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to much work in the eighteenth century, culminating in a
famous theorem of Gauss.



Factorization
and Primality
Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

Quadratic Congruences

Our long term aim is to facotorize n by finding t, x, y so
that 4tn = x> — y2.

An essential ingredient will be a good understanding of
quadratic congruences, and especially

x?=c (mod m).
The structure here is especially rich and was thus subject
to much work in the eighteenth century, culminating in a
famous theorem of Gauss.
From the various theories we have developed we know that
the first, or base, case we need to understand is that when
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Our long term aim is to facotorize n by finding t, x, y so
that 4tn = x> — y2.

An essential ingredient will be a good understanding of
quadratic congruences, and especially

x?=c (mod m).

The structure here is especially rich and was thus subject
to much work in the eighteenth century, culminating in a
famous theorem of Gauss.

From the various theories we have developed we know that
the first, or base, case we need to understand is that when
the modulus is a prime p,

and since the case p = 2 is rather easy we can suppose
that p > 2.
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2= ¢ (mod p).
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® Then we are interested in
x? = ¢ (mod p). (1.1)
® By the way, the apparently more general congruence
ax®> + bx+c=0 (mod p)

(with p t a of course) can be reduced by “completion of
the square” via

4a(ax® + bx 4+ c) =0 (mod p)

to
(2ax + b)? = b?> — 4ac (mod p)
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(with p t a of course) can be reduced by “completion of
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4a(ax® + bx 4+ c) =0 (mod p)
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® and since 2ax + b ranges over a complete set of residues
as x does this is equivalent to solving

x? = b?> — 4ac (mod p),



Factorization ® Then we are interested in

and Primality
Testing

Chapter 5 2 =

Quadratic X =c (mOd p) (11)
Residues
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Quadratic d + b + ¢ O ( Od p)
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(with p t a of course) can be reduced by “completion of
the square” via

4a(ax® + bx 4+ c) =0 (mod p)

to
(2ax + b)? = b?> — 4ac (mod p)

® and since 2ax + b ranges over a complete set of residues
as x does this is equivalent to solving

x? = b?> — 4ac (mod p),

® Thus it suffices to know about the solubility of the
congruence (1.1).
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Quadratic ® and that sometimes it is soluble and sometimes not.
Congruences

Reciprocity

S x?> =6 mod 7 has no solution (check x =0,1,2,3 (mod 7)),

symbol . but
Computing x2 =5 (mod 11)

Solutions to
Quadratic

Congruences has the solutions
x=4,7 (mod 11).

¢ If c =0 (mod p), then the only solution to (1.1) is x =0
(mod p) (note that p|x? implies that p|x).
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Quadratic ® and that sometimes it is soluble and sometimes not.

Congruences
Reciprocity
S x?> =6 mod 7 has no solution (check x =0,1,2,3 (mod 7)),

symbol . but
Computing X2 = 5 (mod 11)

Solutions to
Quadratic

i has the solutions
x=4,7 (mod 11).

¢ If c =0 (mod p), then the only solution to (1.1) is x =0
(mod p) (note that p|x? implies that p|x).
® If c #0 (mod p) and the congruence has one solution, say

x =xp (mod p), then x = p — xp (mod p) gives another.
o = = = =
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® The fundamental question here is can we characterise or
classify those ¢ for which the congruence (1.1)

x> =c (mod p).
is soluble?
® Better still can we quickly determine, given ¢, whether it
is soluble?
® There is then the even more difficult question of finding a
solution.
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Definition 2

If c#£0 (mod p), and (1.1) has a solution, then we call ¢ a
quadratic residue which we abbreviate to QR. If it does not
have a solution, then we call ¢ a quadratic non-residue or QNR.
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quadratic residue which we abbreviate to QR. If it does not
have a solution, then we call ¢ a quadratic non-residue or QNR.

® Some authors also call 0 a quadratic residue. Others leave
it undefined.
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® Important

Definition 2

If c#£0 (mod p), and (1.1) has a solution, then we call ¢ a
quadratic residue which we abbreviate to QR. If it does not
have a solution, then we call ¢ a quadratic non-residue or QNR.

® Some authors also call 0 a quadratic residue. Others leave
it undefined.

® We will follow the latter course. Zero does behave
differently.
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Theorem 3

2
Let p be an odd prime. The numbers 1,22,32, ..., <pr1) are

distinct modulo p and give a complete set of quadratic residues
modulo p. There are exactly %(p — 1) QR modulo p and
exactly 3(p— 1) QNR.
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Let p be an odd prime. The numbers 1,22,32, ..., <p%) are

distinct modulo p and give a complete set of quadratic residues
modulo p. There are exactly %(p — 1) QR modulo p and
exactly 3(p— 1) QNR.

® Proof. Supposethat 1 < x <y < %(p —1).
 If ply? —x2 = (y — x)(y + x), then ply — x or ply + x.
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® Now we prove the following simple but useful theorem.
Theorem 3
2

Let p be an odd prime. The numbers 1,22,32, ..., <pr1) are

distinct modulo p and give a complete set of quadratic residues
modulo p. There are exactly 3(p — 1) QR modulo p and
exactly 3(p— 1) QNR.

® Proof. Supposethat 1 < x <y < %(p —1).

 If ply? —x2 = (y — x)(y + x), then ply — x or ply + x.

* But0<y—x<y+x<2y<p—1< pso the numbers
in the list above are distinct modulo p.
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Now we prove the following simple but useful theorem.

Theorem 3

p—1 2

Let p be an odd prime. The numbers 1,22,32, ..., <T) are

distinct modulo p and give a complete set of quadratic residues
modulo p. There are exactly 3(p — 1) QR modulo p and
exactly 3(p— 1) QNR.

Proof. Suppose that 1 < x <y < %(p —1).

If ply? — x? = (y — x)(y + x), then ply — x or p|y + x.
But0<y—x<y+x<2y<p—1<psothe numbers
in the list above are distinct modulo p.

Suppose that ¢ is a QR modulo p. Then there is an x
with 1 < x < p — 1 such that x> = ¢ (mod p).
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Now we prove the following simple but useful theorem.

Theorem 3

p—1 2

Let p be an odd prime. The numbers 1,22,32, ..., <T) are

distinct modulo p and give a complete set of quadratic residues
modulo p. There are exactly 3(p — 1) QR modulo p and
exactly 3(p— 1) QNR.

Proof. Suppose that 1 < x <y < %(p —1).

If ply? — x? = (y — x)(y + x), then ply — x or p|y + x.
But0<y—x<y+x<2y<p—1<psothe numbers
in the list above are distinct modulo p.

Suppose that ¢ is a QR modulo p. Then there is an x
with 1 < x < p — 1 such that x> = ¢ (mod p).

If x < 2(p— 1), then x? is in our list and represents c.
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Now we prove the following simple but useful theorem.

Theorem 3

Let p be an odd prime. The numbers 1,22,32, ..., <pr1) are

2

distinct modulo p and give a complete set of quadratic residues
modulo p. There are exactly 3(p — 1) QR modulo p and
exactly 3(p— 1) QNR.

Proof. Suppose that 1 < x <y < %(p —1).

If ply? — x? = (y — x)(y + x), then ply — x or p|y + x.
But0<y—x<y+x<2y<p—1<psothe numbers
in the list above are distinct modulo p.

Suppose that ¢ is a QR modulo p. Then there is an x
with 1 < x < p — 1 such that x> = ¢ (mod p).

If x < 2(p— 1), then x? is in our list and represents c.

If 2(p—1)<x<p—1,then (p—x)?=x>=c

(mod p), (p — x)? represents c, and is in our list.
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Now we prove the following simple but useful theorem.

Theorem 3

p—1 2

Let p be an odd prime. The numbers 1,22,32, ..., <T) are

distinct modulo p and give a complete set of quadratic residues
modulo p. There are exactly 3(p — 1) QR modulo p and
exactly 3(p— 1) QNR.

Proof. Suppose that 1 < x <y < %(p —1).

If ply? — x? = (y — x)(y + x), then ply — x or p|y + x.
But0<y—x<y+x<2y<p—1<psothe numbers
in the list above are distinct modulo p.

Suppose that ¢ is a QR modulo p. Then there is an x
with 1 < x < p — 1 such that x> = ¢ (mod p).

If x < 2(p— 1), then x? is in our list and represents c.

If 2(p—1)<x<p—1,then (p—x)?=x>=c

(mod p), (p — x)? represents c, and is in our list.

So each QR is listed and there are exactly %(p —1) QR.
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Quadratic modulo p. There are exactly %(p — 1) QR modulo p and
Congruences eXaCtly %(p _ 1) QNR

® Proof. Supposethat 1 < x <y < %(p —1).

 If ply? —x2 = (y — x)(y + x), then ply — x or ply + x.

* But0<y—x<y+x<2y<p—1< pso the numbers
in the list above are distinct modulo p.

® Suppose that ¢ is a QR modulo p. Then there is an x
with 1 < x < p — 1 such that x> = ¢ (mod p).

* If x < 3(p—1), then x2 is in our list and represents c.

elfi(p—1)<x<p—1then (p—x)2=x*=c
(mod p), (p — x)? represents c, and is in our list.

® So each QR is listed and there are exactly %(p —1) QR.

® The remaining %(p— 1) non-zero residues have to be QNR.
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Factorization ® \We can use this in various ways.
and Primality

Testing
e _
Quadratic

Residues . o 5 .
fobers Find a complete set of quadratic residues r modulo 19 with
Vaughan‘ ]_ S r S 18

Quadratic ® We can solve this by first observing that

Congruences

Quadratic
Reciprocity 12 — 1’ 22 — 4’ 32 — 9’42 = 16’ 52 = 25,
The Jacobi

symbol 6 = 36,77 = 49,8 = 64,9° = 81

Computing
Solutions to

Quadratic is a complete set of quadratic residues modulo 19

Congruences
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® \We can use this in various ways.

Find a complete set of quadratic residues r modulo 19 with

1< r<18.

® We can solve this by first observing that

12=1,22 = 4,32 = 9,4° = 16,52 = 25,

62 = 36,72 = 49,82 = 64,9° = 81

is a complete set of quadratic residues modulo 19

® and then reduce them modulo 19 to give
1,4,9,16,6,17,11,7,5
® which we can rearrange as

1,4,5,6,7,9,11,16,17.

N
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P/L —1 caQNR (mod p),
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g‘:;z‘r:'tii ® We require the following definition.
Residues

Robert C. Definition 5
Vaughan
Given a prime p > 2 and ¢ € Z we define the Legendre symbol

Quadratic
Congruences

Quadratic . 0 C = 0 (mod p),
Reciprocity (_) = 1 C a QR (mOd p), (12)
L

The Jacobi P

symbol —1 C a QNR (mOd p),

Computing
Solutions to
Quadratic

e ® The Legendre symbol has lots of interesting properties.

The Legendre symbol has the same value on replacing ¢ by
¢ + kp. Thus given p it is periodic in ¢ with period p.
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e Cancellation

Suppose that p is an odd prime and a Z 0 (mod p). Then

i (aXTjrb>L = 0. (1.3)

x=1

The proof of this is rather easy. The expression ax + b runs
through a complete set of residues as x does and so one of the
terms is 0, half the rest are +1, and the remainder are —1.
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Congruences

Quadratic

Reciprocity X2 =C (mod p)

The Jacobi
symbol

Computing (o

Solutions to

Quadratic 1 + .
P/

Congruences

We already know that the number of solutions is 1 when p|c, 2
when c is a QR, and 0 when ¢ is a QNR and this matches the

above exactly.
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® \We can use this on more complicated congruences.

Let N(p; c) be the number of x,y with x*> + y? = ¢ (mod p).
Rewrite this as z + w = ¢ (mod p) and count the number of
x,y with x> = z (mod p) and y?> = w (mod p). This is

(+()) 0+ (3))-

Also w = ¢ — z (mod p), thus the total number of solutions is

> (14 (3),) 1+ (%))

=1l
p

S (2),+2X(52),+ 2 (3),(59) -

z=1 z=1 z=1

N(p; c)

Il
N
T IN

I
o

The two sums are 0, so N(p;c) =p+>.F_; (%)L (%)L.
The last sum can be evaluated, but we need to know more.
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Congruences <) = CPT (mod p)
P/ L

and the Legendre symbol, as a function of c, is totally
multiplicative.
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® \We can combine the definition of the Legendre symbol
with a criterion first enunciated by Euler.

Theorem 10 (Euler’s Criterion)

Suppose that p is an odd prime number. Then

5), - it

and the Legendre symbol, as a function of c, is totally
multiplicative.

® Reminder

Remark 1

Recall that by multiplicative we mean a function f which
satisfies

f(n1n2) = f(nl)f(ng)

whenever (ny, np) = 1. Totally multiplicative means that the
condition (ni, n2) = 1 can be dropped.
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® |mportant

Remark 2

The totally multiplicative property means that if x and y are

both QR, or both QNR, then their product is a QR, and their
product can only be a QNR if one is a QR and the other is a

QNR.
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® Theorem 10. Suppose p is an odd number. Then

(£) < i

and the Legendre symbol is totally multiplicative.
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® Theorem 10. Suppose p is an odd number. Then
C p—1
—) =c2 (modp
() =" (modp)
and the Legendre symbol is totally multiplicative.
e If cis a QR, then there is an x # 0 (mod p) such that
x? =c (mod p).
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® Theorem 10. Suppose p is an odd number. Then

(£) < i

and the Legendre symbol is totally multiplicative.

e If cis a QR, then there is an x # 0 (mod p) such that
x? =c (mod p).

e Hence ¢ =xP~1=1= (%)L (mod p).
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Theorem 10. Suppose p is an odd number. Then

(£) < i

and the Legendre symbol is totally multiplicative.
If ¢ is a QR, then there is an x Z 0 (mod p) such that
x2 =c¢ (mod p).

Hence ¢®7 =xP~1=1= (%) mod p).

(
L
We know that the congruence =1 (mod p) has at
most p%l solutions and so we have just shown that it has
exactly that many solutions.
We also have

(cprl — 1) (cpTil +1> =cP 11

and we know that this has exactly p — 1 roots modulo p.
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Theorem 10. Suppose p is an odd number. Then

(£) < i

and the Legendre symbol is totally multiplicative.
If ¢ is a QR, then there is an x Z 0 (mod p) such that
x2 =c¢ (mod p).

Hence ¢®7 =xP~1=1= (%) mod p).

(
L
We know that the congruence =1 (mod p) has at
most p%l solutions and so we have just shown that it has
exactly that many solutions.
We also have

(cprl — 1) (cpTil +1> =cP 11

and we know that this has exactly p — 1 roots modulo p.
In particular every QNR is a solution, but cannot be a root

ofcp%l—l.
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Theorem 10. Suppose p is an odd number. Then

(£) < i

and the Legendre symbol is totally multiplicative.
If ¢ is a QR, then there is an x Z 0 (mod p) such that
x2 =c¢ (mod p).

Hence ¢®7 =xP~1=1= (%) mod p).

(
L
We know that the congruence =1 (mod p) has at
most p%l solutions and so we have just shown that it has
exactly that many solutions.
We also have

(cprl — 1) (cpTil +1> =cP 11

and we know that this has exactly p — 1 roots modulo p.

In particular every QNR is a solution, but cannot be a root
—1

of ¢z —1. )

Hence if c is a QNR, then ¢’z = —1 = (%)L (mod p).
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Theorem 10. Suppose p is an odd number. Then

(£) < i

and the Legendre symbol is totally multiplicative.
If ¢ is a QR, then there is an x Z 0 (mod p) such that
x2 =c¢ (mod p).

Hence ¢®7 =xP~1=1= (%) mod p).

(
L
We know that the congruence =1 (mod p) has at
most p%l solutions and so we have just shown that it has
exactly that many solutions.
We also have

(cprl — 1) (cpTil +1> =cP 11

and we know that this has exactly p — 1 roots modulo p.

In particular every QNR is a solution, but cannot be a root
—1

of ¢z —1. )

Hence if c is a QNR, then ¢’z = —1 = (%)L (mod p).

This proves the first part of the theorem,



® To prove the second part, we have to show that for any
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® To prove the second part, we have to show that for any
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® If ¢ =0 (mod p) or o =0 (mod p), then both sides are

0, so we can suppose that c;cp Z0 (mod p).



Factorization
and Primality
Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

® To prove the second part, we have to show that for any
integers c1, ¢ we have

(

)-(),63).

p

® If g =0 (mod p) or g =0 (mod p), then both sides are
0, so we can suppose that c;cp Z0 (mod p).

® Now

(

(5K}

p

)

-1
= (C1C2)PT
p—1 p—1

5 5
S
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® To prove the second part, we have to show that for any
integers c1, ¢ we have

(%)= ()G,

® If g =0 (mod p) or g =0 (mod p), then both sides are
0, so we can suppose that c;cp Z0 (mod p).

o Now
cic -1
(”) (C1C2)PT
P /L

p—1 p—1
— 2 2
= Cl C2

® Thus p divides
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To prove the second part, we have to show that for any
integers c1, ¢ we have

(%)= ()G,

If ¢4 =0 (mod p) or ¢ =0 (mod p), then both sides are
0, so we can suppose that c;cp Z0 (mod p).

Now
(& ]e) p—1
( E(C1C2) 2
P )L
p=1 p—1
=q¢’c?
= <C1> <C2> (mod p).
P/L\P/y

Thus p divides

SINOAOR

But this is —2,0 or 2 and so has to be 0 since p > 2
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® \We can use the Criterion to evaluate the Legendre symbol.

Suppose that p is an odd prime. Then
(—1) _J1 p=1 (mod 4)
p/). |-1 p=3 (mod4).

-1 -
Observe that by Euler’s Criterion (7> = (—1)’371 (mod p).

L
Now the difference between the left and right hand sides is
—2,0 or 2 and the same argument as above gives equality.
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Computing Now the difference between the left and right hand sides is
Quadratic —2,0 or 2 and the same argument as above gives equality.
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Congruences P L —1 P = 3 (mod 4)
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Reciprocity 1 q
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o Observe that by Euler’s Criterion (7> =(-1) 2z (mod p).
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Computing. Now the difference between the left and right hand sides is
Quadratic —2,0 or 2 and the same argument as above gives equality.

Congruences
® This example has some interesting consequences.
e 1. Every p > 2 dividing x? + 1 satisfies p =1 (mod 4).
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Reciprocity 1 q
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L Observe that by Euler’s Criterion (—> =(-1) 2z (mod p).
Ssymbol p L
Computing Now the difference between the left and right hand sides is
Quadratic —2,0 or 2 and the same argument as above gives equality.
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® This example has some interesting consequences.
e 1. Every p > 2 dividing x? + 1 satisfies p =1 (mod 4).
® 2. There are infinitely many primes of the form 4k + 1.
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® \We can use the Criterion to evaluate the Legendre symbol.

Suppose that p is an odd prime. Then
(—1) _J1 p=1 (mod 4)
p/). |-1 p=3 (mod4).

-1 -
Observe that by Euler’s Criterion (7> = (—1)'37l (mod p).

L
Now the difference between the left and right hand sides is
—2,0 or 2 and the same argument as above gives equality.

This example has some interesting consequences.

1. Every p > 2 dividing x? + 1 satisfies p =1 (mod 4).

2. There are infinitely many primes of the form 4k + 1.
To see 1. observe that for any such prime factor —1 has to
be a quadratic residue, so its Legendre symbol is 1.
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® \We can use the Criterion to evaluate the Legendre symbol.

Suppose that p is an odd prime. Then
(—1) _J1 p=1 (mod 4)
p/). |-1 p=3 (mod4).

-1 -
Observe that by Euler’s Criterion (7> = (—1)pTl (mod p).

L
Now the difference between the left and right hand sides is
—2,0 or 2 and the same argument as above gives equality.

This example has some interesting consequences.

1. Every p > 2 dividing x? + 1 satisfies p =1 (mod 4).

2. There are infinitely many primes of the form 4k + 1.
To see 1. observe that for any such prime factor —1 has to
be a quadratic residue, so its Legendre symbol is 1.

To deduce 2., follow Euclid's argument by assuming there
are only finitely many and take x to be twice their. product.
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1919, concerns the size ny(p) of the least positive QNR
modulo p.

® One thing one can see straight away is that ny(p) has to
be prime, since it must have a prime factor which is a
QNR.
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e A famous question, first asked by |. M. Vinogradov in

1919, concerns the size ny(p) of the least positive QNR
modulo p.

One thing one can see straight away is that ny(p) has to
be prime, since it must have a prime factor which is a
QNR.

Vinogradov conjectured that for any fixed positive number
€ > 0 we should have

m(p) < C(e)p°

and then proceeded to prove this at least when ¢ > ﬁ

where e is the base of the natural logarithm!
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A famous question, first asked by |. M. Vinogradov in
1919, concerns the size ny(p) of the least positive QNR
modulo p.

One thing one can see straight away is that ny(p) has to
be prime, since it must have a prime factor which is a

QNR.

Vinogradov conjectured that for any fixed positive number
€ > 0 we should have

m(p) < C(e)p°

and then proceeded to prove this at least when ¢ > \f
where e is the base of the natural logarithm!

In 1959 David Burgess, in his PhD thesis reduced this to
any € > f
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A famous question, first asked by |. M. Vinogradov in
1919, concerns the size ny(p) of the least positive QNR
modulo p.

One thing one can see straight away is that ny(p) has to
be prime, since it must have a prime factor which is a
QNR.

Vinogradov conjectured that for any fixed positive number
€ > 0 we should have

m(p) < C(e)p°

and then proceeded to prove this at least when ¢ > \f
where e is the base of the natural logarithm!

In 1959 David Burgess, in his PhD thesis reduced this to
any € > f

Where on earth does the /e come from?
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A famous question, first asked by |. M. Vinogradov in
1919, concerns the size ny(p) of the least positive QNR
modulo p.

One thing one can see straight away is that ny(p) has to
be prime, since it must have a prime factor which is a

QNR.

Vinogradov conjectured that for any fixed positive number
€ > 0 we should have

m(p) < C(e)p°

and then proceeded to prove this at least when ¢ > \f
where e is the base of the natural logarithm!

In 1959 David Burgess, in his PhD thesis reduced this to
any € > f
Where on earth does the /e come from?

This was one of the things that got me interested in
number theory when | was a student.



® Here is an easier result.

Suppose that p is an odd prime. Then
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® Here is an easier result.
Theorem 12
Suppose that p is an odd prime. Then

1 3

<= _ 2
nz(P)_2+ P

® Proof. Let k be the smallest k such that p < kna(p).
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® Here is an easier result.

Theorem 12
Suppose that p is an odd prime. Then

1 3

<= _ 2
nz(P)_2+ P

® Proof. Let k be the smallest k such that p < kna(p).
® ny(p) cannot divide p so p < kna(p) < p + na(p).
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Theorem 12
Suppose that p is an odd prime. Then

® Proof. Let k be the smallest k such that p < kna(p).
® ny(p) cannot divide p so p < kna(p) < p + na(p).
® Thus kny(p) is a QR, and so k is a QNR.



Factorization
and Primality
Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Congruences

® Here is an easier result.

Theorem 12
Suppose that p is an odd prime. Then

1 3

<= _ 2
nz(P)_2+ P

Proof. Let k be the smallest k such that p < kna(p).
na(p) cannot divide p so p < kna(p) < p + n2(p).
Thus kny(p) is a QR, and so k is a QNR.

Therefore ny(p) < k.
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® Here is an easier result.

Theorem 12
Suppose that p is an odd prime. Then

1 3

<= _ 2
nz(P)_2+ P

Proof. Let k be the smallest k such that p < kna(p).
na(p) cannot divide p so p < kna(p) < p + n2(p).
Thus kny(p) is a QR, and so k is a QNR.

Therefore ny(p) < k.

Hence na(p)? < p+ na(p) — 1.
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Here is an easier result.

Theorem 12
Suppose that p is an odd prime. Then

1 3

<= _ 2
nz(P)_2+ P

Proof. Let k be the smallest k such that p < kna(p).
na(p) cannot divide p so p < kna(p) < p + n2(p).
Thus kny(p) is a QR, and so k is a QNR.

Therefore ny(p) < k.

Hence na(p)? < p+ na(p) — 1.

This can be rearranged as ny(p)? — na(p) < p— 1, so
(m(p) =3P <p—3
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e m(p) < 5 +\/P—

® Proof. Let k be the smallest k such that p < kna(p).

® no(p) cannot divide p so p < kna(p) < p+ mo(p).

® Thus kny(p) is a QR, and so k is a QNR.

® Therefore ny(p) < k.

® Hence ny(p)? < p+ m(p) — 1.

e This can be rearranged as ny(p)? — ma(p) < p—1, so
(m(p) =3 <p—3

® The theorem follows by taking the square root.
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® The multiplicative property of the Legendre symbol tells
us that it suffices to understand

(5).

when p is an odd prime and g is prime.
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® The multiplicative property of the Legendre symbol tells
us that it suffices to understand

(5).

when p is an odd prime and g is prime.

® When g is also odd, Euler found a remarkable relationship
between this Legendre symbol and

(3).

but no one in the eighteenth century was able to prove it.
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® The multiplicative property of the Legendre symbol tells
us that it suffices to understand

(5).

when p is an odd prime and g is prime.

® When g is also odd, Euler found a remarkable relationship
between this Legendre symbol and

(3).

but no one in the eighteenth century was able to prove it.

® Gauss proved it when he was 19!
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The multiplicative property of the Legendre symbol tells
us that it suffices to understand

(5).

when p is an odd prime and g is prime.

When g is also odd, Euler found a remarkable relationship
between this Legendre symbol and

(3).

but no one in the eighteenth century was able to prove it.
Gauss proved it when he was 19!

The relationship enables one to imitate the Euclid
algorithm and so rapidly evaluate the Legendre symbol.



e What Euler spotted was a very curious relationship
between the values of

(5.

when p and g are different odd primes, which only
depended on their residue classes modulo 4.

«Or «Fr «=>»

« =

DA



Factorization Quadratic Reciprocity

and Primality
Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

e What Euler spotted was a very curious relationship
between the values of

Quadratic

Reciprocity (q)
P/ L

when p and g are different odd primes, which only
depended on their residue classes modulo 4.

e Of course, this was before the Legendre symbol was
invented and he described the phenomenon in terms of
quadratic residues and non-residues.
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Quadratic p\g | 3 [ 5 [ 7 [11[13[17[19] 23729
e 3 o111 [-1]1|-1]1]-1]-1
iy 5 | -1 0 |-1]|1|-1|-1]1]-1]1
STyhmebJ;cobi 7 —-1(-1| 0 1 —1|-1]| -1 1 1
o 11 | 1|1 |-1l0|-1]-1]-1|1|-1
o 13 1 | -1|-1|-1] 0 1 [ -1] 1 1
Congruences 17 | -1 -1|-1|-1| 1] 0 |-1|-1]-1
19 |-1| 1| 1|1 |=1]1]0]1]-1
23 |1 |-1]-1|-1| 1 |-1]|-1]0]1
20 |-1| 1] 1 |-1]1|-1|-1]11]0
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Robert C.
Vaughan
Quadratic p\g | 3 [ 5 [ 7 [11[13[17[19] 23729
e 3o |-1]1|-1]1|-1]1]-1]-1
ey 5 | —1] 0 |-1] 1 |-1|-1|1]=1]1
The oo 7 |-1|-1l0 | 1 |-1]|-1]-1|1]T1
o 11 | 1] 1 |=1]0|-1]-1]=-1|1]-=-1
%(fj;':f’a:im 13 1 -1(-1|-1| 0 1 -1 1 1
Congraences 17 | =1 1| -1 -1l 1] 0 |-1|=-1]-1
19 | -1 1| 1|1 |=-1]1]0]|1]-=-1
23 | 1 | -1 -1|-1]1|-1]|-1]0 |1
20 [ -1 1|1 |=1]1|-1]-1l11]0

e If p=1 (mod4)org=1 (mod 4), then (
but if p=qg =3 (mod 4), then (g)L + <§




® Gauss was fascinated by this and eventually found at least
seven (!) different proofs.
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® Gauss was fascinated by this and eventually found at least
seven (!) different proofs.

® The first step in many of them is Gauss' Lemma.
Theorem 14 (Gauss' Lemma)

Suppose that p is an odd prime and (a, p) = 1. Apply the
division algorithm to write each of the 3(p — 1) numbers ax
withl < x < %p asax = qxyp+ re with0 < r, < p. Let m be
the number of r, with %p < ry < p. Then we have

where
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® Gauss was fascinated by this and eventually found at least
seven (!) different proofs.

® The first step in many of them is Gauss' Lemma.

Theorem 14 (Gauss' Lemma)

Suppose that p is an odd prime and (a, p) = 1. Apply the
division algorithm to write each of the 3(p — 1) numbers ax
withl < x < %p asax = qxyp+ re with0 < r, < p. Let m be
the number of r, with %p < ry < p. Then we have

where

m= > ﬁ:XJ (mod 2).

1<x<p/2

® This theorem enables us to evaluate quite a number of
cases.
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® Theorem 14. Suppose p > 2 and p{ a. Write each of the

numbers ax with 1 < x < %p as ax = qgxp + ry with
0 < ry < p. Let m be the number of r, with %p < ry < p.

Then (%)L:(—nm, m= Y {%J (mod 2).

1<x<p/2

Take a = 2.
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® Theorem 14. Suppose p > 2 and p{ a. Write each of the

numbers ax with 1 < x < %p as ax = qgxp + ry with
0 < r¢ < p. Let m be the number of r, with %p <re < p.

Then (%)L:(—nm, m= Y {Q%J (mod 2).

1<x<p/2

Take a = 2.
® Consider the numbers 2x with 1 < x < %p. They satisfy

2 < 2x < p and are their own remainder, so we need to
count the x with %p < 2x < p, that is }‘p <x < %p.
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® Theorem 14. Suppose p > 2 and p{ a. Write each of the

numbers ax with 1 < x < %p as ax = qgxp + ry with

0 < r¢ < p. Let m be the number of r, with %p <re < p.

Then (%)L:(—nm, m= Y {Q%J (mod 2).

1<x<p/2

Take a = 2.

® Consider the numbers 2x with 1 < x < %p. They satisfy
2 < 2x < p and are their own remainder, so we need to

count the x with %p < 2x < p, that is }‘p <x < %p.

® Hence the number of such x is m= 5] — | 2].
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® Theorem 14. Suppose p > 2 and p 1 a. Write each of the
numbers ax with 1 < x < %p as ax = qgxp + ry with
0 < ry < p. Let m be the number of r, with %p < ry < p.

Then <5>L:(—1)m, m= Y {%J (mod 2).

P 1<x<p/2

Take a = 2.

® Consider the numbers 2x with 1 < x < %p. They satisfy
2 < 2x < p and are their own remainder, so we need to
count the x with %p < 2x < p, that is %p <x < %p.

® Hence the number of such x is m= 5] — | 2].

® Now suppose that p = 8k + 1. Then m = 4k — 2k is even.

Likewise when p =8k +7, m = 2k 4+ 2 is also even.
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Factorization ® Theorem 14. Suppose p > 2 and p 1 a. Write each of the

nd Primali . H
aCTestinZ > numbers ax with 1 < x < %p as ax = qgxp + ry with
hapter 5 .
%ui%jr:tic 0 < r¢ < p. Let m be the number of r, with %p <re < p.
esiaues a 2aX
i € Then (—) =(-1)", m= Z {—J (mod 2).
aughan
P/L 1<x<p/2 P
Quadratic
Quadratic
Reciprocity Ta ke a = 2.
The Jacobi
STl e Consider the numbers 2x with 1 < x < %p. They satisfy
S 2 < 2x < p and are their own remainder, so we need to
(e count the x with p < 2x < p, that is 3p < x < 3p.

® Hence the number of such x is m= 5] — | 2].

® Now suppose that p = 8k + 1. Then m = 4k — 2k is even.
Likewise when p =8k +7, m = 2k 4+ 2 is also even.
e Similarly if p=3 or 5 (mod 8), then m is odd.
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Factorization ® Theorem 14. Suppose p > 2 and p 1 a. Write each of the

an::gi{g;!ty numbers ax with 1 < x < %p as ax = xP + rlx with
Quacratic 0 < r« < p. Let m be the number of r, with 5p < r, < p.
fobert © Then <i> =(-1)" m= Z {%J (mod 2).
P/L 1<x<p/2 P
Quadratic
Quadratic
Reciprocity Take 2 = 2.
e e Consider the numbers 2x with 1 < x < %p. They satisfy
S 2 < 2x < p and are their own remainder, so we need to
(e count the x with p < 2x < p, that is 3p < x < 3p.
® Hence the number of such x is m= 5] — | 2].
® Now suppose that p = 8k + 1. Then m = 4k — 2k is even.
Likewise when p =8k +7, m = 2k 4+ 2 is also even.
e Similarly if p=3 or 5 (mod 8), then m is odd.
o (2) = +1 according as p = £+1 or £3 (mod 8).

PJL

u}
8]
I
i
it



Factorization ® Theorem 14. Suppose p > 2 and p 1 a. Write each of the

a"::Z’Ji?;Z”‘y numbers ax with 1 < x < %p as ax = gxp + rx with
apter 5 .
%ua?ij’atic 0 < ry < p. Let m be the number of r, with %p < ry < p.
esiaues a 2aX
i € Then (—) =(-1)", m= Z {—J (mod 2).
: P/ 1<x<p/2 P
Quadratic
Quadratic
Reciprocity Ta ke a=2.
The Jacobi
STl e Consider the numbers 2x with 1 < x < %p. They satisfy
S 2 < 2x < p and are their own remainder, so we need to
Weini count the x with p < 2x < p, that is 3p < x < 3p.
® Hence the number of such x is m= 5] — | 2].
® Now suppose that p = 8k + 1. Then m = 4k — 2k is even.
Likewise when p =8k +7, m = 2k 4+ 2 is also even.
e Similarly if p=3 or 5 (mod 8), then m is odd.
o (%)L = +1 according as p = £+1 or £3 (mod 8).
p’-1
[ )

Alternatively (%)L =(-1)7s .

o = = =




Factorization
and Primality
Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Quadratic
Reciprocity

® Theorem 14. Suppose p > 2 and p 1 a. Write each of the

numbers ax with 1 < x < %p as ax = qxp + ry with
0 < r¢ < p. Let m be the number of r, with %p < ry < p.

Then (:)L:(—l)’",m 3 ﬁﬂ (mod 2).
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® Theorem 14. Suppose p > 2 and p 1 a. Write each of the

numbers ax with 1 < x < %p as ax = qxp + ry with
0 < r¢ < p. Let m be the number of r, with %p < ry < p.

Then (:)L:(—l)’",m 3 ﬁﬂ (mod 2).

1<x<p/2

® Proof. The proof is a counting argument. Consider

p—1
= I x= [] o~

1<x<p/2 1<x<p/2
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® Theorem 14. Suppose p > 2 and p 1 a. Write each of the
numbers ax with 1 < x < %p as ax = qxp + ry with
0 < r¢ < p. Let m be the number of r, with %p < ry < p.

2
Then (a) =(-1)", m Z {QXJ (mod 2).
P/L 1<x<p/2 p
® Proof. The proof is a counting argument. Consider

p—1
= I x= [] o~

1<x<p/2 1<x<p/2

® Thisis = H ry (mod p).
1<x<p/2
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Theorem 14. Suppose p > 2 and p t a. Write each of the
numbers ax with 1 < x < %p as ax = qxp + ry with
0 < r¢ < p. Let m be the number of r, with %p < ry < p.
2

Then (a) =(-1)", m Z {QXJ (mod 2).

P/L 1<x<p/2 P
Proof. The proof is a counting argument. Consider

a7 H X = H ax.
1<x<p/2 1<x<p/2

This is = H ry (mod p).

1<x<p/2
Let A be the set of x with p/2 < r, < p and B the rest.
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Theorem 14. Suppose p > 2 and p t a. Write each of the
numbers ax with 1 < x < %p as ax = qxp + ry with
0 < r¢ < p. Let m be the number of r, with %p < ry < p.

J (mod 2).

Th

(a
en [ =
p

p—1
az [ x=

1<x<p/2

1<x<p/2
Proof. The proof is a counting argument. Consider

1<x<p/2

This is = H ry (mod p).

1<x<p/2

e

H ax.

Let A be the set of x with p/2 < r, < p and B the rest.

Then card A = m and rearranging gives a 2

(

1 ~

xeA

)

H = (—1)"

xeB

(

H(P_ rx)

xeA

)

1<x<p/2

p—1
|| X =

H r« (mod p)

xeB

(2.4)
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p—1
Factorization e 52 | | X =

and Primality

Testing 1§X<p/2

Chapter 5

Quadratic

Residues m

Robert C. | | rx | | Ik = (_]-) | I(P— rx) | | 6% (mod p)
Vaughan xcA xEB xeA xEB

® Since |, —ry| < pand r,—r,=a(x—y) (mod p) we
have r, # r, when x # y and so the r, are distinct.

Quadratic
Reciprocity
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1<x<p/2
(H rx> H = (-1)" (H(p — rx)) H re (mod p).
xEA xEB xEA xeB

® Since |, —ry| < pand r,—r,=a(x—y) (mod p) we
have r, # r, when x # y and so the r, are distinct.
® Also since ptfaand 1 <x,y < p/2 we have

p—rc—r,=—-a(x+y)#0 (mod p).



Factorization o 5 2 X =
and Primality
Testing 1§X<p/2
Chapter 5
Quadratic
Residues m
Robert C. H Ix H Ix = (_1) H(p - rX) H Ix (mOd p)
Rareian xEA x€EB x€A x€B
® Since |, —ry| < pand r,—r,=a(x—y) (mod p) we

have r, # r, when x # y and so the r, are distinct.

Also since ptaand 1 < x,y < p/2 we have
p—rc—r,=—-a(x+y)#0 (mod p).

Thus the p — r, with x € A differ from the r, with y € B.

Quadratic
Reciprocity
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and Primality
Testing 1§X<p/2
Chapter 5
Quadratic
Residues m
Robert C. H rx H rx = (_1) H(p - rX) H Ix (mOd P)
Veuien x€eA x€eB xeA xeB

® Since |, —ry| < pand r,—r,=a(x—y) (mod p) we
o have r, # r, when x # y and so the r, are distinct.
Reciprocity ® Also since ptfaand 1 <x,y < p/2 we have
p—rc—r,=—-a(x+y)#0 (mod p).
® Thus the p — re with x € A differ from the r, with y € B.
® Hence the %(p — 1) numbers p — r, and ry are just a
permutation of the numbers z with 1 < z < 3(p —1).
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’ 1§X<p/2x -
(H rx> H = (-1)" (H(p — rx)) H re (mod p).
x€A xeB xEA xeB

Since |[re —ry| <pand r,—r, =a(x—y) (mod p) we
have r, # r, when x # y and so the r, are distinct.

Also since ptaand 1 < x,y < p/2 we have
p—rc—r,=—-a(x+y)#0 (mod p).

Thus the p — r, with x € A differ from the r, with y € B.
Hence the %(p — 1) numbers p — r, and ry are just a
permutation of the numbers z with 1 < z < 3(p —1).
Thus (2.4) becomes

a7 H x=(-1)7 H x (mod p)

1<x<p/2 1<x<p/2

and, by Euler’s Criterion, <Z> =az =(—-1)".
L
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’ 1§X<p/2x -
(H rx> H = (-1)" (H(p — rx)) H re (mod p).
x€A xeB xEA xeB

Since |[re —ry| <pand r,—r, =a(x—y) (mod p) we
have r, # r, when x # y and so the r, are distinct.

Also since ptaand 1 < x,y < p/2 we have
p—rc—r,=—-a(x+y)#0 (mod p).

Thus the p — r, with x € A differ from the r, with y € B.
Hence the %(p — 1) numbers p — r, and ry are just a
permutation of the numbers z with 1 < z < 3(p —1).
Thus (2.4) becomes

a7 H x=(-1)7 H x (mod p)

1<x<p/2 1<x<p/2

and, by Euler’s Criterion, <Z> = aprl =(-1)™.
L
Now the difference is —2, 0 or 2.



® For the final formula we note that

= ax—p {axJ
— ax — —
X p
so that 0 < r, < p.

«O> «Fr «=>»

«E)»
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so that 0 < r < p.
® Now 0 < 2r,/p<2andso |2ry/p] =0o0rlandisl

Quadratic precisely when p/2 < r, < p.

Reciprocity
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actorization ® For the final formula we note that
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Testing
Chapter 5 ax
drati
Qua ratic rX — aX _ p \‘ (25)
p

Residues

Robert C.
Vaughan

so that 0 < r < p.

® Now 0 < 2r,/p<2andso |2ry/p] =0o0rlandisl
Quadratic precisely when p/2 < r, < p.

Reciprocity
® Thus
m= Z [2r/p].
1<x<p/2
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and Primality ® For the final formula we note that

Testing
Chapter 5 ax

sk ho—ax—p {J (2.5)
Robert C. p

Vaughan

so that 0 < r < p.

® Now 0 < 2r,/p<2andso |2ry/p] =0o0rlandisl
Quadratic precisely when p/2 < r, < p.

Reciprocity
® Thus

m= Z [2r/p].

1<x<p/2

® Moreover, by (2.5)

o Pl o

_ f:XJ (mod 2)

and the final formula follows.
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® Restricting to odd a gives a useful variant.
Theorem 16
Suppose p > 2 and (a,2p) = 1. Then (

n—Zl<X<P/2{ J Wea/sohave() = (-1

o 08 9,5,

= (C22) — (-1

) = (—1)" where

T o
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® Restricting to odd a gives a useful variant.
Theorem 16
Suppose p > 2 and (a,2p) = 1. Then (
p —1

N=73 1<x<p/2 { J We also have (7> (-1) =

< (3,3, 3, (), - (2),(+2°),

- (=), -

) = (—1)" where

T o

(p—1)/2 (p—1)/2
® where | = XZ_:l {aﬂ’ J 2 L%-{—XJ:

(p—1)/2

(|2 +x) =n+ 252

x=1
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® Restricting to odd a gives a useful variant.
Theorem 16
Suppose p > 2 and (a,2p) = 1. Then (
p —1

N=73 1<x<p/2 { J We also have (7) (-1) =

< (3,3, 3, (), - (2),(+2°),

- (=), -

) = (—1)" where

T o

(p—1)/2 (p—1)/2
® where | = Xz_:l {aﬂ’ J 2 L%-{—XJ:

(p—1)/2 .
(1] +:) =52
x=1

® |f we take a = 1, then we have the formula for (%)L.
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® Restricting to odd a gives a useful variant.
Theorem 16
Suppose p > 2 and (a,2p) = 1. Then (
p —1

N=73 1<x<p/2 { J We also have (7) (-1) =

Proof. (2), (3), = (), (%)= (3). ((”” “).
= (e222), = (-

where | = (p_zl%/z { 2+p) J S L% + XJ =

v !
(EREE
x=1

If we take a = 1, then we have the formula for (%)L.

) = (—1)" where

T o

Then factoring this out gives the result for (%)L'
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Theorem 17 (The Law of Quadratic Reciprocity)

R Suppose that p and q are different odd prime numbers. Then
Reciprocity

(2),2) -

or equivalently
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® Now we come to the big one. This is the Law of
Quadratic Reciprocity. Gauss called it “Theorema
Aureum”, the Golden Theorem.

Theorem 17 (The Law of Quadratic Reciprocity)

Suppose that p and q are different odd prime numbers. Then

(2),2) -

or equivalently

® We can use this to compute rapidly Legendre symbols.
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® We can use this to compute rapidly Legendre symbols.

Is x> = 951 (mod 2017) soluble? 2017 is prime, but
951 = 3 x 317.
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G ® \We can use this to compute rapidly Legendre symbols.
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Robere € Is x> = 951 (mod 2017) soluble? 2017 is prime, but
951 = 3 x 317.

Quadrati
C:sg:je:ces Y Thus (951 ) — ( 3 ) (317)
. 2017/ L 2017/ L \2017/L "
Quadratic
Reciprocity

The Jacobi
symbol

Computing
Solutions to
Quadratic
Congruences
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® We can use this to compute rapidly Legendre symbols.

Is x> = 951 (mod 2017) soluble? 2017 is prime, but

051 = 3 x 317.
e Thus (290%

® By the law, as 2017 =1

)= (zo7) . (

2017).1

(mod 4),

(g)L - (%)L =1
= (%)L - (35?
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® We can use this to compute rapidly Legendre symbols.

Is x> = 951 (mod 2017) soluble? 2017 is prime, but
951 = 3 x 317.

* Thus (5517), = (5017) ¢ (5017) .
® By the law, as 2017 =1 (mod 4),

(zo17) . = (517) . = Gz) L = (337) L GEF) -
® Again applying the law, we have
(3?7) (351>7)L: (%)L:_l

and (3%5), = (%), = (53), = (%), = L so that
(L)L = —1 and thus (&)L = 1.

u}

8]
I
i

it



Factorization ® We can use this to compute rapidly Legendre symbols.

and Primality
Testing

Chapter 5

Residues

e Is x> = 951 (mod 2017) soluble? 2017 is prime, but
951 = 3 x 317.

Quadratic

e Thus (o07), = (om) 1 (Gor7) -

Quadratic

Reciprocity ° By the IaW, as 2017 =1 mOd 4),

The Jacobi 3 . 1
symbol
) (o) = (1), =(3), =1

Computing
Solutions to

Soreeces (or7). = (57). = (Gi2) = (33) L (577) .-
® Again applying the law, we have
(3%)L = (3_51>7)L = (%)L =-1
and (37), = (%), = (33), = (%), = L so that
(%)L = —1 and thus (%)L = —1.

® Thus the congruence is insoluble.
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Factorization ® We can also use the law to obtain general rules, like that
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Chapter 5
Quadratic
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Robert C.

Vaughan Let p > 3 be an odd prime. Then

Quadratic 3 —1
Congruences (_) = (—l)pT (B) .
Quadratic p L 3 L

Reciprocity
The Jacobi

symbol ® Now pis a QR modulo 3 iff p=1 (mod 3).
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® We can also use the law to obtain general rules, like that

for 2 (mod p).

Let p > 3 be an odd prime. Then

(%)L - (—1)"7_1 <§>L

® Now pis a QR modulo 3 iff p=1 (mod 3).

® Thus

(5).- {(f)l)

(p=1 (mod 3))
(p=2 (mod 3)).



Factorization ® We can also use the law to obtain general rules, like that

and Primality

Testing for 2 (mod p).
Chapter 5
Quadratic
Residues
Robert C.

Vaughan Let p > 3 be an odd prime. Then

i (é) - (%7 () .
P/ 3/L

Quadratic
Reciprocity

The Jacobi

symbol ® Now pis a QR modulo 3 iff p=1 (mod 3).
Computing

Solutions to ° Th us

Quadratic p—1

Congruences <3> . (—1)T (p = 1 (mOd 3))
. —(-1)z  (p=2 (mod 3)).

® \We can also combine this with the formula in the case of
—1 (mod p) which follows from the Euler Criterion. Thus

<—_3> )1 (p=1 (mod 3))
P/ -1 (p=2 (mod 3)).

[} = =

p e
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® Proof of the Law of Quadratic Reciprocity. We start

Factorization

and Primality . . .
Testing from two applications of the previous theorem.
Chapter 5
Quadratic ) Then q P = (—1)U+V
Residues P L q L
Robert C. — ax — Py
Vaughan where u = ZlSX<p/2 L P J and v = Zl§y<q/2 L q J '
Quadratic

Reciprocity



® Proof of the Law of Quadratic Reciprocity. We start

Factorization

d Primalit . . .
" resting from two applications of the previous theorem.
Chapter 5
Quadratic ® Then (2) (B) = (=1)utv
Residues P L q L
Robert C. _ gx _ py
Vaughan where u =31, {FJ and v=73 1, {FJ'
® Observe that Lq—;J is the number of positive integers y

Quadratic Wlth 1 S y S qX/p
Reciprocity



Proof of the Law of Quadratic Reciprocity. We start

Factorization °
andTePsrti:ir::ity from two applications of the previous theorem.
e o hen (3),(5), =0
s where 4= Sy pn [ %] and v =301 0 | 2]
® QObserve that Lq—;J is the number of positive integers y
— with 1 <y < gx/p.
Reciprocity ® Thus the first sum is the number of ordered pairs x, y with

1<x<p/2and 1<y < qgx/p.
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Proof of the Law of Quadratic Reciprocity. We start
from two applications of the previous theorem.

a) (P) —(_1)ut+v

Then <p)L (q)L_( 2

where u = Zl§X<p/2 L%J and v = Zl§y<q/2 L%J.
Observe that Lq—;J is the number of positive integers y
with 1 <y < gx/p.

Thus the first sum is the number of ordered pairs x, y with
1<x<p/2and 1<y < qgx/p.

Likewise 1<, g/ L%’J is the number of ordered pairs

x,ywithl <y <gqg/2and1<x<py/q
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Proof of the Law of Quadratic Reciprocity. We start
from two applications of the previous theorem.

Then (2), (5), = (-0
where u =371, L%J and v=>371 0 L%J.

Observe that Lq—;J is the number of positive integers y

with 1 <y < gx/p.

Thus the first sum is the number of ordered pairs x, y with
1<x<p/2and 1<y < qgx/p.

Likewise 1<, g/ L%’J is the number of ordered pairs
x,ywithl <y <gqg/2and1<x<py/q

that is, with 1 < x < p/2 and xq/p < y < q/2.
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Proof of the Law of Quadratic Reciprocity. We start
from two applications of the previous theorem.

Then (2), (5), = (-0
where u =371, L%J and v=>371 0 L%J.

Observe that Lq—;J is the number of positive integers y

with 1 <y < gx/p.

Thus the first sum is the number of ordered pairs x, y with
1<x<p/2and 1<y < qgx/p.

Likewise 1<, g/ L%’J is the number of ordered pairs

x,ywithl <y <gqg/2and1<x<py/q

that is, with 1 < x < p/2 and xq/p < y < q/2.
Hence u + v is the number of ordered pairs x, y with
1<x<p/2and1<y<q/2.
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Proof of the Law of Quadratic Reciprocity. We start
from two applications of the previous theorem.

Then (2), (5), = (-0
where u =371, L%J and v=>371 0 L%J.

Observe that Lq—;J is the number of positive integers y

with 1 <y < gx/p.

Thus the first sum is the number of ordered pairs x, y with
1<x<p/2and 1<y < qgx/p.

Likewise 1<, g/ L%’J is the number of ordered pairs

x,ywithl <y <gqg/2and1<x<py/q
that is, with 1 < x < p/2 and xq/p < y < q/2.
Hence u + v is the number of ordered pairs x, y with
1<x<p/2and1<y<q/2.
This is

p—1 g-—1

2 2
and completes the proof.
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Proof of the Law of Quadratic Reciprocity. We start
from two applications of the previous theorem.

Then (2), (5), = (-0
where u =371, L%J and v=>371 0 L%J.

Observe that Lq—;J is the number of positive integers y

with 1 <y < gx/p.

Thus the first sum is the number of ordered pairs x, y with
1<x<p/2and 1<y < qgx/p.

Likewise 1<, g/ L%’J is the number of ordered pairs

x,ywithl <y <gqg/2and1<x<py/q
that is, with 1 < x < p/2 and xq/p < y < q/2.
Hence u + v is the number of ordered pairs x, y with
1<x<p/2and1<y<q/2.
This is
p—1 g-—1
2 2
and completes the proof.
This argument is due to Eisenstein.
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R ® |n Example 18, there were several occasions when we

Chapter 5 . .
Quadratic needed to factorise the a in (3>
Residues p L
Robert C. ® Jacobi introduced an extension of the Legendre symbol
Vaughan . . .
‘ which avoids this.
Definition 20
Suppose that m is an odd positive integer and a is an integer.
The Jacobi Let m = pi* ... pZ~ be the canonical decomposition of m. Then
symbel we define the Jacobi symbol by
o)1)
msJ A \PiJL

Note that interpreting 1 as being an “empty product of primes’

( ) -
]. J
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Chapter 5

Quadratic ® Remarkably the Jacobi symbol has exactly the same

Residues
Robert C. properties as the Legendre symbol, except for one.

Vaughan ) .
® That is, for a general odd modulus m it does not tell us

Quadratic about the solubility of x> = a (mod m).

Congruences

Quadratic
Reciprocity

The Jacobi We haVe

symbol

Computing

olutions to 2 2 2

(SQu‘adratwc = = = = = (_1)2 = 1,
Congruences 15 J 3 L 5 L

but x> =2 (mod 15) is insoluble because any solution would
also be a solution of x> =2 (mod 3) which we know is
insoluble.
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® 1. Suppose that m is odd. Then (22) = (

Sl =

«E)»

DA



® 1. Suppose that m is odd. Then (22) = (

® 2. Suppose m; are odd. Then (

m
a
mimy J

«Or «Fr «=>»

« =

a1
m
a

:(_1
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Residues . ) m JJ m/J\m/J
VN ® 2. Suppose m; are odd. Then <m13m2>J = <mi1)J (miz)J

® 3. Suppose that mis odd and a; = a» (mod m). Then

(%)J = (%)J

The Jacobi
symbol
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® The first three follow from the definition. The rest depend

on algebraic identities and induction on the number of
prime factors. For 4. m1271 + m22*1 = ml”z'rl (mod 2),
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on algebraic identities and induction on the number of
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Properties of the Jacobi symbol

1. Suppose that m is odd. Then (22) = (4) (2)

m

2. Suppose m; are odd. Then <m13m2>J = <mi1)J (miz)J
3. Suppose that m is odd and a; = ap (mod m). Then
(), = ()

m/J m/J®

4. Suppose that m is odd. Then (

m—1

)J =(-1)z.
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5. Suppose that m is odd. Then (—)J =(-1) = -
6. Suppose that m and n are odd and (m, n) = 1. Then
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on algebraic identities and induction on the number of
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® Return to Example 18, where we evaluated (W)L'

Now we don't have to factor 951. By the Jacobi version of the

law
951\ _ (2017 _ (115 (951
2017 ), \951 /), \951), \115/,
_ (3L _(usy (22
- o\115), \31/), \31,
= — E = — 2 :—1.
11/, 11/,
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® Return to Example 18, where we evaluated (_2905117)L'

Now we don't have to factor 951. By the Jacobi version of the
law
951 _ (2017\ _ (115} (/951
2017), \ 951/, \951/, 115/,
(L) _(us) (2
- o\115), \31/), \31,
= — E = — 2 = —1.
1/, 1/,

® Note that we can process this like the Euclidean algorithm.
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® Suppose we are interested in (%)L where n and m are odd.
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® If any of the r; are even we first take out the powers of 2.
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® | am now going to describe three algorithms which we will
make great use of, and which you will need to implement
in your favourite programming software.
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® | am now going to describe three algorithms which we will
make great use of, and which you will need to implement
in your favourite programming software.

® The first algorithm computes the Jacobi symbol

(5),

for a given positive odd integer n and integer m.
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® | am now going to describe three algorithms which we will

make great use of, and which you will need to implement
in your favourite programming software.

The first algorithm computes the Jacobi symbol

(5),

for a given positive odd integer n and integer m.

It is just an immediate application of the law of quadratic
reciprocity through the use of the division algorithm as
organised in Euclid’s algorithm, together with the removal
of any powers of 2 at each stage and an evaluation of the

corresponding
2
n),



® Algorithm LJ. Given an integer m and a positive integer
n, compute (ﬂ)J.

n
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e Algorithm LJ. Given an integer m and a positive integer

n, compute (%) .

1. Reduction loops.

1.1. Compute m = m (mod n), so that the new m
satisfies 0 < m < n. Put t = 1.

1.2. While m # 0 {

1.2.1. While mis even { put m=m/2 and, if n=3 or 5
(mod 8), then put t = —t}

1.2.2. Interchange m and n to give new m and n.

1.23. If m=n=3 (mod 4), then put t = —t.

1.2.4. Compute m = m (mod n), so that the new m

satisfies 0 < m < new n.

}
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e Algorithm LJ. Given an integer m and a positive integer

n, compute (%) .

1. Reduction loops.

1.1. Compute m = m (mod n), so that the new m
satisfies 0 < m < n. Put t = 1.

1.2. While m # 0 {

1.2.1. While mis even { put m=m/2 and, if n=3 or 5
(mod 8), then put t = —t}

1.2.2. Interchange m and n to give new m and n.

1.23. If m=n=3 (mod 4), then put t = —t.

1.2.4. Compute m = m (mod n), so that the new m

satisfies 0 < m < new n.

}

2. Output.
2.1. If n=1, then return t.
2.2. Else return 0.
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® The following are often attributed to Shanks (1973) &

Tonelli (1891), but in principle go back to Euler, Legendre
& Gauss.

Algorithm QC357/8. Given p=3,5,7 (mod 8) & a
with (%)L = 1, compute solution to x?> = a (mod p):

o If p=3or7 (mod 8), compute x = alP*1/* (mod p).
* If p=5, take x = alPt3)/8 (mod p). Compute x2.
2.1. If x> = a (mod p), then return x.
2.2. If x2 # a (mod p), compute x = x2(P~1/4 (mod p).



Factorization
and Primality
Testing
Chapter 5
Quadratic
Residues

Robert C.
Vaughan

Computing
Solutions to
Quadratic
Congruences

The following are often attributed to Shanks (1973) &
Tonelli (1891), but in principle go back to Euler, Legendre
& Gauss.

Algorithm QC357/8. Given p=3,5,7 (mod 8) & a

with (%)L = 1, compute solution to x?> = a (mod p):

If p=3or7 (mod 8), compute x = alPT/4 (mod p).

If p=5, take x = a(P*3)/8 (mod p). Compute x2.

2.1. If x> = a (mod p), then return x.

2.2. If x2 # a (mod p), compute x = x2(P~1/4 (mod p).
Proof. When p =3 (mod 4) we have pTH €N, so
a(Pt1)/4 makes sense and by Euler’s criterion.

—1
X2 = alP+1)/2 — g4t (g)L = a (mod p).
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The following are often attributed to Shanks (1973) &
Tonelli (1891), but in principle go back to Euler, Legendre
& Gauss.

Algorithm QC357/8. Given p=3,5,7 (mod 8) & a

with (%)L = 1, compute solution to x?> = a (mod p):

If p=3or7 (mod 8), compute x = alPT/4 (mod p).

If p=5, take x = a(P*3)/8 (mod p). Compute x2.

2.1. If x> = a (mod p), then return x.

2.2. If x2 # a (mod p), compute x = x2(P~1/4 (mod p).
Proof. When p =3 (mod 4) we have pTH €N, so
a(Pt1)/4 makes sense and by Euler’s criterion.

X2 = aPtD/2 = g+ =5 (%)L = a (mod p).

When p =5 (mod 8), the issue is when a(P~1)/4 £ 1
(mod p). By Euler aP~1/2 =1 (mod p), so

alP~D/* = £1 (mod p), & aP~V/4 = —1 (mod p). Thus
the x in 2.2 gives x2 = a(P+3)/42(p=1)/2 = (_3) (2)

— (~a)(~1) =4 (mod p). ]
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e Algorithm QC1/8. Given a prime p=1 (mod 8) and an

a with (%)L =1, compute a solution to x> = a (mod p).

e 1. Compute a random integer b with (%)L =—1.1In

practice checking successively the primes b =2,3,5,...,
or even crudely just the integers b =2,3,4,..., will find
such a b quickly.

® 2. Factor out each 2in p—1, so that p — 1 = 2°u with u
odd. Compute d = a" (mod p) and f = b* (mod p).



Factorization

L e Algorithm QC1/8. Given a prime p=1 (mod 8) and an
A a with (%)L = 1, compute a solution to x> = a (mod p).
Residues
Ff/‘;"ufé’;af]- e 1. Compute a random integer b with (%)L =—1.1In

practice checking successively the primes b =2,3,5,...,
or even crudely just the integers b =2,3,4,..., will find
such a b quickly.
® 2. Factor out each 2in p—1, so that p — 1 = 2°u with u
odd. Compute d = a" (mod p) and f = b* (mod p).
Computin
Zo'auﬁznt_sfo e 3. Compute an m so that df™ =1 (mod p) as follows.

Congruences 3.1. Initialise mg = 0. '
3.2. Foreach i =0,1,...,5s —1 compute g = (df’”")2s_1_'
(mod p). If g = —1 (mod p), then put mj 1 = m; +2'.
Otherwise take mjy1 = m;
3.3. Return ms. This will satisfy df™ =1 (mod p) and
ms will be even.
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A a with (%) = 1, compute a solution to x> = a (mod p).
Residues L

Robert C. ; ; b - _

Nl e 1. Compute a random integer b with (E)L =—1.1In

practice checking successively the primes b =2,3,5,...,
or even crudely just the integers b =2,3,4,..., will find
such a b quickly.

® 2. Factor out each 2in p—1, so that p — 1 = 2°u with u
odd. Compute d = a" (mod p) and f = b* (mod p).

Computing

Solutions © ® 3. Compute an m so that df™ =1 (mod p) as follows.
uadratic

Congruences 3.1. Initialise mg = 0.

3.2. Foreach i =0,1,...,5s —1 compute g = (df’”")2s_1_'
(mod p). If g = —1 (mod p), then put mj 1 = m; +2'.
Otherwise take mjy1 = m;

3.3. Return ms. This will satisfy df™ =1 (mod p) and
ms will be even.

* 4. Compute x = alu+1)/2fms/2 (mod p). Return x.
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with p —1 =2°u and v odd, d = a" (mod p) and f = b
(mod p).
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Robert . e Proof. Initially we find b with (g)L — -1, and s and u
with p —1 =2°u and v odd, d = a" (mod p) and f = b
(mod p).
® We will show below that there is an m so that df™ =1
(mod p) and m is even. Then x = a“+1/2fm/2 (mod p)
satisfies
Computing
e s (e N
Congruences X = (aT fj) = au+ fm = adfm =a (mod p)

Thus it all depends on the computation of m.



Factorization ° Reca“ b Wlth (g) = —].v S, u Wlth pP— 1 = 2SU and u

and Primality L
e odd, d = a* (mod p), f = b" (mod p). To compute m
Quadratic so df™ =1 (mod p) and 2|m as follows. Let my = 0. For
Robert C. i=0,1,...,s— 1 compute g = (df’”")zs_l'_' (mod p). If
Voughan = —1 (mod p), then put m;;1 = m; +2'. Else take

mi+1 = m;. Claim df™ =1 (mod p), 2|ms.
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Factorization ° Reca” b Wlth (g) = —].v S, u Wlth pP— 1 = 2SU and u

and Primality L
e odd, d = a* (mod p), f = b" (mod p). To compute m
Quadratic so df™ =1 (mod p) and 2|m as follows. Let my = 0. For
Robert C. i=0,1,...,s— 1 compute g = (df’"")zs_l'_' (mod p). If
Vaughan g = —1 (mod p), then put mj;1 = m; +2'. Else take
mi+1 = m;. Claim df™ =1 (mod p), 2|ms.

s— s— —1
e By Euler’s criterion 2 = a2 ' =32 =1 (mod p).

So ord,(d)[2°~1 and = p = b =1
(mod p). Also f2* = bP~1 =1 (mod p), so ord,(f) = 25.

o
|
-
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an;:gi{g;:ty odd, d = a (mod p), f = b" (mod p). To compute m
Quadratic so df™ =1 (mod p) and 2|m as follows. Let my = 0. For
Robert C. i=0,1,...,s— 1 compute g = (df’"")25_1_i (mod p). If
He g = —1 (mod p), then put m; 1 = m; +2'. Else take

mi+1 = m;. Claim df™ =1 (mod p), 2|ms.
e By Euler's criterion d2 ' = 22" ¥ = =1 (mod p).
So ord,y(d)[257t and F2 = BN = b7 = 1
(mod p). Also f2 = b~ =1 (mod p), so ord,(f) =
o) ® Prove by induction for 0 < i < s that (df™)¥ " =1.
Quadratic

Congruences
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Recall b with ( ) =—-1,s, uwithp—1=2°ysand u
odd, d = a (mod p), f = b" (mod p). To compute m
so df™ =1 (mod p) and 2|m as follows. Let my = 0. For
i=0,1,...,s— 1 compute g = (df’"")25_1_i (mod p). If
g = —1 (mod p), then put mj;1 = m; +2'. Else take
mi+1 = m;. Claim df™ =1 (mod p), 2|ms.

By Euler's criterion d2 ' = 22" ¥ = =1 (mod p).
So ord,y(d)[257t and F2 = BN = b7 = 1

(mod p). Also f2 = b~ =1 (mod p), so ord,(f) =
Prove by induction for 0 < j < s that (df ™) =1.

For i =0, mg=0so (df™)% =d* =1 (mod p).
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Recall b with ( ) =—-1,s, uwithp—1=2°ysand u
odd, d = a (mod p), f = b" (mod p). To compute m
so df™ =1 (mod p) and 2|m as follows. Let my = 0. For
i=0,1,...,s— 1 compute g = (df’"")25_1_i (mod p). If
g = —1 (mod p), then put mj;1 = m; +2'. Else take
mi+1 = m;. Claim df™ =1 (mod p), 2|ms.

By Euler's criterion d¥ =2 =%
So ord,(d)[2°~1 and = p = b =1
(mod p). Also f2 = b~ =1 (mod p), so ord,(f) =
Prove by induction for 0 < i < s that (df ™)' =
For i =0, mg=0so (df™)% =d* =1 (mod p).
Inductive step assume for an / with 0 </ < s —1 that
(dfm)2 ™ =1 (mod p). Then (dfm)> ™ = 41

(mod p). If (df™)2 " =1 (mod p), then miy1 = m;
and so (df™+1)2 " =1 (mod p) as required. If
(df™)2 " = —1 (mod p), then mj;1 = m; + 2/ and so
(dfmiﬂ)zsflfi _ (df2i+mi)25717,‘ _ (dfm")25717if2571 _
—b"2 =1 (mod p) once more, by Euler's criterion.
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