual procedure is to stop after a certain amount of
time and try a different polynomial f.
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What is the theory?

Suppose d is a proper divisor of n.

® For every i let y; = x; (mod d).
But y; = x;j = f(xj—1) = f(yj-1) (mod d).
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What is the theory?

Suppose d is a proper divisor of n.

® For every i let y; = x; (mod d).
But yj = xj = f(xj—1) = f(yj—1) (mod d).
Thus sooner or later y; = y for some j, k with j # k.
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What is the theory?

Suppose d is a proper divisor of n.

For every i let y; = x; (mod d).

But yj = xj = f(xj—1) = f(yj—1) (mod d).

Thus sooner or later y; = y for some j, k with j # k.

Then x; = yj = yx = xx (mod d). Probably, and
hopefully, x; # xx so d|GCD(x; — xk, n) and the GCD will
differ from n.
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® Given a prime p with p|n and p < y/n we are seeking
different numbers in the same residue class modulo p.
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® Given a prime p with p|n and p < y/n we are seeking
different numbers in the same residue class modulo p.

® |f we have xq,x2, ..., Xs created at random, this is akin to
the birthday paradox with a year that has p days and a
class size of s.
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How far should we expect to go before finding a solution?
Given a prime p with p|n and p < v/n we are seeking
different numbers in the same residue class modulo p.

If we have x1, xo,...,xs created at random, this is akin to
the birthday paradox with a year that has p days and a
class size of s.

Thus we can expect that with s not much bigger than
VP < n'/4 we will find a solution.
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Robert C. Take xg = 2. Then x; =5, xo = 26, x3 = 677, x4 = 598. Now

Vaughan

(x1 — x0,n) = (3,1133) =1,
(x2 — x0, 1) = (24,1133) = 1,
(x3 — xp, n) = (675,1133) =1,
(xa — x0, n) = (596,1133) =1,
(x2 — x1,n) =(21,1133) =1,
(x3 — x1,n) = (672,1133) =1,

(xa — x1,n) = (593,1133) =1,

(x3 — x2,n) = (651,1133) =1,
(xa — xo, 1) = (572,1133) = 11.

Not very efficient, but it illustrates the idea.
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The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.
Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.
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The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.
Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.
With this in mind, let zy = xp and then at the j-th step
compute x; as above and zj;1 = f(f(z)) (mod n).
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The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.
Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.
With this in mind, let zy = xp and then at the j-th step
compute x; as above and zj;1 = f(f(z)) (mod n).

Then z; = xpj, so we are computing x; and xp;
simultaneously.
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The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.

Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.
With this in mind, let zy = xp and then at the j-th step
compute x; as above and zj;1 = f(f(z)) (mod n).

Then z; = xpj, so we are computing x; and xp;
simultaneously.

If x; and xj with j < k are the smallest pair with x; = xi
(mod d), let | = k —j. Then x; = x;+y (mod d) for every
i > j and every r > 0.
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The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.

Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.
With this in mind, let zy = xp and then at the j-th step
compute x; as above and zj;1 = f(f(z)) (mod n).

Then z; = xpj, so we are computing x; and xp;
simultaneously.

If x; and xj with j < k are the smallest pair with x; = xi
(mod d), let | = k —j. Then x; = x;+y (mod d) for every
i > j and every r > 0.

Take i = 1[j/I] so that i > j and r = [j/I].
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The method can be speeded up as follows by an idea due
to Floyd.

We want to know when we have reached the loop.

Think of this as a race with two runners.

If one is running twice as fast as the other, the point at
which the faster one comes round the loop to overtake the
slower one is the place where the tail meets the loop.
With this in mind, let zy = xp and then at the j-th step
compute x; as above and zj;1 = f(f(z)) (mod n).

Then z; = xpj, so we are computing x; and xp;
simultaneously.

If x; and xj with j < k are the smallest pair with x; = xi
(mod d), let | = k —j. Then x; = x;+y (mod d) for every
i > j and every r > 0.

Take i = 1[j/I] so that i > j and r = [j/I].

Then rl =i and so x; = x2; (mod d). Thus we only need
check GCD(xp; — x;, n) and this really speeds up the
computations. In the previous example.
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® Thus we only need check GCD(x2; — x;, n)s
® |n the previous example.

Let n = 1133, f(x) = x>+ 1 and x = 2.
Then we compute

x1 =5,x =26, (xo — x1,n) = (21,1133) =1,
xp = 26,x4 = 598, (x4 — x2, n) = (572,1133) = 11.
That is more like it!
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Then we compute

x1 =5,x20 =26, (x2 — x1,n) = (21,713) = 1,
X2 = 26, x4 = 584, (x4 — x2, n) = (558,713) = 31.
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Vaughan Let n = 713’ f(X) = X2 +1 and Xp = 2.
Then we compute

x1 =5,x20 =26, (x2 — x1,n) = (21,713) = 1,
X2 = 26, x4 = 584, (x4 — x2, n) = (558,713) = 31.

® There are a number of more sophisticated variants of this
which are designed to speed the algorithm up.
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P et n=713, f(x) = x2+1 and xo = 2.
Then we compute

x1 =5,x20 =26, (x2 — x1,n) = (21,713) = 1,
xp = 26, x4 = 584, (xa — x2, n) = (558,713) = 31.

® There are a number of more sophisticated variants of this
which are designed to speed the algorithm up.

® Generally there is no rigorous proof but it is believed that
the run time is normally proportional to /p where p is the
smallest prime factor of n and so in the worst case, for a
composite number the run time is proportional to n/4.
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® Here we take a fairly large number K and hope that n has
a prime factor p such that none of the prime factors of
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® To explain the method we will assume a little more,

namely that p — 1|K!
® Obviously we do not want to compute and store K!, which

will be huge.
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® To explain the method we will assume a little more,
namely that p — 1|K!
® Obviously we do not want to compute and store K!, which

will be huge.
® Thus for some a coprime with n we define x; = a and

successively compute
xk = xK_; (mod n) & GCD(x, —1,n) (k=2,3,...,K),
stopping if the GCD reveals a proper factor of n.
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Pollard p-1

Here we take a fairly large number K and hope that n has
a prime factor p such that none of the prime factors of

p — 1 exceed K.

To explain the method we will assume a little more,
namely that p — 1|K!

Obviously we do not want to compute and store K!, which
will be huge.

Thus for some a coprime with n we define x; = a and
successively compute

xk = xK_; (mod n) & GCD(x, —1,n) (k=2,3,...,K),

stopping if the GCD reveals a proper factor of n.

Since n is large we can expect that xx Z1 (mod n), but if
p|n and p — 1|k!, so that k! = m(p — 1) for some m, then
we have

x¢=a" = (2P 1)" =1 (mod p).
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Robert C. Let a=2. Thus x; = 2,x0 = 22 = 4, x3 = 43 = 64,
Vaughan

x4 = 64* = 16777216 = 719 (mod 1133), (718,1133) = 1,

x5 = 719° = 192,151,797, 699,599 = 1101 (mod 1133),
(1100,1133) = 11.
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® Consider our old friend 1133.
Methods

Robert C. Let a=2. Thus x; = 2,x0 = 22 = 4, x3 = 43 = 64,
Vaughan

x4 = 64* = 16777216 = 719 (mod 1133), (718,1133) = 1,

x5 = 719° = 192,151,797, 699,599 = 1101 (mod 1133),
(1100,1133) = 11.

® Now look at the less obvious example we considered above
Let n =713, & a=2. Thus x; =2,x0 = 2° = 4,x3 = 43 = 64,
xq = 64* = 16777216 = 326 (mod 713), (325,713) =1, x5 =

326° = 3,682,035, 745,376 = 311 (mod 713), (310, 713) = 31
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® |n practice for large numbers the elliptic curve method is
faster and the Pollard p — 1 has largely disappeared.
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® |n practice for large numbers the elliptic curve method is
faster and the Pollard p — 1 has largely disappeared.

® |t uses the group structure of the powers of a modulo n.
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® |n practice for large numbers the elliptic curve method is
faster and the Pollard p — 1 has largely disappeared.

® |t uses the group structure of the powers of a modulo n.

® The elliptic curve method is based on a similar basic idea

but takes advantage of the richer underlying group
structure of elliptic curves.



