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® We have seen that on the residue classes modulo m we can
perform many of the standard operations of arithmetic.
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® We have seen that on the residue classes modulo m we can
perform many of the standard operations of arithmetic.
® Such an object is called a ring. In this case it is usually

denoted by Z/mZ or Zp,.
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® \We have seen that on the residue classes modulo m we can
perform many of the standard operations of arithmetic.

® Such an object is called a ring. In this case it is usually
denoted by Z/mZ or Zp,.

® |n this chapter we will look at its multiplicative structure.
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We have seen that on the residue classes modulo m we can
perform many of the standard operations of arithmetic.

Such an object is called a ring. In this case it is usually
denoted by Z/mZ or Zp,.

In this chapter we will look at its multiplicative structure.

In particular we will consider the reduced residue classes
modulo m.
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o Given me N, a € Z, (a,m) = 1 we define the order ord,(a) of

a modulo m to be the smallest positive integer t such that
a'*=1 (mod m).

We may express this by saying that a belongs to the exponent t
modulo m, or that t is the order of a modulo m.
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Definition 1
Primitivi . )
o Given me N, a € Z, (a,m) = 1 we define the order ord,(a) of

a modulo m to be the smallest positive integer t such that
a'*=1 (mod m).

We may express this by saying that a belongs to the exponent t
modulo m, or that t is the order of a modulo m.

* Note that by Euler’s theorem, a®(™ =1 (mod m), so
that ord,(a) exists.



® \We can do better than that.

Suppose that m € N, (a,m) =1 and n € N js such that a" =

(mod m). Then ord,(a)|n. In particular ordm,(a)|p(m).
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® Since t is minimal we have t < n.
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® Since t is minimal we have t < n.

® Thus by the division algorithm there are g and r with
0<r<tsuchthat n=tq+r.
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Thus by the division algorithm there are g and r with
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® Hence

"= (a")%" = a""" =a"=1 (mod m).
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® Since t is minimal we have t < n.

® Thus by the division algorithm there are g and r with
0<r<tsuchthat n=tq+r.
® Hence

"= (a")%" = a""" =a"=1 (mod m).

e But0<r<t.
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® Since t is minimal we have t < n.

® Thus by the division algorithm there are g and r with
0<r<tsuchthat n=tq+r.
® Hence

"= (a")%" = a""" =a"=1 (mod m).

e But0<r<t.
If we would have r > 0, then we would contradict the
minimality of t.
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T,begfﬁacn' (mod m). Then ord,(a)|n. In particular ordm,(a)|p(m).
Pl ® Proof. For concision let t = ord,,(a).

Roots

® Since t is minimal we have t < n.

® Thus by the division algorithm there are g and r with
0<r<tsuchthat n=tq+r.

® Hence
"= (a")%" = a""" =a"=1 (mod m).

e But0<r<t.

® |f we would have r > 0, then we would contradict the
minimality of t.

® Hence r = 0.



® Here is an application we will make use of later.
Suppose that d|p — 1. Then the congruence x? =1 (mod p)
has exactly d solutions.
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® Here is an application we will make use of later.

Theorem 3

Suppose that d|p — 1. Then the congruence x? =1 (mod p)

has exactly d solutions.
® Proof. We have

Xp—l 1= (Xd o 1)(Xp—1—d +Xd—p—2d +

x4 4 1).
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® Here is an application we will make use of later.

Theorem 3
Suppose that d|p — 1. Then the congruence x? =1 (mod p)
has exactly d solutions.

® Proof. We have
xP7t—1= (xd — ]_)(Xp_l_d +x97P2d 4y X9y 1).

® To see this just multiply out the right hand side and
observe that the terms telescope.
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® Here is an application we will make use of later.

Theorem 3
Suppose that d|p — 1. Then the congruence x? =1 (mod p)

has exactly d solutions.
® Proof. We have
xP7t—1= (xd — ]_)(Xp_l_d +x97P2d 4y X9y 1).
® To see this just multiply out the right hand side and

observe that the terms telescope.

® \We know from Euler's theorem that there are exactly
p — 1 incongruent roots to the left hand side modulo p.
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® Here is an application we will make use of later.

Theorem 3
Suppose that d|p — 1. Then the congruence x? =1 (mod p)
has exactly d solutions.

® Proof. We have
xP7t—1= (xd — ]_)(Xp_l_d +x97P2d 4y X9y 1).

® To see this just multiply out the right hand side and
observe that the terms telescope.

® \We know from Euler's theorem that there are exactly
p — 1 incongruent roots to the left hand side modulo p.

® On the other hand, by Lagrange's theorem, the second
factor has at most p — 1 — d such roots, so the first factor
must account for at least d of them.
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xP7t—1= (xd — ]_)(Xp_l_d +x97P2d 4y X9y 1).

® To see this just multiply out the right hand side and
observe that the terms telescope.

® \We know from Euler's theorem that there are exactly
p — 1 incongruent roots to the left hand side modulo p.

® On the other hand, by Lagrange's theorem, the second
factor has at most p — 1 — d such roots, so the first factor
must account for at least d of them.

® On the other hand, again by Lagrange's theorem, it has at
most d roots modulo p.



® We have already seen that, when (a, m) = 1, a has order
modulo m which divides ¢(m).
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® We have already seen that, when (a, m) = 1, a has order
modulo m which divides ¢(m).

® One question one can ask is, given any d|¢(m), are there
elements of order d?
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are distinct modulo m,
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We have already seen that, when (a, m) = 1, a has order
modulo m which divides ¢(m).

One question one can ask is, given any d|¢(m), are there
elements of order d?

In the special case d = ¢(m) this would mean that

are distinct modulo m,

because otherwise we would have

a“ =a" (mod m)

with 1 <u < v < ¢(m),
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We have already seen that, when (a, m) = 1, a has order
modulo m which divides ¢(m).

One question one can ask is, given any d|¢(m), are there
elements of order d?

In the special case d = ¢(m) this would mean that

a,a’,.. a#(m)

)
are distinct modulo m,
because otherwise we would have
a’ =a" (mod m)

with 1 <u < v < ¢(m),
and then
a" “=1 (mod m)

and 1 < v — u < ¢(m) contradicting the assumption that

ord,(a) = ¢(m).
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® a=1, ord7(1) =1.
©2=222=42=8=1 ords(2) =3.
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m=7T.

® a=1, ord7(1) =1.

© 2=222=4,2=8=1. ords(2) =3.

e 2=3,32=90=2,33=27=6,3*=

3=12=5,3%=1, ord;(3) = 6.
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® a=1, ord7(1) =1.

© 2=222=4,2=8=1. ords(2) =3.

©2=332=0=233=27=6,3"=18=4,
3¥=12=5,3°=1, ord7(3) = 6.

® a=14,42=243=20=1, ord;(4) = 3.
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e Consider

m=7T.

® a=1, ord7(1) =1.

© 2=222=4,2=8=1. ords(2) =3.

© 2=3,32=0=2,33=27=6,3"=18=4,
3¥=12=5,3°=1, ord7(3) = 6.

® a=14,42=243=20=1, ord;(4) = 3.

e 3=552=25=453=20=6, 5*=30=2,

55=10=3, 5° =1, ord/(5) = 6.
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m=7T.

® a=1, ord7(1) =1.

© 2=222=4,2=8=1. ords(2) =3.

© 2=3,32=0=2,33=27=6,3"=18=4,
3¥=12=5,3°=1, ord7(3) = 6.

® a=14,42=243=20=1, ord;(4) = 3.

e 3=552=25=453=20=6, 5*=30=2,

55=10=3, 5° =1, ord/(5) = 6.
® 2=16,62=36=1, ords(6) = 2.
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m=7T.

a=1, ordy(1) =1.
a=2,22=4,2=8=1. ords(2) = 3.
a=3,32=9=23=27=6,3"=18=4,
3¥=12=5,3°=1, ord7(3) = 6.
a=442=243=2°=1, ord;(4) = 3.
a=5052=25=4,5=20=6,5*=30=2,
55=10=3, 5° =1, ord/(5) = 6.
a=6,6%>=36=1, ords(6) = 2.

Thus there is one element of order 1, one element of order

2, two of order 3 and two of order 6.
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Consider

m=7T.

a=1, ordy(1) =1.
a=2,22=4,2=8=1. ords(2) = 3.
a=3,32=9=23=27=6,3"=18=4,
3¥=12=5,3°=1, ord7(3) = 6.
a=442=243=2°=1, ord;(4) = 3.
a=5052=25=4,5=20=6,5*=30=2,
55=10=3, 5° =1, ord/(5) = 6.
a=6,6%>=36=1, ords(6) = 2.

Thus there is one element of order 1, one element of order

2, two of order 3 and two of order 6.

Is it a fluke that for each d|6 = ¢(7) the number of

elements of order d is ¢(d)?



® \We now come to an important concept
Suppose that m € N and (a, m) = 1. If ord;,(a) = ¢(m) then
we say that a is a primitive root modulo m.
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Definition 5
Suppose that m € N and (a, m) = 1. If ord;,(a) = ¢(m) then
we say that a is a primitive root modulo m.

® We know that we do not always have primitive roots.
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® \We now come to an important concept

Definition 5
Suppose that m € N and (a, m) = 1. If ord;,(a) = ¢(m) then
we say that a is a primitive root modulo m.

® We know that we do not always have primitive roots.
® For example, any number a with (a,8) =1 is odd and so
a> =1 mod 8, whereas ¢(8) = 4.
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i ® We know that we do not always have primitive roots.

® For example, any number a with (a,8) =1 is odd and so
a> =1 mod 8, whereas ¢(8) = 4.

® There are primitive roots to some moduli. For example,

modulo 7 the powers of 3 are successively 3,2,6,4,5,1.
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® For example, any number a with (a,8) =1 is odd and so
a> =1 mod 8, whereas ¢(8) = 4.

® There are primitive roots to some moduli. For example,
modulo 7 the powers of 3 are successively 3,2,6,4,5,1.

® Gauss determined precisely which moduli possess primitive
roots. The first step is the case of prime modulus.

Theorem 6 (Gauss)

Suppose that p is a prime number. Let d|p — 1 then there are
¢(d) residue classes a with ord,(a) = d. In particular there are
o(p— 1) = ¢(¢(p)) primitive roots modulo p.
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® Proof of Gauss’ Theorem We have seen that the order
of every reduced residue class modulo p divides p — 1.
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® Proof of Gauss’ Theorem We have seen that the order
of every reduced residue class modulo p divides p — 1.

® For a given d|p — 1 let 1/(d) denote the number of
reduced residues of order d modulo p.
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® Proof of Gauss’ Theorem We have seen that the order
of every reduced residue class modulo p divides p — 1.

® For a given d|p — 1 let 1/(d) denote the number of
reduced residues of order d modulo p.

® The congruence x

d=

(mod p) has exactly d solutions.
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Proof of Gauss’ Theorem We have seen that the order
of every reduced residue class modulo p divides p — 1.

For a given d|p — 1 let ¢)(d) denote the number of
reduced residues of order d modulo p.

The congruence x? =1 (mod p) has exactly d solutions.

Thus every solution has order dividing d.
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Proof of Gauss’ Theorem We have seen that the order
of every reduced residue class modulo p divides p — 1.

For a given d|p — 1 let ¢)(d) denote the number of
reduced residues of order d modulo p.

The congruence x? =1 (mod p) has exactly d solutions.
Thus every solution has order dividing d.

Also each residue with order dividing d is a solution.
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Proof of Gauss’ Theorem We have seen that the order
of every reduced residue class modulo p divides p — 1.

For a given d|p — 1 let ¢)(d) denote the number of
reduced residues of order d modulo p.

The congruence x? =1 (mod p) has exactly d solutions.
Thus every solution has order dividing d.

Also each residue with order dividing d is a solution.

Thus for each d|p — 1 we have Z@Z}(r) =d.
rid
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Proof of Gauss’ Theorem We have seen that the order
of every reduced residue class modulo p divides p — 1.

For a given d|p — 1 let ¢)(d) denote the number of
reduced residues of order d modulo p.

The congruence x? =1 (mod p) has exactly d solutions.
Thus every solution has order dividing d.
Also each residue with order dividing d is a solution.
Thus for each d|p — 1 we have Z@Z}(r) =d.

rld

This is reminiscent of an earlier formula Z o(r)=d.
rld
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Proof of Gauss’ Theorem We have seen that the order
of every reduced residue class modulo p divides p — 1.

For a given d|p — 1 let ¢)(d) denote the number of
reduced residues of order d modulo p.

The congruence x? =1 (mod p) has exactly d solutions.
Thus every solution has order dividing d.

Also each residue with order dividing d is a solution.

Thus for each d|p — 1 we have Z@Z}(r) =d.
rid
This is reminiscent of an earlier formula Z o(r)=d.
rld
Let l=d; < dr <...<dg=p—1 be the divisors of
p — 1 in order.



Factorization
and Primality
Testing
Chapter 4
Primitive
Roots and
RSA

Robert C.
Vaughan

Primitive
Roots

Proof of Gauss’ Theorem We have seen that the order
of every reduced residue class modulo p divides p — 1.

For a given d|p — 1 let ¢)(d) denote the number of
reduced residues of order d modulo p.

The congruence x? =1 (mod p) has exactly d solutions.
Thus every solution has order dividing d.

Also each residue with order dividing d is a solution.

Thus for each d|p — 1 we have Z@Z)(r) =d.
rid
This is reminiscent of an earlier formula Z o(r)=d.
rld
Let l=d; < dr <...<dg=p—1 be the divisors of
p — 1 in order.
We have a relationship Zl/}(r) =d; foreach j=1,2,...
r|d;
and, of course, the sum is over a subset of the divisors of
p — 1. | claim that this determines 1(d;) uniquely.
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® \We have a relationship
> (r) =d
r|d;

for each j = 1,2,... where the sum is over the divisors of
d; and so is over a subset of the divisors of p — 1.
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Roots d; and so is over a subset of the divisors of p — 1.

® | claim that these relationships determines (d;) uniquely.
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for each j = 1,2,... where the sum is over the divisors of
Primiti . ..
Roots d; and so is over a subset of the divisors of p — 1.

® | claim that these relationships determines (d;) uniquely.

® We can prove this by observing that if N is the number of
positive divisors of p — 1, then we have N linear equations
in the N unknowns ¥ (r) and we can we can write this in

matrix notation
YU =d.
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We have a relationship

> (r) =d

r|d;

for each j = 1,2,... where the sum is over the divisors of
d; and so is over a subset of the divisors of p — 1.

| claim that these relationships determines 1(d;) uniquely.

We can prove this by observing that if N is the number of
positive divisors of p — 1, then we have N linear equations
in the N unknowns ¥ (r) and we can we can write this in
matrix notation

YU = d.

Moreover U is an upper triangular matrix with non-zero
entries on the diagonal and so is invertible.
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We have a relationship

> (r) =d

r|d;

for each j = 1,2,... where the sum is over the divisors of
d; and so is over a subset of the divisors of p — 1.

| claim that these relationships determines 1(d;) uniquely.
We can prove this by observing that if N is the number of
positive divisors of p — 1, then we have N linear equations
in the N unknowns ¥ (r) and we can we can write this in

matrix notation
YU =d.

Moreover U is an upper triangular matrix with non-zero
entries on the diagonal and so is invertible.

Hence the 9(d;) are uniquely determined.
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We have a relationship

> (r) =d

r|d;

for each j = 1,2,... where the sum is over the divisors of
d; and so is over a subset of the divisors of p — 1.
| claim that these relationships determines 1(d;) uniquely.

We can prove this by observing that if N is the number of
positive divisors of p — 1, then we have N linear equations
in the N unknowns ¥ (r) and we can we can write this in
matrix notation

YU = d.
Moreover U is an upper triangular matrix with non-zero
entries on the diagonal and so is invertible.
Hence the 9(d;) are uniquely determined.

But we already know a solution, namely ¢ = ¢.
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® |f we wish to avoid the linear algebra, starting from
>_ v =4
r|d;

for each j = 1,2,... we can prove uniqueness by induction.
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® |f we wish to avoid the linear algebra, starting from
> U =d
r|d;
for each j = 1,2,... we can prove uniqueness by induction.
® For the base case we have (1) = 1.
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primitive ® Then suppose that ¢(d1), ..., (d;) are determined.
® Then we have

Z ¢ _/+1
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If we wish to avoid the linear algebra, starting from
Y ow(r) =
r|d;
for each j = 1,2,... we can prove uniqueness by induction.

For the base case we have (1) = 1.
Then suppose that 1(d1),...,1(d;) are determined.

Then we have
Z ¢ _/+1
rld;y
Hence
P(di1) = digr— Y (r)

rldjs1
r<dj1

and every term on the right hand side is already
determined.
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If we wish to avoid the linear algebra, starting from

> (r) =

r|d;

for each j = 1,2,... we can prove uniqueness by induction.
For the base case we have (1) = 1.
Then suppose that 1(d1),...,1(d;) are determined.

Then we have
Z ¢ _/+1
rld;y

Hence

P(di1) = digr— Y (r)
s

and every term on the right hand side is already
determined.

Thus we can conclude there is only one solution to our
system of equations.
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If we wish to avoid the linear algebra, starting from

> (r) =

r|d;

for each j = 1,2,... we can prove uniqueness by induction.
For the base case we have (1) = 1.
Then suppose that 1(d1),...,1(d;) are determined.

Then we have
Z ¢ _/+1
rld;y

Hence
P(di1) = digr— Y (r)

rldjs1
r<dj1

and every term on the right hand side is already
determined.

Thus we can conclude there is only one solution to our
system of equations.

But we already know one solution, namely 1(r) = ¢(r).
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divisors of 12.
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® How about higher powers of odd primes?

Theorem 8 (Gauss)

We have primitive roots modulo m when m =2, m = 4,
m = p*X and m = 2p* with p an odd prime and in no other

cases.
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Theorem 8 (Gauss)

We have primitive roots modulo m when m =2, m = 4,
m = p*X and m = 2p* with p an odd prime and in no other

cases.

® In applications one can usually reduce via the Chinese
Remainder Theorem to powers of primes.
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® How about higher powers of odd primes?

Theorem 8 (Gauss)

We have primitive roots modulo m when m =2, m = 4,
m = p*X and m = 2p* with p an odd prime and in no other
cases.

® In applications one can usually reduce via the Chinese
Remainder Theorem to powers of primes.

® Thus the lack of primitive roots for higher powers of 2 us
a nuisance.
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® How about higher powers of odd primes?

Theorem 8 (Gauss)

We have primitive roots modulo m when m =2, m = 4,
m = p*X and m = 2p* with p an odd prime and in no other
cases.

® In applications one can usually reduce via the Chinese
Remainder Theorem to powers of primes.

® Thus the lack of primitive roots for higher powers of 2 us
a nuisance.

® Nevertheless Gauss did prove something.

Theorem 9 (Gauss)

Suppose that k > 3. Then the numbers (—1)“5" with u = 0,1
and 0 < v < 2k=2 form a set of reduced residues modulo 2*
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® How about higher powers of odd primes?

Theorem 8 (Gauss)

We have primitive roots modulo m when m =2, m = 4,
m = p*X and m = 2p* with p an odd prime and in no other
cases.

® In applications one can usually reduce via the Chinese
Remainder Theorem to powers of primes.

® Thus the lack of primitive roots for higher powers of 2 us
a nuisance.

® Nevertheless Gauss did prove something.

Theorem 9 (Gauss)

Suppose that k > 3. Then the numbers (—1)“5" with u = 0,1
and 0 < v < 2k=2 form a set of reduced residues modulo 2*

® We will not need these results but | will include the proofs
in the class text for anyone interested.



® As an application of primitive roots we can say something
when p is odd about the solution of congruences of the
form

k=g

X
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® As an application of primitive roots we can say something
when p is odd about the solution of congruences of the
form

xK'=a (mod p).
® The case a =0 is easy.

® The only solution is x =0 (mod p).
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x*=a (mod p).
® The case a = 0 is easy.
AU ® The only solution is x =0 (mod p).
i i ® Suppose a #Z 0 (mod p). Then pick a primitive root g

modulo p, and a ¢ so that g€ = a (mod p).
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RER when p is odd about the solution of congruences of the
Robert C.
Vaugrhan form P
x*=a (mod p).
® The case a = 0 is easy.
AU ® The only solution is x =0 (mod p).
i i ® Suppose a #Z 0 (mod p). Then pick a primitive root g

modulo p, and a ¢ so that g€ = a (mod p).
® Also, since any solution x will have p t x we can define y
so that g¥ = x (mod p).
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RER when p is odd about the solution of congruences of the
Robert C.
VaugI:an form
xK'=a (mod p).
® The case a = 0 is easy.
AU ® The only solution is x =0 (mod p).
i i ® Suppose a #Z 0 (mod p). Then pick a primitive root g

modulo p, and a ¢ so that g€ = a (mod p).

® Also, since any solution x will have p t x we can define y
so that g¥ = x (mod p).

® Thus our congruence becomes

g =g (mod p).
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Primitive ® As an application of primitive roots we can say something
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RER when p is odd about the solution of congruences of the
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Vaughan form

xK'=a (mod p).

® The case a = 0 is easy.

o ® The only solution is x =0 (mod p).
Er;;a[r)ii;c;qeste ® Suppose a Z 0 (mod p). Then pick a primitive root g

modulo p, and a ¢ so that g€ = a (mod p).
® Also, since any solution x will have p t x we can define y
so that g¥ = x (mod p).
® Thus our congruence becomes
g =g (mod p).
® Hence it follows that

ky = c (mod p—1).
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® Sometimes the exponents ¢ and y are referred to as the

B discrete logarithms modulo p to the base g.
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e e Computing them numerically is hard and there is a

protocol (Diffie-Hellman) which uses them to exchange
secure keys and passwords.
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We have turned a polynomial congruence into a linear one.

This is a bit like using logarithms on real numbers.

xK =3 (mod p), g% = g° (mod p),

ky = c (mod p—1).

Sometimes the exponents ¢ and y are referred to as the
discrete logarithms modulo p to the base g.

Computing them numerically is hard and there is a
protocol (Diffie-Hellman) which uses them to exchange
secure keys and passwords.

Our new congruence is soluble if and only if (k, p — 1)|c,
and when this holds the y which satisfy it lie in a residue
class modulo %, i.e. (k,p—1) different residue
classes modulo p — 1.
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We have turned a polynomial congruence into a linear one.

This is a bit like using logarithms on real numbers.

xK =3 (mod p), g% = g° (mod p),

ky = c (mod p—1).

Sometimes the exponents ¢ and y are referred to as the
discrete logarithms modulo p to the base g.

Computing them numerically is hard and there is a
protocol (Diffie-Hellman) which uses them to exchange
secure keys and passwords.

Our new congruence is soluble if and only if (k, p — 1)|c,

and when this holds the y which satisfy it lie in a residue

class modulo ﬁ, i.e. (k,p—1) different residue
classes modulo p — 1.

Thus, when a 2 0 (mod p) the original congruence is
either insoluble or has (k, p — 1) solutions.
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We have turned a polynomial congruence into a linear one.

This is a bit like using logarithms on real numbers.

xK =3 (mod p), g% = g° (mod p),

ky = c (mod p—1).

Sometimes the exponents ¢ and y are referred to as the
discrete logarithms modulo p to the base g.

Computing them numerically is hard and there is a
protocol (Diffie-Hellman) which uses them to exchange
secure keys and passwords.

Our new congruence is soluble if and only if (k, p — 1)|c,

and when this holds the y which satisfy it lie in a residue

class modulo ﬁ, i.e. (k,p—1) different residue
classes modulo p — 1.

Thus, when a 2 0 (mod p) the original congruence is
either insoluble or has (k, p — 1) solutions.
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We have turned a polynomial congruence into a linear one.

This is a bit like using logarithms on real numbers.

xK =3 (mod p), g% = g° (mod p),

ky = c (mod p—1).

Sometimes the exponents ¢ and y are referred to as the
discrete logarithms modulo p to the base g.

Computing them numerically is hard and there is a
protocol (Diffie-Hellman) which uses them to exchange
secure keys and passwords.

Our new congruence is soluble if and only if (k, p — 1)|c,
and when this holds the y which satisfy it lie in a residue
class modulo ﬁ, i.e. (k,p—1) different residue
classes modulo p — 1.

Thus, when a 2 0 (mod p) the original congruence is

either insoluble or has (k, p — 1) solutions.

Thus we just proved a theorem.



® Thus we just proved a theorem.

Suppose p is an odd prime. When p t a the congruence x

k —
(mod p) has 0 or (k,p — 1) solutions, and the number of

=a
reduced residues a modulo p for which it is soluble is %.
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Suppose p is an odd prime. When p | a the congruence x* = a

(mod p) has 0 or (k, p — 1) solutions, and the number of
Binomia! reduced residues a modulo p for which it is soluble is (k > 11)
ongruences

and Discrete
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® The above theorem suggests the following.

Definition 11

Given a primitive root g and a reduced residue class a modulo
m we define the discrete logarithm dlog,(a), or index indg(a)
to be that unique residue class / modulo ¢(m) such that g/ = a
(mod m)
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Suppose p is an odd prime. When p | a the congruence x* = a

(mod p) has 0 or (k, p — 1) solutions, and the number of
Binomia! reduced residues a modulo p for which it is soluble is (k > 11)
ongruences

and Discrete
Logarithms

® The above theorem suggests the following.

Definition 11

Given a primitive root g and a reduced residue class a modulo
m we define the discrete logarithm dlog,(a), or index indg(a)
to be that unique residue class / modulo ¢(m) such that g/ = a
(mod m)

® The notation indg(x) is more commonly used, but
dlog,(x) seems more natural.
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® |t is useful to work through a detailed example.

Find a primitive root modulo 11 and construct a table of

discrete logarithms.
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® |t is useful to work through a detailed example.

Find a primitive root modulo 11 and construct a table of
discrete logarithms.

® First we try 2. The divisors of 11 —1=10are 1, 2, 5, 10

and 2! =2#1 (mod 11), 22 =4 # 1 (mod 11),
2°=32=10#1 (mod 11), so 2 is a primitive root.
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® |t is useful to work through a detailed example.

Find a primitive root modulo 11 and construct a table of

discrete logarithms.

® First we try 2. The divisors of 11 —1=10are 1, 2, 5, 10

and 2! =2#1 (mod 11), 22 =4 # 1 (mod 11),

2°=32=10#1 (mod 11), so 2 is a primitive root.
® Now we construct a table of powers of 2 modulo 11

y 1 2 3 4 5 6 7 8 9

10

x=2r 2 4 8 5 10 9 7 3 6

1
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. ® First we try 2. The divisors of 11 —1 =10 are 1, 2, 5, 10
Roots and 2! =2#1 (mod 11), 22 =4 # 1 (mod 11),
o 2°=32=10#1 (mod 11), so 2 is a primitive root.
e e ® Now we construct a table of powers of 2 modulo 11

y 1.2 3 4 5 6 7 8 9 10
x=2r 2 4 8 5 10 9 7 3 6 1

® Then we construct the “inverse” table
x 1 2 3 4 5

y=dlogy(x) 10 1 8 2 4
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. ® First we try 2. The divisors of 11 —1 =10 are 1, 2, 5, 10
Roots and 2! =2#1 (mod 11), 22 =4 # 1 (mod 11),
o 2°=32=10#1 (mod 11), so 2 is a primitive root.
e e ® Now we construct a table of powers of 2 modulo 11

y 1.2 3 4 5 6 7 8 9 10
x=2r 2 4 8 5 10 9 7 3 6 1

® Then we construct the “inverse” table
x 1 2 3 4 5 6 7 8 9 10

y=dlogy(x) 10 1 8 2 4 9 7 3 6 5
¢ Note that while x is a residue modulo p (here p = 11), the
y are residues modulo p — 1 (here 10).
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. ® First we try 2. The divisors of 11 —1 =10 are 1, 2, 5, 10
Roots and 2! =2#1 (mod 11), 22 =4 #1 (mod 11),
Bl 2°=32=10#1 (mod 11), so 2 is a primitive root.
e e ® Now we construct a table of powers of 2 modulo 11

y 1 2 3 4 5 6 7 8 9 10
x=2 2 4 8 5 10 9 7 3 6 1

® Then we construct the “inverse” table
x 1 2 3 4 5 6 7 8 9 10

y=dlogy(x) 10 1 8 2 4 9 7 3 6 5

RSA

® Note that while x is a residue modulo p (here p = 11), the
y are residues modulo p — 1 (here 10).
® y is the order, or exponent, to which 2 has to be raised to

give x modulo p. In other words x = g9°8:(x) (mod p).
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Robert C. discrete logarithms.
Vaughan
. ® First we try 2. The divisors of 11 —1 =10 are 1, 2, 5, 10
Roots and 2! =2#1 (mod 11), 22 =4 #1 (mod 11),
Bl 2°=32=10#1 (mod 11), so 2 is a primitive root.
e e ® Now we construct a table of powers of 2 modulo 11

y 1 2 3 4 5 6 7 8 9 10
x=2 2 4 8 5 10 9 7 3 6 1

® Then we construct the “inverse” table
x 1 2 3 4 5 6 7 8 9 10

y=dlogy(x) 10 1 8 2 4 9 7 3 6 5
® Note that while x is a residue modulo p (here p = 11), the
y are residues modulo p — 1 (here 10).
® y is the order, or exponent, to which 2 has to be raised to
give x modulo p. In other words x = g9°8:(x) (mod p).
® We can use this to solve congruences.
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. y 1 2 3 4 5 6 7 8 9 10
x=2 2 4 8 5 10 9 7 3 6 1

x 1 2 3 45 6 7 8 9 10
y=dlog,(x) 10 1 8 2 4 9 7 3 6 5

® \We can use this to solve,

if possible, the congruences,

x}=6 (mod 11),
x> =9 (mod 11),
x% =10 (mod 11)
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. y 1 2 3 4 5 6 7 8 9 10
x=2 2 4 8 5 10 9 7 3 6 1

x 1 2 3 45 6 7 8 9 10
y=dlog,(x) 10 1 8 2 4 9 7 3 6 5

® \We can use this to solve,

if possible, the congruences,
x*=6 (mod 11),

x> =9 (mod 11),
x% =10 (mod 11)

® In the first put x =2 (mod 11), so that x3 = 23 and we
see from the second table that 6 = 2° (mod 11).
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x=2 2 4 8 5 10 9 7 3 6 1

x 1 2 3 45 6 7 8 9 10
y=dlog,(x) 10 1 8 2 4 9 7 3 6 5

® \We can use this to solve,

if possible, the congruences,
x*=6 (mod 11),

x> =9 (mod 11),
x% =10 (mod 11)

® In the first put x =2 (mod 11), so that x3 = 23 and we
see from the second table that 6 = 2° (mod 11).
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. y 1 2 3 4 5 6 7 8 9 10
x=2 2 4 8 5 10 9 7 3 6 1

x 1 2 3 45 6 7 8 9 10
y=dlog,(x) 10 1 8 2 4 9 7 3 6 5

® \We can use this to solve,

if possible, the congruences,

x*=6 (mod 11),
x> =9 (mod 11),
x% =10 (mod 11)

® In the first put x =2 (mod 11), so that x3 = 23 and we
see from the second table that 6 = 2° (mod 11).

® We need 3y =9 (mod 10).
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. y 1 2 3 4 5 6 7 8 9 10
x=2 2 4 8 5 10 9 7 3 6 1

x 1 2 3 45 6 7 8 9 10
y=dlog,(x) 10 1 8 2 4 9 7 3 6 5

® \We can use this to solve,

if possible, the congruences,

x*=6 (mod 11),
x> =9 (mod 11),
x% =10 (mod 11)

® In the first put x =2 (mod 11), so that x3 = 23 and we
see from the second table that 6 = 2° (mod 11).

® We need 3y =9 (mod 10).

® This has the unique solution y =3 (mod 10).
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. y 1 2 3 4 5 6 7 8 9 10
x=2 2 4 8 5 10 9 7 3 6 1

x 1 2 3 45 6 7 8 9 10
y=dlog,(x) 10 1 8 2 4 9 7 3 6 5

® \We can use this to solve,

if possible, the congruences,
x*=6 (mod 11),

x> =9 (mod 11),
x% =10 (mod 11)

In the first put x =2¥ (mod 11), so that x3 = 23 and we
see from the second table that 6 = 2° (mod 11).

We need 3y =9 (mod 10).

This has the unique solution y =3 (mod 10).

Going to the first table we find that x =8 (mod 11).
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° y 1 2 3 4 5 6 7 8 9 10
x=2 2 4 8 5 10 9 7 3 6 1
x 1 2 3 45 6 7 8 9
y=dlogy(x) 10 1 8 2 4 9 7 3 6

x*=6 (mod 11),
x>=9 (mod 11),
x% =10 (mod 11)
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® For the second congruence we find that 5y =6 (mod 10)
and now we see that this has no solutions because

(5,10) = 516.
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R y 1 2 3 4 5 6 7 8 9 10
x=2 2 4 8 5 10 9 7 3 6 1
x 1 2 3 4 5 6 7 8 9 10
y=dlogy(x) 10 1 8 2 4 9 7 3 6 5

x}>=6 (mod 11),
x> =9 (mod 11),
x% =10 (mod 11)

® For the second congruence we find that 5y =6 (mod 10)
and now we see that this has no solutions because
(5,10) =516.

® In the third case we have 65y =5 (mod 10) and this is
equivalent to 13y =1 (mod 2) and this has one solution
modulo y =1 (mod 2), and so 5 solutions modulo 10
given by y =1, 3, 5, 7 or 9 modulo 10.
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R y 1 2 3 4 5 6 7 8 9 10
x=2 2 4 8 5 10 9 7 3 6 1
x 1 2 3 4 5 6 7 8 9 10
y=dlogy(x) 10 1 8 2 4 9 7 3 6 5

x}>=6 (mod 11),
x> =9 (mod 11),
x% =10 (mod 11)
® For the second congruence we find that 5y =6 (mod 10)
and now we see that this has no solutions because
(5,10) =516.
® In the third case we have 65y =5 (mod 10) and this is
equivalent to 13y =1 (mod 2) and this has one solution
modulo y =1 (mod 2), and so 5 solutions modulo 10
given by y =1, 3, 5, 7 or 9 modulo 10.
® Hence the original congruence has five solutions given by

x=2,8,10,7,6 (mod 11)



® Rijvest, Shamir and Adleman in 1978 rediscovered an idea

which had already been described internally at GCHQ by
Cocks in 1973 and then shared with NSA.
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® Rivest, Shamir and Adleman in 1978 rediscovered an idea
which had already been described internally at GCHQ by
Cocks in 1973 and then shared with NSA.

® This is sometimes described as a way of sharing
information by public key encryption.
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® Rivest, Shamir and Adleman in 1978 rediscovered an idea
which had already been described internally at GCHQ by
Cocks in 1973 and then shared with NSA.

® This is sometimes described as a way of sharing
information by public key encryption.

® The principle of the method is as follows.
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Rivest, Shamir and Adleman in 1978 rediscovered an idea
which had already been described internally at GCHQ by
Cocks in 1973 and then shared with NSA.

This is sometimes described as a way of sharing
information by public key encryption.

The principle of the method is as follows.

Let n,d, e € N be such that de =1 (mod ¢(n)).
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Rivest, Shamir and Adleman in 1978 rediscovered an idea
which had already been described internally at GCHQ by
Cocks in 1973 and then shared with NSA.

This is sometimes described as a way of sharing
information by public key encryption.

The principle of the method is as follows.

Let n,d, e € N be such that de =1 (mod ¢(n)).

Given a message M encoded as a number with M < n,
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Rivest, Shamir and Adleman in 1978 rediscovered an idea
which had already been described internally at GCHQ by
Cocks in 1973 and then shared with NSA.

This is sometimes described as a way of sharing
information by public key encryption.

The principle of the method is as follows.

Let n,d, e € N be such that de =1 (mod ¢(n)).

Given a message M encoded as a number with M < n,
compute E = M€ (mod n) and transmit E.
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Rivest, Shamir and Adleman in 1978 rediscovered an idea
which had already been described internally at GCHQ by
Cocks in 1973 and then shared with NSA.

This is sometimes described as a way of sharing
information by public key encryption.

The principle of the method is as follows.

Let n,d, e € N be such that de =1 (mod ¢(n)).

Given a message M encoded as a number with M < n,
compute E = M€ (mod n) and transmit E.

The recipient then computes £ (mod n).
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Rivest, Shamir and Adleman in 1978 rediscovered an idea
which had already been described internally at GCHQ by
Cocks in 1973 and then shared with NSA.

This is sometimes described as a way of sharing
information by public key encryption.

The principle of the method is as follows.

Let n,d, e € N be such that de =1 (mod ¢(n)).

Given a message M encoded as a number with M < n,
compute E = M€ (mod n) and transmit E.

The recipient then computes £ (mod n).

Then E9 = (M¢)4 = M% = M (mod n), since

¢(n)|de — 1, and the recipient recovers the message.



Factorization
and Primality
Testing
Chapter 4
Primitive
Roots and
RSA

Robert C.
Vaughan

RSA

RSA

Rivest, Shamir and Adleman in 1978 rediscovered an idea
which had already been described internally at GCHQ by
Cocks in 1973 and then shared with NSA.

This is sometimes described as a way of sharing
information by public key encryption.

The principle of the method is as follows.

Let n,d, e € N be such that de =1 (mod ¢(n)).

Given a message M encoded as a number with M < n,
compute E = M€ (mod n) and transmit E.

The recipient then computes £ (mod n).

Then E9 = (M¢)4 = M% = M (mod n), since

¢(n)|de — 1, and the recipient recovers the message.
The sender has to know only n and e.
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Rivest, Shamir and Adleman in 1978 rediscovered an idea
which had already been described internally at GCHQ by
Cocks in 1973 and then shared with NSA.

This is sometimes described as a way of sharing
information by public key encryption.

The principle of the method is as follows.

Let n,d, e € N be such that de =1 (mod ¢(n)).

Given a message M encoded as a number with M < n,
compute E = M€ (mod n) and transmit E.

The recipient then computes £ (mod n).

Then E9 = (M¢)4 = M% = M (mod n), since

¢(n)|de — 1, and the recipient recovers the message.
The sender has to know only n and e.

The recipient only has to know n and d.
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® This is sometimes described as a way of sharing

information by public key encryption.

The principle of the method is as follows.

Let n,d, e € N be such that de =1 (mod ¢(n)).

Given a message M encoded as a number with M < n,

compute E = M€ (mod n) and transmit E.

The recipient then computes £ (mod n).

Then E9 = (M¢)4 = M% = M (mod n), since

¢(n)|de — 1, and the recipient recovers the message.

The sender has to know only n and e.

® The recipient only has to know n and d.

® The level of security depends only on the ease with which
one can find d knowing n and e.

RSA
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® This is sometimes described as a way of sharing

information by public key encryption.

The principle of the method is as follows.

Let n,d, e € N be such that de =1 (mod ¢(n)).

Given a message M encoded as a number with M < n,

compute E = M€ (mod n) and transmit E.

The recipient then computes £ (mod n).

Then E9 = (M¢)4 = M% = M (mod n), since

¢(n)|de — 1, and the recipient recovers the message.

The sender has to know only n and e.

® The recipient only has to know n and d.

® The level of security depends only on the ease with which
one can find d knowing n and e.

® The numbers n and e can be in the public domain.

RSA
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® If n can be factored then we have ¢(n) = (p — 1)(g — 1).

RSA



Factorization
and Primality
Testing
Chapter 4
Primitive
Roots and
RSA

Robert C.
Vaughan

RSA

The crucial question is, given n and d, the solubility of
de =1 (mod ¢(n))

and this in turn requires the value of ¢(n).
Suppose that n is the product of two primes

n=pq.

If n can be factored then we have ¢(n) = (p — 1)(g — 1).
But this factorization is a known hard problem, especially
when the primes are roughly of the same size.
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The crucial question is, given n and d, the solubility of
de =1 (mod ¢(n))

and this in turn requires the value of ¢(n).
Suppose that n is the product of two primes

n=pq.

If n can be factored then we have ¢(n) = (p — 1)(qg — 1).
But this factorization is a known hard problem, especially
when the primes are roughly of the same size.

Of course if the value of ¢(n) can be discovered not only
is the message easily broken,
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The crucial question is, given n and d, the solubility of
de =1 (mod ¢(n))

and this in turn requires the value of ¢(n).
Suppose that n is the product of two primes

n = pq.
If n can be factored then we have ¢(n) = (p — 1)(g — 1).
But this factorization is a known hard problem, especially
when the primes are roughly of the same size.

Of course if the value of ¢(n) can be discovered not only
is the message easily broken,

but n is easily factored since one has

p+q=pqg+1—¢(n)=n+1—¢(n),
pqg=n

and once can substitute for g and then solve the quadratic
equation in p.
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The crucial question is, given n and d, the solubility of
de =1 (mod ¢(n))

and this in turn requires the value of ¢(n).
Suppose that n is the product of two primes

n=pq.

If n can be factored then we have ¢(n) = (p — 1)(g — 1).
But this factorization is a known hard problem, especially
when the primes are roughly of the same size.

Of course if the value of ¢(n) can be discovered not only
is the message easily broken,

but n is easily factored since one has

p+q=pqg+1—¢(n)=n+1—¢(n),

pqg=n
and once can substitute for g and then solve the quadratic
equation in p.

In other words, knowing ¢(n) is equivalent to factoring n.
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