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Quadratic Congruences

• Our long term aim is to facotorize n by finding t, x , y so
that 4tn = x2 − y2.

• An essential ingredient will be a good understanding of
quadratic congruences, and especially

x2 ≡ c (mod m).

• The structure here is especially rich and was thus subject
to much work in the eighteenth century, culminating in a
famous theorem of Gauss.

• From the various theories we have developed we know that
the first, or base, case we need to understand is that when
the modulus is a prime p,

• and since the case p = 2 is rather easy we can suppose
that p > 2.
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• Then we are interested in

x2 ≡ c (mod p). (1.1)

• By the way, the apparently more general congruence

ax2 + bx + c ≡ 0 (mod p)

(with p ∤ a of course) can be reduced by “completion of
the square” via

4a(ax2 + bx + c) ≡ 0 (mod p)

to
(2ax + b)2 ≡ b2 − 4ac (mod p)

• and since 2ax + b ranges over a complete set of residues
as x does this is equivalent to solving

x2 ≡ b2 − 4ac (mod p),

• Thus it suffices to know about the solubility of the
congruence (1.1).
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• We know that (1.1)

x2 ≡ c (mod p).

has at most two solutions,

• and that sometimes it is soluble and sometimes not.

Example 1

x2 ≡ 6 mod 7 has no solution (check x ≡ 0, 1, 2, 3 (mod 7)),
but

x2 ≡ 5 (mod 11)

has the solutions
x ≡ 4, 7 (mod 11).

• If c ≡ 0 (mod p), then the only solution to (1.1) is x ≡ 0
(mod p) (note that p|x2 implies that p|x).

• If c ̸≡ 0 (mod p) and the congruence has one solution, say
x ≡ x0 (mod p), then x ≡ p − x0 (mod p) gives another.
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• The fundamental question here is can we characterise or
classify those c for which the congruence (1.1)

x2 ≡ c (mod p).

is soluble?

• Better still can we quickly determine, given c , whether it
is soluble?

• There is then the even more difficult question of finding a
solution.
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• Important

Definition 2

If c ̸≡ 0 (mod p), and (1.1) has a solution, then we call c a
quadratic residue which we abbreviate to QR. If it does not
have a solution, then we call c a quadratic non-residue or QNR.

• Some authors also call 0 a quadratic residue. Others leave
it undefined.

• We will follow the latter course. Zero does behave
differently.
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• Now we prove the following simple but useful theorem.

Theorem 3

Let p be an odd prime. The numbers 1, 22, 32, . . . ,
(
p−1
2

)2
are

distinct modulo p and give a complete set of quadratic residues
modulo p. There are exactly 1

2(p − 1) QR modulo p and
exactly 1

2(p − 1) QNR.

• Proof. Suppose that 1 ≤ x < y ≤ 1
2(p − 1).

• If p|y2 − x2 = (y − x)(y + x), then p|y − x or p|y + x .
• But 0 < y − x < y + x < 2y ≤ p − 1 < p so the numbers
in the list above are distinct modulo p.

• Suppose that c is a QR modulo p. Then there is an x
with 1 ≤ x ≤ p − 1 such that x2 ≡ c (mod p).

• If x ≤ 1
2(p − 1), then x2 is in our list and represents c .

• If 1
2(p − 1) < x ≤ p − 1, then (p − x)2 ≡ x2 ≡ c

(mod p), (p − x)2 represents c , and is in our list.
• So each QR is listed and there are exactly 1

2(p − 1) QR.
• The remaining 1

2(p−1) non-zero residues have to be QNR.
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2(p − 1), then x2 is in our list and represents c .

• If 1
2(p − 1) < x ≤ p − 1, then (p − x)2 ≡ x2 ≡ c

(mod p), (p − x)2 represents c , and is in our list.
• So each QR is listed and there are exactly 1

2(p − 1) QR.
• The remaining 1

2(p−1) non-zero residues have to be QNR.
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• We can use this in various ways.

Example 4

Find a complete set of quadratic residues r modulo 19 with
1 ≤ r ≤ 18.

• We can solve this by first observing that

12 = 1, 22 = 4, 32 = 9, 42 = 16, 52 = 25,

62 = 36, 72 = 49, 82 = 64, 92 = 81

is a complete set of quadratic residues modulo 19

• and then reduce them modulo 19 to give

1, 4, 9, 16, 6, 17, 11, 7, 5

• which we can rearrange as

1, 4, 5, 6, 7, 9, 11, 16, 17.
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• We require the following definition.

Definition 5

Given a prime p > 2 and c ∈ Z we define the Legendre symbol

(
c

p

)
L

=


0 c ≡ 0 (mod p),

1 c a QR (mod p),

−1 c a QNR (mod p),

(1.2)

• The Legendre symbol has lots of interesting properties.

Example 6

The Legendre symbol has the same value on replacing c by
c + kp. Thus given p it is periodic in c with period p.
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• Cancellation

Example 7

Suppose that p is an odd prime and a ̸≡ 0 (mod p). Then

p∑
x=1

(
ax + b

p

)
L

= 0. (1.3)

The proof of this is rather easy. The expression ax + b runs
through a complete set of residues as x does and so one of the
terms is 0, half the rest are +1, and the remainder are −1.
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• Counting solutions

Example 8

The number of solutions of the congruence

x2 ≡ c (mod p)

is

1 +

(
c

p

)
L

.

We already know that the number of solutions is 1 when p|c , 2
when c is a QR, and 0 when c is a QNR and this matches the
above exactly.
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• We can use this on more complicated congruences.

Example 9

Let N(p; c) be the number of x , y with x2 + y2 ≡ c (mod p).
Rewrite this as z + w ≡ c (mod p) and count the number of
x , y with x2 ≡ z (mod p) and y2 ≡ w (mod p). This is(

1 +
(
z
p

)
L

)(
1 +

(
w
p

)
L

)
.

Also w ≡ c − z (mod p), thus the total number of solutions is

N(p; c) =

p∑
z=1

(
1 +

(
z
p

)
L

)(
1 +

(
c−z
p

)
L

)
= p +

p∑
z=1

(
z
p

)
L
+

p∑
z=1

(
c−z
p

)
L
+

p∑
z=1

(
z
p

)
L

(
c−z
p

)
L
.

The two sums are 0, so N(p; c) = p +
∑p

z=1

(
z
p

)
L

(
c−z
p

)
L
.

The last sum can be evaluated, but we need to know more.
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• We can combine the definition of the Legendre symbol
with a criterion first enunciated by Euler.

Theorem 10 (Euler’s Criterion)

Suppose that p is an odd prime number. Then(
c

p

)
L

≡ c
p−1
2 (mod p)

and the Legendre symbol, as a function of c, is totally
multiplicative.

• Reminder

Remark 1

Recall that by multiplicative we mean a function f which
satisfies

f (n1n2) = f (n1)f (n2)

whenever (n1, n2) = 1. Totally multiplicative means that the
condition (n1, n2) = 1 can be dropped.
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• Important

Remark 2

The totally multiplicative property means that if x and y are
both QR, or both QNR, then their product is a QR, and their
product can only be a QNR if one is a QR and the other is a
QNR.
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• Theorem 10. Suppose p is an odd number. Then(
c

p

)
L

≡ c
p−1
2 (mod p)

and the Legendre symbol is totally multiplicative.

• If c is a QR, then there is an x ̸≡ 0 (mod p) such that
x2 ≡ c (mod p).

• Hence c
p−1
2 ≡ xp−1 ≡ 1 =

(
c
p

)
L

(mod p).

• We know that the congruence c
p−1
2 ≡ 1 (mod p) has at

most p−1
2 solutions and so we have just shown that it has

exactly that many solutions.
• We also have(

c
p−1
2 − 1

)(
c

p−1
2 + 1

)
= cp−1 − 1

and we know that this has exactly p − 1 roots modulo p.
• In particular every QNR is a solution, but cannot be a root

of c
p−1
2 − 1.

• Hence if c is a QNR, then c
p−1
2 ≡ −1 =

(
c
p

)
L

(mod p).

• This proves the first part of the theorem.
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• To prove the second part, we have to show that for any
integers c1, c2 we have(

c1c2
p

)
L

=

(
c1
p

)
L

(
c2
p

)
L

.

• If c1 ≡ 0 (mod p) or c2 ≡ 0 (mod p), then both sides are
0, so we can suppose that c1c2 ̸≡ 0 (mod p).

• Now (
c1c2
p

)
L

≡ (c1c2)
p−1
2

≡ c
p−1
2

1 c
p−1
2

2

≡
(
c1
p

)
L

(
c2
p

)
L

(mod p).

• Thus p divides (
c1c2
p

)
L

−
(
c1
p

)
L

(
c2
p

)
L

.

• But this is −2, 0 or 2 and so has to be 0 since p > 2
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• We can use the Criterion to evaluate the Legendre symbol.

Example 11

Suppose that p is an odd prime. Then(
−1

p

)
L

=

{
1 p ≡ 1 (mod 4)

−1 p ≡ 3 (mod 4).

Observe that by Euler’s Criterion

(
−1

p

)
L

≡ (−1)
p−1
2 (mod p).

Now the difference between the left and right hand sides is
−2, 0 or 2 and the same argument as above gives equality.

• This example has some interesting consequences.
• 1. Every p > 2 dividing x2 + 1 satisfies p ≡ 1 (mod 4).
• 2. There are infinitely many primes of the form 4k + 1.
• To see 1. observe that for any such prime factor −1 has to
be a quadratic residue, so its Legendre symbol is 1.

• To deduce 2., follow Euclid’s argument by assuming there
are only finitely many and take x to be twice their product.
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Example 11

Suppose that p is an odd prime. Then(
−1

p

)
L

=

{
1 p ≡ 1 (mod 4)

−1 p ≡ 3 (mod 4).

Observe that by Euler’s Criterion

(
−1

p

)
L

≡ (−1)
p−1
2 (mod p).

Now the difference between the left and right hand sides is
−2, 0 or 2 and the same argument as above gives equality.

• This example has some interesting consequences.
• 1. Every p > 2 dividing x2 + 1 satisfies p ≡ 1 (mod 4).

• 2. There are infinitely many primes of the form 4k + 1.
• To see 1. observe that for any such prime factor −1 has to
be a quadratic residue, so its Legendre symbol is 1.

• To deduce 2., follow Euclid’s argument by assuming there
are only finitely many and take x to be twice their product.
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• A famous question, first asked by I. M. Vinogradov in
1919, concerns the size n2(p) of the least positive QNR
modulo p.

• One thing one can see straight away is that n2(p) has to
be prime, since it must have a prime factor which is a
QNR.

• Vinogradov conjectured that for any fixed positive number
ε > 0 we should have

n2(p) < C (ε)pε

and then proceeded to prove this at least when ε > 1
2
√
e

where e is the base of the natural logarithm!

• In 1959 David Burgess, in his PhD thesis reduced this to
any ε > 1

4
√
e
.

• Where on earth does the
√
e come from?

• This was one of the things that got me interested in
number theory when I was a student.
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• Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

n2(p) ≤
1

2
+

√
p − 3

4
.

• Proof. Let k be the smallest k such that p < kn2(p).

• n2(p) cannot divide p so p < kn2(p) < p + n2(p).

• Thus kn2(p) is a QR, and so k is a QNR.

• Therefore n2(p) ≤ k .

• Hence n2(p)
2 ≤ p + n2(p)− 1.

• This can be rearranged as n2(p)
2 − n2(p) ≤ p − 1, so

(n2(p)− 1
2)

2 ≤ p − 3
4 .

• The theorem follows by taking the square root.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

n2(p) ≤
1

2
+

√
p − 3

4
.

• Proof. Let k be the smallest k such that p < kn2(p).

• n2(p) cannot divide p so p < kn2(p) < p + n2(p).

• Thus kn2(p) is a QR, and so k is a QNR.

• Therefore n2(p) ≤ k .

• Hence n2(p)
2 ≤ p + n2(p)− 1.

• This can be rearranged as n2(p)
2 − n2(p) ≤ p − 1, so

(n2(p)− 1
2)

2 ≤ p − 3
4 .

• The theorem follows by taking the square root.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

n2(p) ≤
1

2
+

√
p − 3

4
.

• Proof. Let k be the smallest k such that p < kn2(p).

• n2(p) cannot divide p so p < kn2(p) < p + n2(p).

• Thus kn2(p) is a QR, and so k is a QNR.

• Therefore n2(p) ≤ k .

• Hence n2(p)
2 ≤ p + n2(p)− 1.

• This can be rearranged as n2(p)
2 − n2(p) ≤ p − 1, so

(n2(p)− 1
2)

2 ≤ p − 3
4 .

• The theorem follows by taking the square root.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

n2(p) ≤
1

2
+

√
p − 3

4
.

• Proof. Let k be the smallest k such that p < kn2(p).

• n2(p) cannot divide p so p < kn2(p) < p + n2(p).

• Thus kn2(p) is a QR, and so k is a QNR.

• Therefore n2(p) ≤ k .

• Hence n2(p)
2 ≤ p + n2(p)− 1.

• This can be rearranged as n2(p)
2 − n2(p) ≤ p − 1, so

(n2(p)− 1
2)

2 ≤ p − 3
4 .

• The theorem follows by taking the square root.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

n2(p) ≤
1

2
+

√
p − 3

4
.

• Proof. Let k be the smallest k such that p < kn2(p).

• n2(p) cannot divide p so p < kn2(p) < p + n2(p).

• Thus kn2(p) is a QR, and so k is a QNR.

• Therefore n2(p) ≤ k .

• Hence n2(p)
2 ≤ p + n2(p)− 1.

• This can be rearranged as n2(p)
2 − n2(p) ≤ p − 1, so

(n2(p)− 1
2)

2 ≤ p − 3
4 .

• The theorem follows by taking the square root.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

n2(p) ≤
1

2
+

√
p − 3

4
.

• Proof. Let k be the smallest k such that p < kn2(p).

• n2(p) cannot divide p so p < kn2(p) < p + n2(p).

• Thus kn2(p) is a QR, and so k is a QNR.

• Therefore n2(p) ≤ k .

• Hence n2(p)
2 ≤ p + n2(p)− 1.

• This can be rearranged as n2(p)
2 − n2(p) ≤ p − 1, so

(n2(p)− 1
2)

2 ≤ p − 3
4 .

• The theorem follows by taking the square root.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

n2(p) ≤
1

2
+

√
p − 3

4
.

• Proof. Let k be the smallest k such that p < kn2(p).

• n2(p) cannot divide p so p < kn2(p) < p + n2(p).

• Thus kn2(p) is a QR, and so k is a QNR.

• Therefore n2(p) ≤ k .

• Hence n2(p)
2 ≤ p + n2(p)− 1.

• This can be rearranged as n2(p)
2 − n2(p) ≤ p − 1, so

(n2(p)− 1
2)

2 ≤ p − 3
4 .

• The theorem follows by taking the square root.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• Here is an easier result.

Theorem 12

Suppose that p is an odd prime. Then

n2(p) ≤
1

2
+

√
p − 3

4
.

• Proof. Let k be the smallest k such that p < kn2(p).

• n2(p) cannot divide p so p < kn2(p) < p + n2(p).

• Thus kn2(p) is a QR, and so k is a QNR.

• Therefore n2(p) ≤ k .

• Hence n2(p)
2 ≤ p + n2(p)− 1.

• This can be rearranged as n2(p)
2 − n2(p) ≤ p − 1, so

(n2(p)− 1
2)

2 ≤ p − 3
4 .

• The theorem follows by taking the square root.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• The multiplicative property of the Legendre symbol tells
us that it suffices to understand(

q

p

)
L

when p is an odd prime and q is prime.

• When q is also odd, Euler found a remarkable relationship
between this Legendre symbol and(

p

q

)
L

but no one in the eighteenth century was able to prove it.

• Gauss proved it when he was 19!

• The relationship enables one to imitate the Euclid
algorithm and so rapidly evaluate the Legendre symbol.
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Quadratic Reciprocity

• What Euler spotted was a very curious relationship
between the values of (

q

p

)
L

when p and q are different odd primes, which only
depended on their residue classes modulo 4.

• Of course, this was before the Legendre symbol was
invented and he described the phenomenon in terms of
quadratic residues and non-residues.
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• Here is a table of values of (q|p)L for primes out to 29

Example 13

.

p\q 3 5 7 11 13 17 19 23 29

3 0 −1 1 −1 1 −1 1 −1 −1
5 −1 0 −1 1 −1 −1 1 −1 1
7 −1 −1 0 1 −1 −1 −1 1 1
11 1 1 −1 0 −1 −1 −1 1 −1
13 1 −1 −1 −1 0 1 −1 1 1
17 −1 −1 −1 −1 1 0 −1 −1 −1
19 −1 1 1 1 −1 1 0 1 −1
23 1 −1 −1 −1 1 −1 −1 0 1
29 −1 1 1 −1 1 −1 −1 1 0

• If p ≡ 1 (mod 4) or q ≡ 1 (mod 4), then
(
q
p

)
L
=
(
p
q

)
L
,

but if p ≡ q ≡ 3 (mod 4), then
(
q
p

)
L
̸=
(
p
q

)
L
.
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• Gauss was fascinated by this and eventually found at least
seven (!) different proofs.

• The first step in many of them is Gauss’ Lemma.

Theorem 14 (Gauss’ Lemma)

Suppose that p is an odd prime and (a, p) = 1. Apply the
division algorithm to write each of the 1

2(p − 1) numbers ax
with 1 ≤ x < 1

2p as ax = qxp + rx with 0 ≤ rx < p. Let m be
the number of rx with 1

2p < rx < p. Then we have(
a

p

)
L

= (−1)m

where

m ≡
∑

1≤x<p/2

⌊
2ax

p

⌋
(mod 2).

• This theorem enables us to evaluate quite a number of
cases.
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• Theorem 14. Suppose p > 2 and p ∤ a. Write each of the
numbers ax with 1 ≤ x < 1

2p as ax = qxp + rx with
0 ≤ rx < p. Let m be the number of rx with 1

2p < rx < p.

Then

(
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p

)
L
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∑
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2ax

p
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(mod 2).

Example 15

Take a = 2.

• Consider the numbers 2x with 1 ≤ x < 1
2p. They satisfy

2 ≤ 2x < p and are their own remainder, so we need to
count the x with 1

2p < 2x < p, that is 1
4p < x < 1

2p.
• Hence the number of such x is m =

⌊p
2

⌋
−
⌊p
4

⌋
.

• Now suppose that p = 8k + 1. Then m = 4k − 2k is even.
Likewise when p = 8k + 7, m = 2k + 2 is also even.

• Similarly if p ≡ 3 or 5 (mod 8), then m is odd.

•
(
2
p

)
L
= ±1 according as p ≡ ±1 or ±3 (mod 8).

• Alternatively
(
2
p

)
L
= (−1)

p2−1
8 .
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Then
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a

p

)
L

= (−1)m, m ≡
∑

1≤x<p/2

⌊
2ax

p

⌋
(mod 2).

• Proof. The proof is a counting argument. Consider

a
p−1
2

∏
1≤x<p/2

x =
∏

1≤x<p/2

ax .

• This is ≡
∏

1≤x<p/2

rx (mod p).

• Let A be the set of x with p/2 < rx < p and B the rest.

• Then cardA = m and rearranging gives a
p−1
2

∏
1≤x<p/2

x ≡

(∏
x∈A

rx

)∏
x∈B

rx ≡ (−1)m

(∏
x∈A

(p − rx)

)∏
x∈B

rx (mod p)

(2.4)
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• a
p−1
2

∏
1≤x<p/2

x ≡

(∏
x∈A

rx

)∏
x∈B

rx ≡ (−1)m

(∏
x∈A

(p − rx)

)∏
x∈B

rx (mod p).

• Since |rx − ry | < p and rx − ry ≡ a(x − y) (mod p) we
have rx ̸= ry when x ̸= y and so the rx are distinct.

• Also since p ∤ a and 1 ≤ x , y < p/2 we have
p − rx − ry ≡ −a(x + y) ̸≡ 0 (mod p).

• Thus the p − rx with x ∈ A differ from the ry with y ∈ B.
• Hence the 1

2(p − 1) numbers p − rx and rx are just a
permutation of the numbers z with 1 ≤ z ≤ 1

2(p − 1).
• Thus (2.4) becomes

a
p−1
2

∏
1≤x<p/2

x ≡ (−1)m
∏

1≤x<p/2

x (mod p)

and, by Euler’s Criterion,

(
a

p

)
L

≡ a
p−1
2 ≡ (−1)m.

• Now the difference is −2, 0 or 2.
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• Since |rx − ry | < p and rx − ry ≡ a(x − y) (mod p) we
have rx ̸= ry when x ̸= y and so the rx are distinct.

• Also since p ∤ a and 1 ≤ x , y < p/2 we have
p − rx − ry ≡ −a(x + y) ̸≡ 0 (mod p).

• Thus the p − rx with x ∈ A differ from the ry with y ∈ B.
• Hence the 1

2(p − 1) numbers p − rx and rx are just a
permutation of the numbers z with 1 ≤ z ≤ 1

2(p − 1).
• Thus (2.4) becomes

a
p−1
2

∏
1≤x<p/2

x ≡ (−1)m
∏

1≤x<p/2

x (mod p)

and, by Euler’s Criterion,

(
a

p

)
L

≡ a
p−1
2 ≡ (−1)m.

• Now the difference is −2, 0 or 2.
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• For the final formula we note that

rx = ax − p

⌊
ax

p

⌋
(2.5)

so that 0 ≤ rx < p.

• Now 0 < 2rx/p < 2 and so ⌊2rx/p⌋ = 0 or 1 and is 1
precisely when p/2 < rx < p.

• Thus
m =

∑
1≤x<p/2

⌊2rx/p⌋.

• Moreover, by (2.5)

⌊2rx/p⌋ =
⌊
2ax

p
− 2

⌊
ax

p

⌋⌋
=

⌊
2ax

p

⌋
− 2

⌊
ax

p

⌋
≡
⌊
2ax

p

⌋
(mod 2)

and the final formula follows.
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• Restricting to odd a gives a useful variant.

Theorem 16

Suppose p > 2 and (a, 2p) = 1. Then

(
a

p

)
L

= (−1)n where

n =
∑

1≤x<p/2

⌊
ax
p

⌋
. We also have

(
2
p

)
L
= (−1)

p2−1
8 .

• Proof.
(
2
p

)
L

(
a
p

)
L
=
(
2
p

)
L

(
a+p
p

)
L
=
(
4
p

)
L

(
(a+p)/2

p

)
L

=
(
(a+p)/2

p

)
L
= (−1)l

• where l =

(p−1)/2∑
x=1

⌊
(a+p)x

p

⌋
=

(p−1)/2∑
x=1

⌊
ax
p + x

⌋
=

(p−1)/2∑
x=1

(⌊
ax
p

⌋
+ x
)
= n + p2−1

8 .

• If we take a = 1, then we have the formula for
(
2
p

)
L
.

• Then factoring this out gives the result for
(

a
p

)
L
.
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• Now we come to the big one. This is the Law of
Quadratic Reciprocity. Gauss called it “Theorema
Aureum”, the Golden Theorem.

Theorem 17 (The Law of Quadratic Reciprocity)

Suppose that p and q are different odd prime numbers. Then(
q

p

)
L

(
p

q

)
L

= (−1)
p−1
2

· q−1
2 ,

or equivalently (
q

p

)
L

= (−1)
p−1
2

· q−1
2

(
p

q

)
L

,

• We can use this to compute rapidly Legendre symbols.
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• We can use this to compute rapidly Legendre symbols.

Example 18

Is x2 ≡ 951 (mod 2017) soluble? 2017 is prime, but
951 = 3× 317.

• Thus
(

951
2017

)
L
=
(

3
2017

)
L

(
317
2017

)
L
.

• By the law, as 2017 ≡ 1 (mod 4),(
3

2017

)
L
=
(
2017
3

)
L
=
(
1
3

)
L
= 1(

317
2017

)
L
=
(
2017
317

)
L
=
(
115
317

)
L
=
(

5
317

)
L

(
23
317

)
L
.

• Again applying the law, we have(
5

317

)
L
=
(
317
5

)
L
=
(
2
5

)
L
= −1

and
(

23
317

)
L
=
(
317
23

)
L
=
(
18
23

)
L
=
(

2
23

)
L
= 1 so that(

317
2017

)
L
= −1 and thus

(
951
2017

)
L
= −1.

• Thus the congruence is insoluble.
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• We can also use the law to obtain general rules, like that
for 2 (mod p).

Example 19

Let p > 3 be an odd prime. Then(
3

p

)
L

= (−1)
p−1
2

(p
3

)
L
.

• Now p is a QR modulo 3 iff p ≡ 1 (mod 3).
• Thus (

3

p

)
L

=

{
(−1)

p−1
2

(
p ≡ 1 (mod 3)

)
−(−1)

p−1
2

(
p ≡ 2 (mod 3)

)
.

• We can also combine this with the formula in the case of
−1 (mod p) which follows from the Euler Criterion. Thus(

−3

p

)
L

=

{
1

(
p ≡ 1 (mod 3)

)
−1

(
p ≡ 2 (mod 3)

)
.
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• Proof of the Law of Quadratic Reciprocity. We start
from two applications of the previous theorem.

• Then
(
q
p

)
L

(
p
q

)
L
= (−1)u+v

where u =
∑

1≤x<p/2

⌊
qx
p

⌋
and v =

∑
1≤y<q/2

⌊
py
q

⌋
.

• Observe that
⌊
qx
p

⌋
is the number of positive integers y

with 1 ≤ y ≤ qx/p.
• Thus the first sum is the number of ordered pairs x , y with
1 ≤ x < p/2 and 1 ≤ y < qx/p.

• Likewise
∑

1≤y<q/2

⌊
py
q

⌋
is the number of ordered pairs

x , y with 1 ≤ y < q/2 and 1 ≤ x < py/q
• that is, with 1 ≤ x < p/2 and xq/p < y < q/2.
• Hence u + v is the number of ordered pairs x , y with
1 ≤ x < p/2 and 1 ≤ y < q/2.

• This is
p − 1

2
· q − 1

2
and completes the proof.

• This argument is due to Eisenstein.
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• In Example 18, there were several occasions when we

needed to factorise the a in
(

a
p

)
L
.

• Jacobi introduced an extension of the Legendre symbol
which avoids this.

Definition 20

Suppose that m is an odd positive integer and a is an integer.
Let m = pr11 . . . prss be the canonical decomposition of m. Then
we define the Jacobi symbol by( a

m

)
J
=

s∏
j=1

(
a

pj

)rj

L

.

Note that interpreting 1 as being an “empty product of primes”
means that (a

1

)
J
= 1.
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• Remarkably the Jacobi symbol has exactly the same
properties as the Legendre symbol, except for one.

• That is, for a general odd modulus m it does not tell us
about the solubility of x2 ≡ a (mod m).

Example 21

We have (
2

15

)
J

=

(
2

3

)
L

(
2

5

)
L

= (−1)2 = 1,

but x2 ≡ 2 (mod 15) is insoluble because any solution would
also be a solution of x2 ≡ 2 (mod 3) which we know is
insoluble.
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Properties of the Jacobi symbol

• 1. Suppose that m is odd. Then
(
a1a2
m

)
J
=
(
a1
m

)
J

(
a2
m

)
J
.

• 2. Suppose mj are odd. Then
(

a
m1m2

)
J
=
(

a
m1

)
J

(
a
m2

)
J
.

• 3. Suppose that m is odd and a1 ≡ a2 (mod m). Then(
a1
m

)
J
=
(
a2
m

)
J
.

• 4. Suppose that m is odd. Then
(−1

m

)
J
= (−1)

m−1
2 .

• 5. Suppose that m is odd. Then
(
2
m

)
J
= (−1)

m2−1
8 .

• 6. Suppose that m and n are odd and (m, n) = 1. Then( n

m

)
J

(m
n

)
J
= (−1)

m−1
2

· n−1
2 .

• The first three follow from the definition. The rest depend
on algebraic identities and induction on the number of
prime factors. For 4. m1−1

2 + m2−1
2 ≡ m1m2−1

2 (mod 2),

• 5. depends on
m2

1−1
8 +

m2
2−1
8 ≡ m2

1m
2
2−1
8 (mod 2).

• 6. uses l−1
2 · m−1

2 + n−1
2 · m−1

2 ≡ ln−1
2 · m−1

2 (mod 2).
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• Return to Example 18, where we evaluated
(

951
2017

)
L
.

Example 22

Now we don’t have to factor 951. By the Jacobi version of the
law (

951

2017

)
L

=

(
2017

951

)
J

=

(
115

951

)
J

= −
(
951

115

)
J

= −
(

31

115

)
J

=

(
115

31

)
J

=

(
22

31

)
J

= −
(
31

11

)
J

= −
(

9

11

)
J

= −1.

• Note that we can process this like the Euclidean algorithm.
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• Suppose we are interested in
(
n
m

)
L
where n and m are odd.

• Follow the Euclidean algorithm and obtain

n = q1m + r1,

m = q2r1 + r2,

r1 = q3r2 + r3,

...
...

• When m, n, r1, r2, . . . are odd, for suitable t1, t2, . . .,( n

m

)
J
=
( r1
m

)
J
= (−1)t1

(
m

r1

)
J

= (−1)t1
(
r2
r1

)
J

= (−1)t2
(
r1
r2

)
J

= (−1)t2
(
r3
r2

)
J

= (−1)t3
(
r2
r3

)
J

...
...

...

• If any of the rj are even we first take out the powers of 2.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• Suppose we are interested in
(
n
m

)
L
where n and m are odd.

• Follow the Euclidean algorithm and obtain

n = q1m + r1,

m = q2r1 + r2,

r1 = q3r2 + r3,

...
...

• When m, n, r1, r2, . . . are odd, for suitable t1, t2, . . .,( n

m

)
J
=
( r1
m

)
J
= (−1)t1

(
m

r1

)
J

= (−1)t1
(
r2
r1

)
J

= (−1)t2
(
r1
r2

)
J

= (−1)t2
(
r3
r2

)
J

= (−1)t3
(
r2
r3

)
J

...
...

...

• If any of the rj are even we first take out the powers of 2.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• Suppose we are interested in
(
n
m

)
L
where n and m are odd.

• Follow the Euclidean algorithm and obtain

n = q1m + r1,

m = q2r1 + r2,

r1 = q3r2 + r3,

...
...

• When m, n, r1, r2, . . . are odd, for suitable t1, t2, . . .,( n

m

)
J
=
( r1
m

)
J
= (−1)t1

(
m

r1

)
J

= (−1)t1
(
r2
r1

)
J

= (−1)t2
(
r1
r2

)
J

= (−1)t2
(
r3
r2

)
J

= (−1)t3
(
r2
r3

)
J

...
...

...

• If any of the rj are even we first take out the powers of 2.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• Suppose we are interested in
(
n
m

)
L
where n and m are odd.

• Follow the Euclidean algorithm and obtain

n = q1m + r1,

m = q2r1 + r2,

r1 = q3r2 + r3,

...
...

• When m, n, r1, r2, . . . are odd, for suitable t1, t2, . . .,( n

m

)
J
=
( r1
m

)
J
= (−1)t1

(
m

r1

)
J

= (−1)t1
(
r2
r1

)
J

= (−1)t2
(
r1
r2

)
J

= (−1)t2
(
r3
r2

)
J

= (−1)t3
(
r2
r3

)
J

...
...

...

• If any of the rj are even we first take out the powers of 2.



Factorization
and Primality

Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences

• I am now going to describe three algorithms which we will
make great use of, and which you will need to implement
in your favourite programming software.

• The first algorithm computes the Jacobi symbol(m
n

)
J

for a given positive odd integer n and integer m.

• It is just an immediate application of the law of quadratic
reciprocity through the use of the division algorithm as
organised in Euclid’s algorithm, together with the removal
of any powers of 2 at each stage and an evaluation of the
corresponding (

2

n

)
J

.
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• Algorithm LJ. Given an integer m and a positive integer
n, compute

(
m
n

)
J
.

• 1. Reduction loops.
1.1. Compute m ≡ m (mod n), so that the new m
satisfies 0 ≤ m < n. Put t = 1.
1.2. While m ̸= 0 {
1.2.1. While m is even { put m = m/2 and, if n ≡ 3 or 5
(mod 8), then put t = −t}
1.2.2. Interchange m and n to give new m and n.
1.2.3. If m ≡ n ≡ 3 (mod 4), then put t = −t.
1.2.4. Compute m ≡ m (mod n), so that the new m
satisfies 0 ≤ m < new n.
}

• 2. Output.
2.1. If n = 1, then return t.
2.2. Else return 0.
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• The following are often attributed to Shanks (1973) &
Tonelli (1891), but in principle go back to Euler, Legendre
& Gauss.
Algorithm QC357/8. Given p ≡ 3, 5, 7 (mod 8) & a

with
(

a
p

)
L
= 1, compute solution to x2 ≡ a (mod p):

• If p ≡ 3 or 7 (mod 8), compute x ≡ a(p+1)/4 (mod p).

• If p ≡ 5, take x ≡ a(p+3)/8 (mod p). Compute x2.
2.1. If x2 ≡ a (mod p), then return x .
2.2. If x2 ̸≡ a (mod p), compute x ≡ x2(p−1)/4 (mod p).

• Proof. When p ≡ 3 (mod 4) we have p+1
4 ∈ N, so

a(p+1)/4 makes sense and by Euler’s criterion.

x2 ≡ a(p+1)/2 = a1+
p−1
2 ≡ a

(
a
p

)
L
= a (mod p).

• When p ≡ 5 (mod 8), the issue is when a(p−1)/4 ̸≡ 1
(mod p). By Euler a(p−1)/2 ≡ 1 (mod p), so
a(p−1)/4 ≡ ±1 (mod p), & a(p−1)/4 ≡ −1 (mod p). Thus

the x in 2.2 gives x2 ≡ a(p+3)/42(p−1)/2 ≡ (−a)
(
2
p

)
= (−a)(−1) = a (mod p).
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• Algorithm QC1/8. Given a prime p ≡ 1 (mod 8) and an

a with
(

a
p

)
L
= 1, compute a solution to x2 ≡ a (mod p).

• 1. Compute a random integer b with
(
b
p

)
L
= −1. In

practice checking successively the primes b = 2, 3, 5, . . .,
or even crudely just the integers b = 2, 3, 4, . . . , will find
such a b quickly.

• 2. Factor out each 2 in p − 1, so that p − 1 = 2su with u
odd. Compute d ≡ au (mod p) and f ≡ bu (mod p).

• 3. Compute an m so that df m ≡ 1 (mod p) as follows.
3.1. Initialise m0 = 0.
3.2. For each i = 0, 1, . . . , s − 1 compute g ≡ (df mi )2

s−1−i

(mod p). If g ≡ −1 (mod p), then put mi+1 = mi + 2i .
Otherwise take mi+1 = mi

3.3. Return ms . This will satisfy df ms ≡ 1 (mod p) and
ms will be even.

• 4. Compute x ≡ a(u+1)/2f ms/2 (mod p). Return x .
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• Proof. Initially we find b with
(
b
p

)
L
= −1, and s and u

with p − 1 = 2su and u odd, d ≡ au (mod p) and f ≡ bu

(mod p).

• We will show below that there is an m so that df m ≡ 1
(mod p) and m is even. Then x ≡ a(u+1)/2f m/2 (mod p)
satisfies

x2 ≡
(
a

u+1
2 f

m
2

)2
= au+1f m = adf m ≡ a (mod p).

Thus it all depends on the computation of m.
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• Recall b with
(
b
p

)
L
= −1, s, u with p − 1 = 2su and u

odd, d ≡ au (mod p), f ≡ bu (mod p). To compute m
so df m ≡ 1 (mod p) and 2|m as follows. Let m0 = 0. For

i = 0, 1, . . . , s − 1 compute g ≡ (df mi )2
s−1−i

(mod p). If
g ≡ −1 (mod p), then put mi+1 = mi + 2i . Else take
mi+1 = mi . Claim df ms ≡ 1 (mod p), 2|ms .

• By Euler’s criterion d2s−1 ≡ a2
s−1u = a

p−1
2 ≡ 1 (mod p).

So ordp(d)|2s−1 and f 2
s−1 ≡ b2

s−1u = b
p−1
2 ≡ −1

(mod p). Also f 2s ≡ bp−1 ≡ 1 (mod p), so ordp(f ) = 2s .

• Prove by induction for 0 ≤ i ≤ s that (df mi )2
s−i ≡ 1.

• For i = 0, m0 = 0 so (df m0)2
s
= d2s ≡ 1 (mod p).

• Inductive step assume for an i with 0 ≤ i ≤ s − 1 that
(df mi )2

s−i ≡ 1 (mod p). Then (df mi )2
s−1−i ≡ ±1

(mod p). If (df mi )2
s−1−i ≡ 1 (mod p), then mi+1 = mi

and so (df mi+1)2
s−1−i ≡ 1 (mod p) as required. If

(df mi )2
s−1−i ≡ −1 (mod p), then mi+1 = mi + 2i and so

(df mi+1)2
s−1−i ≡ (df 2

i+mi )2
s−1−i

= (df mi )2
s−1−i

f 2
s−1 ≡

−b
p−1
2 ≡ 1 (mod p) once more, by Euler’s criterion.
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